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0. Introdcution

In this talk we consider a singular perturbation problem for a

system of nonlinear Schrödinger equations:
−ε2∆u1 + V1(x)u1 = µ1u

3
1 + βu1u

2
2, in RN ,

−ε2∆u2 + V2(x)u2 = µ2u
3
2 + βu2

1u2, in RN ,

u1(x) > 0, u2(x) > 0 in RN ,

u1(x), u2(x) ∈ H1(RN).

(S)

Here N = 2,3, µ1, µ2 > 0, β ∈ R are constants, and V1(x),

V2(x) : RN → R are bounded continuous positive functions,

and ε > 0 is a small parameter.

We consider the situation:

0 < β <
√

µ1µ2 and β is relatively small.
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Remark. Our problem (S) has semi-trivial solutions, i.e.,

solutions of type (u1(x),0) or (0, u2(x)), where u1(x) and u2(x)

solve the scalar equation:

−ε2∆u + Vi(x)u = µiu
3 in RN .

We call solutions (u1(x), u2(x)) with u1 6≡ 0 and u2 6≡ 0 as

non-trivial vector solutions.
Our aim is to find a family of concentrating solutions of

(S), whose limit is a non-trivial vector solution.
V1(x)

V2(x)

x
(u1(x),u2(x))
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Other solutions

x

x

x

V1(x)

V2(x)
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Plan of my talk.

1. Singular perturbation problem for scalar equations

- Local mountain pass for scalar equations:

2. Known results for the case: Vi(x) ≡ Vi

- Results of Lin-Wei, Ambrosetti-Corolado, Sirakov

3. Singular perturbation problem for systems

- Setting of problem

- Main result

4. Idea of a proof
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1. Singular perturbation problem for scalar equations

Singular perturbation problems for scalar problems are well-

studied.

−ε2∆u + V (x)u = f(u), u(x) > 0, u(x) ∈ H1(RN). (1)

A partial list of contributors:

Ambrosetti, Badiale, Bartsch, Byeon, Cao, Cingolani,

D’Aprile, Dancer, del Pino, Felmer, Floer, Grossi, Gui,

Jeanjean, Kang, Li, Lin, Liu, Malchiodi, Mart́ınez,

Montenegro, Ni, Nirenberg, Oh, Pistoia, Rabinowitz,

Wang, Wei, Weinstein, Yan
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x

Λ uε(x)

V (x)

Here we state the result precisely for a case:

−ε2∆u + V (x)u = u3.

Suppose that there exists a bounded open set Λ ⊂ RN such

that

inf
x∈Λ

V (x) < inf
x∈∂Λ

V (x).

We denote K = {x ∈ Λ | V (x) = infx∈Λ V (x)}.
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Setting v(x) = u(εx), we introduce a rescaled problem:

−∆v + V (εx)v = v3. (2)

The corresponding functional is

Iε(v) =
1

2
‖∇v‖2

2 +
1

2

∫
RN

V (εx)v2 dx − 1

4

∫
RN

|v|4 dx.

There exists a family (vε(x)) of solutions of (2): after taking

a subsequence εn → 0

Pεn → P0 ∈ K,

vεn(x + Pεn/εn) = uεn(εnx + Pεn) → ωP0
(x),

Iεn(vεn) → IP0
(ωP0

) = C0V (P0)
(4−N)/2.

Here ωP0
(x) is a least energy solution of the limit problem:

−∆ω + V (P0)ω = ω3.
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We remark that accumulating point P0 is also characterized

as

d(P0) = inf
P∈Λ

d(P),

where d(P) (P ∈ RN) is the least energy level of non-trivial

solutions for

−∆v + V (P)v = v3 in RN .

Remark. If P0 is a global minimum of V (x), a family (vε(x))

can be obtained as a minimizer of a minimizing problem:

inf{Iε(v) | v ∈ Nε},
where Nε = {u ∈ H1(RN) | u 6= 0, I ′ε(u)u = 0}.
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There are several ways to show the existence of such a family:

• Lyapunov-Schmidt reduction: Floer-Weinstein (86), Oh

(88, 90)

• Variational methods: Rabinowitz (92),...

Remark. To apply Lyapunov-Schmidt reduction method,

uniqueness and non-degeneracy of solutions of limit problems

and critical points of V (x) are required.

There are many efforts to relax uniqueness and non-

degeneracy assumptions.
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Local mountain pass method: del Pino-Felmer (96)

They succeeded to construct a family of solutions concen-

trating to a local minima of the potential V (x) without non-

degeneracy nor uniqueness of the solutions of the limit prob-

lem.

Generalizations: Jeanjean-T. (04), Byeon-Jeanjean (07),

Byeon-Jeanjean-T. (08)

Generalization to a saddle point setting: del Pino-Felmer(04)

These ideas help us to study singular perturbation problem

for systems of nonlinear Schrödiger equations.
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2. Known results for the case: Vi(x) ≡ Vi.

There are many works for the following problem with constant

coefficients, which appears as a limit problem in our study.{
−∆u1 + V1u1 = µ1u

3
1 + βu1u

2
2, in RN ,

−∆u2 + V2u2 = µ2u
3
2 + βu2

1u2, in RN ,
(3)

where V1, V2 > 0 are independent of x.

Lin-Wei (05, 06), Ambrosetti-Colorado (07),

Bartsch-Wang (06), Bartsch-Wang-Wei (07),

Busca-Sirakov (00), Maia-Montefusco-Pellacci (06),

Pompionio (06), Sirakov (07), Wei-Weth (08)

Professor Wang gave a good lecture about this topic. Espe-

cially sign and size of β are important in the study of (3).
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We remark that when β > 0 any positive solution of (3) is
radially symmetric (Busca-Sirakow 00).

We restrict ourselves to a case: β > 0 and β is relatively small.

Here relatively small means that β satisfies 0 < β2 < µ1µ2 and

the following condition.

(∗) Let ωi(x) be a ground state solution of −∆ω + Viω =

µiω
3. Then both of the following linear operators are

positive definite in H1
r (R

N):

−∆ + V1 − βω2
2 , −∆ + V2 − βω2

1 .

In other words, critical points correspoinding semi-trivial

solutions (ω1,0), (0, ω2) are non-degenerate and their

Morse index is 1.
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This condition is introduced in Ambrosetti-Corolado (07).

We remark that (∗) holds for small β > 0.

Our assumption: Throughout this talk, we assume

(∗) and 0 < β2 < µ1µ2.

Under these conditions, via variational methods they find a

non-trivial vector solution U = (u1, u2) satisfying

max{I(ω1,0), I(0, ω2)} < I(U) < I(ω1,0) + I(0, ω2).

Here I(u1, u2) is a functional corresponding to (3):

I(u1, u2) =
1

2

∫
RN

|∇u1|2 + V1u
2
1 + |∇u2|2 + V2u

2
2 dx

− 1

4

∫
RN

µ1u
4
1 + µ2u

4
2 + 2βu2

1u
2
2 dx.
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I give a mension to their approaches.

N

(0,ω2)

(ω1,0)
(0,0)

γ(t)

N

(0,ω2)

(ω1,0)

M

a) Approach by Ambrosetti and Corolado (07)
They introduce Nehari manifold:

N = {U = (u1, u2) ∈ H1
r × H1

r | U 6= (0,0), and I ′(U)U = 0}.

They apply the mountain pass theorem on N :

bN = inf
γ∈Γ

max
s∈[0,1]

I(γ(s)),

where Γ = {γ(s) ∈ C([0,1],N ) | γ(0) = (ω1,0), γ(1) = (0, ω2)}.
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b) Approach by Lin-Wei (05) and Sirakov (07)
Lin-Wei and Sirakov introduce a manifold M of Nehari type

of codimension 2:

M = {(u1, u2) ∈ H1
r × H1

r | u1 6= 0, u2 6= 0, and

I ′(u1, u2)(u1,0) = 0, I ′(u1, u2)(0, u2) = 0}.
They consider bM = infU∈M I(U).

Fact: bM = bN .

b(V1, V2)(≡ bM = bN ) can be characterized as the least energy

level for non-trivial vector solutions:

b(V1, V2) = inf{I(U) | U is a non-trivial vector

solution of (3)}.
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Uniqueness and non-degeneracy of least energy vector
solutions.
1) Uniqueness for small β > 0: Ikoma (to appear), Wei-Yao

(to appear).

2) Non-degeneracy of non-trivial vector solutions except for

countably many values of β, i.e,

∃ {βn}∞n=1 such that solutions are non-degenerate

for β 6∈ {βn}∞n=1.

Dancer-Wei (08).
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3. Singular perturbation problem for systems{
−ε2∆u1 + V1(x)u1 = µ1u

3
1 + βu1u

2
2, in RN ,

−ε2∆u2 + V2(x)u2 = µ2u
3
2 + βu2

1u2, in RN .
(S)

The following papers deal with singular perturbation problems

for systems of NLS,

Lin-Wei (06), Pompionio (06),

Maia-Montefusco-Pellacci (06)

a) Setting of problem

Now we set up our problem for a system (S). We assume the

following conditions:
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Assumption 1. There exists a compact set A ⊂ R2
+ such that

(i) For any (V1, V2) ∈ A, the problem{
−∆u1 + V1u1 = µ1u

3
1 + βu1u

2
2 in RN ,

−∆u2 + V2u2 = µ2u
3
2 + βu2

1u2 in RN .

satisfies the condition (∗).
(ii) (V1(P), V2(P)) ∈ A for all P ∈ RN .

Under the assumption 1, the least energy level for vector

solutions

m(P) = b(V1(P), V2(P))

is well-defined for each P ∈ RN .
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Assumption 2. There exists a bounded open set Λ ⊂ RN such

that

inf
P∈Λ

m(P) < inf
P∈∂Λ

m(P).

We also set m0 = infP∈Λ m(P) and

K = {P ∈ Λ | m(P) = m0}

Remark. When β → 0, we can show that

b(V1, V2) → (least energy level for −∆ω + V1ω = µ1ω
3)

+ (least energy level for −∆ω + V2ω = µ2ω
3)

= c0

(
V

(4−N)/2
1

µ1
+

V
(4−N)/2
2

µ2

)
.

Chern Institute of Mathematics, Nankai University May 22, 2009



International Conference on Variational Methods 20/35

An example of V1(x), V2(x), m(x) = b(V1(x), V2(x)).

x
Λ

V1(x)

V2(x)

c0

(
V1(x)4−N/2

µ1
+ V2(x)4−N/2

µ2

)
m(x)
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We try to find a family of solutions (Uε) concentrating in Λ.

Before we state our main result, we give some remarks.

Remark 1. If β = 0, there does not exist a family of solutions

concentrating to a point in Λ in general.

x

V1(x)

V2(x)

(u1(x),u2(x))
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Remark 2. Even if P0 is a global minimum of m(P), the

minimizer Uε(x) of

inf{Iε(U) | U ∈ Mε},
does not give a desired family in general. Here

Mε = {U = (u1, u2) | u1 6= 0, u2 6= 0,

and I ′ε(u1, u2)(u1,0) = 0, I ′ε(u1, u2)(0, u2) = 0}.

x

x

V1(x)

V2(x)
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Result of Lin-Wei (06):
Under a suitable condition on the behavior of Vi(x) at infinity,

Lin and Wei studied

• the existence of the minimizer Iε(Uε) = infU∈Mε Iε(U)

• the behavior of the minimizer Uε(x) = (u1ε(x), u2ε(x))

as ε → 0.

Among other results, they showed

Iε(Uε) → min

{
inf

P∈RN
m(P), inf

P∈RN
d1(P) + inf

P∈RN
d2(P)

}
.

Here di(P) (P ∈ RN) is the least energy level of −∆u +

Vi(P)u = µiu
3, i.e.,

di(P) = c0
Vi(P)(4−N)/2

µi
(i = 1,2).

Chern Institute of Mathematics, Nankai University May 22, 2009



International Conference on Variational Methods 24/35

Moreover they showed

• If infP∈RN m(P) < infP∈RN d1(P) + infP∈RN d2(P), then

both components u1ε(x), u2ε(x) concentrate same point

P0 ∈ K.

• If infP∈RN m(P) > infP∈RN d1(P) + infP∈RN d2(P), then for

i ∈ {1,2}, uiε(x) concentrates at Pi after extracting a

subsequence, where Pi satisfies

di(Pi) = inf
P∈RN

di(Pi), i.e., Vi(Pi) = inf
P∈RN

Vi(Pi).
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scalar problem system of NLS

V (x) ←→ m(x) = b(V1(x), V2(x))

Difficulties:
• Non-degeneracy of critical points of m(x) is not known.

• Uniqueness and non-degeneracy of least energy solution

of the limit problem is not known.
−∆u1 + V1(P)u1 = µ1u

3
1 + βu1u

2
2, in RN ,

−∆u2 + V2(P)u2 = µ2u
3
2 + βu2

1u2, in RN ,

u1(x) > 0, u2(x) > 0 in RN .

• Even for the global minimizer of m(x), the global mini-

mizer Uε of Iε(U) on Mε does not give a desired solution

in general.
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b) Main result

We state our main result for rescaled problem:{
−∆u1 + V1(εx)u1 = µ1u

3
1 + βu1u

2
2 in RN ,

−∆u2 + V2(εx)u2 = µ2u
3
2 + βu2

1u2 in RN .
(S)

Theorem. Suppose that Assumptions 1 and 2 hold. Then

(S) has a family of non-trivial positive vector solutions (Uε)

satisfying the following property: After taking a subsequence

εn → 0 there exist a sequnece (Pεn) ⊂ Λ such that

Pεn
→ P0 ∈ K, Uεn

(x − Pεn
/εn) → ΩP0(x) strongly.

Here ΩP0(x) is a solution of the limit problem and satisfies

IP0(ΩP0) = m(P0).
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x
Λ

V1(x)

V2(x)

c0

(
V1(x)4−N/2

µ1
+ V2(x)4−N/2

µ2

)
m(x)
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Remark. Under the situation like picture, 2 type of solutions

coexist.

x

x

V1(x)

V2(x)
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4. Idea of a proof

As stated in Remark 1, the minimizing method in Mε does

not work even if P0 is a global minimizer of m(P).

We use an idea from Byeon and Jeanjean (07), which

was used to prove the existence of concentrating solutions

for NLS:

−ε2∆u + V (x)u = f(u) in RN .

Their condition on the nonlinearity f(u) is very general; they

assume just Berestycki-Lions’ type conditions.

They develop a mountain pass type argument in the

whole space H1(RN). Their keys of argument is the following

points:
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(a) Mountain pass characterization of the solution of the limit

equation.

(b) Uniform estimate of ‖I ′(u)‖ from below in a neighborhood

of a set of expected solutions: for some ρ > 0

‖I ′(u)‖ ≥ ρ for u ∈ (Xd
ε \ Xd/2

ε ),

where Xd
ε = {ω(x− x0

ε )+ϕ(x) | dist (x0, K) < δ, ||ϕ||H1 ≤ d}.

This type of ideas are also used in Séré (92, 93), Coti Zelati-

Rabinowitz (91, 92),... for construction of multi-bump type

solutions for Hamiltonian systems and nonlinear elliptic PDEs.
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We use their idea in the Nehari type manifold of codimension

2:
Mε = {U | U = (u1, u2), u1 6= 0, u2 6= 0, and

I ′ε(u1, u2)(u1,0) = 0, I ′ε(u1, u2)(0, u2) = 0},
where Iε(u1, u2) is a functional corresponding to (S). That is,

Iε(u1, u2) =
1

2

∫
RN

|∇u1|2 + V1(εx)u
2
1 + |∇u2|2 + V2(εx)u

2
2 dx

− 1

4

∫
RN

µ1u
4
1 + µ2u

4
2 + 2βu2

1u
2
2 dx.

We also introduce a functional corresponding the limit

problem at P ∈ RN , that is,

IP (u1, u2) =
1

2

∫
RN

|∇u1|2 + V1(P)u2
1 + |∇u2|2 + V2(P)u2

2 dx

− 1

4

∫
RN

µ1u
4
1 + µ2u

4
2 + 2βu2

1u
2
2 dx.
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Let m0 = infP∈Λ m(P). We use the following notation: for

P ∈ K

SP = {Ω(x) =(ω1(x), ω2(x)) ∈ H1
r × H1

r | ω1 6= 0, ω2 6= 0,

I ′P (Ω) = 0, IP (Ω) = m0)}.

We have

•
∪

P∈K

({P} × SP ) is compact in R×H1
r .

• there exist δ0, C0 > 0 independent of P ∈ K and Ω ∈ SP

such that

Ω(x), |∇Ω(x)| ≤ C0 exp(−δ0|x|) for all Ω ∈ SP , x ∈ RN .
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For d, δ > 0 small we define the following neighborhood of

limiting solutions:

Xd
ε = {Ω(x − P̃

ε
) + Φ(x)

∣∣ P ∈ K, P̃ ∈ RN , |P̃ − P | < δ,

Ω ∈ SP , ‖Φ‖H1 ≤ d},

The following proposition is a key of proof of our Theorem.

Proposition. There exist d, δ > 0 such that for some ρ > 0

inf{Iε(U) | U ∈ (Xd
ε \ Xd/2

ε ) ∩Mε} ≥ m0 + ρ

for sufficiently small ε > 0.
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To prove Proposition, we need to show the following two

properties:

(A) lim
ε→0

inf{Iε(U) | U ∈ Xd
ε ∩Mε} = m0.

(B) There exist ν > 0 and ρ > 0 such that

‖I ′ε(U)‖ ≥ ρ

for U ∈ (Xd
ε \ X

d/2
ε ) ∩Mε with Iε(U) ≤ m0 + ν.
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We remark that

• Property (B) follows from a version of concentration-

compactness principle.

• The proof of property (A) is a little bit technical and we

use the properties of SP (P ∈ K).

Mε

Xd
ε
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