Nontrivial solutions for a a class of singular problems

Marcelo Montenegro Universidade Estadual de Campinas Elves A. B. Silva Universidade de Brasília

★ ロ ▶ → 御 ▶ → 결 ▶ → 결 ▶ │ 결

 $2Q$

세 미 시 세 레 에 세 프 에 세 프 에 시 프 시 2990

$$
\begin{cases}\n-\Delta u = \left(-u^{-\beta} + \lambda u^{\rho}\right) \chi_{\{u>0\}} & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega\n\end{cases}
$$
\n(1)

세 미 시 세 레 에 세 프 에 세 프 에 시 프 시

$$
\begin{cases}\n-\Delta u = \left(-u^{-\beta} + \lambda u^p\right) \chi_{\{u>0\}} & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega\n\end{cases}
$$
\n(1)

► Ω is a bounded smooth domain in \mathbb{R}^n , $n \geq 1$

$$
\begin{cases}\n-\Delta u = \left(-u^{-\beta} + \lambda u^p\right) \chi_{\{u>0\}} & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega\n\end{cases}
$$

(1)

(ロ) (個) (目) (目) (目) 目 のQC

► Ω is a bounded smooth domain in \mathbb{R}^n , $n \geq 1$ \blacktriangleright 0 < β < 1, 0 < p < 1, $\lambda > 0$

$$
\begin{cases}\n-\Delta u = \left(-u^{-\beta} + \lambda u^p\right) \chi_{\{u>0\}} & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega\n\end{cases}
$$
\n(1)

メロト メ御 ドメ 老 トメ 老 トッ 差し

- ► Ω is a bounded smooth domain in \mathbb{R}^n , $n \geq 1$
- \blacktriangleright 0 < β < 1, 0 < p < 1, λ > 0
- \triangleright This problem has been studied in several articles: Choi- Lazer - McKenna, Cîrstea - Ghergu - Radulescu, Dávila, Dávila -Montenegro, Diaz - Morel - Oswald

$$
\begin{cases}\n-\Delta u = \left(-u^{-\beta} + \lambda u^p\right) \chi_{\{u>0\}} & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega\n\end{cases}
$$
\n(1)

- ► Ω is a bounded smooth domain in \mathbb{R}^n , $n \geq 1$
- \blacktriangleright 0 < β < 1, 0 < p < 1, λ > 0
- \triangleright This problem has been studied in several articles: Choi- Lazer - McKenna, Cîrstea - Ghergu - Radulescu, Dávila, Dávila -Montenegro, Diaz - Morel - Oswald
- ► By a solution we mean a function $u \in H_0^1(\Omega)$ satisfying (1) in the weak sense, that is,

メロト メ御い メ君 トメ 君 トッ 君

 η

$$
\begin{cases}\n-\Delta u = \left(-u^{-\beta} + \lambda u^p\right) \chi_{\{u>0\}} & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega\n\end{cases}
$$
\n(1)

- ► Ω is a bounded smooth domain in \mathbb{R}^n , $n \geq 1$
- \blacktriangleright 0 < β < 1, 0 < p < 1, λ > 0
- \triangleright This problem has been studied in several articles: Choi- Lazer - McKenna, Cîrstea - Ghergu - Radulescu, Dávila, Dávila -Montenegro, Diaz - Morel - Oswald
- ► By a solution we mean a function $u \in H_0^1(\Omega)$ satisfying (1) in the weak sense, that is,

$$
\int_{\Omega} \nabla u \nabla \varphi = \int_{\{u>0\}} \big(-\frac{1}{u^{\beta}} + \lambda u^p \big) \varphi
$$

for every $\varphi \in \mathcal{C}_c^1(\Omega)$.

★ ロメ (4 御) > (唐) > (唐) → 唐 299

제 ロン 제 御 지 제 글 지 때문 지 말 할 수 있다.

 299

 $-\Delta u = \frac{1}{u^2}$ $\frac{1}{u^{\beta}} + \lambda u^{\beta},$

 $-\Delta u = \frac{1}{u^2}$ $\frac{1}{u^{\beta}} + \lambda u^{\beta},$

▶ Canino, Canino - Degiovanni, Hirano - Saccon - Shioji, Perera - —, Long - Sun - Wu, Gonçalves - Santos

K ロ X 《 母 X 〈 둘 X 〈 둘 X │ 둘 〉

 $-\Delta u = \frac{1}{u^2}$ $\frac{1}{u^{\beta}} + \lambda u^{\beta},$

▶ Canino, Canino - Degiovanni, Hirano - Saccon - Shioji, Perera - -, Long - Sun - Wu, Gonçalves - Santos

メロト メ御 ドメ 老 トメ 老 トリ (者)

 $2Q$

 \blacktriangleright Boccardo for related results

 $-\Delta u = \frac{1}{u^2}$ $\frac{1}{u^{\beta}} + \lambda u^{\beta},$

- ► Canino, Canino Degiovanni, Hirano Saccon Shioji, Perera - —, Long - Sun - Wu, Gonçalves - Santos
- \blacktriangleright Boccardo for related results
- \triangleright Crandall Rabinowitz Tartar: the existence of one solution via bifurcation theory

メロト メ御い メ君 トメ 君 トッ 君

 $-\Delta u = \frac{1}{u^2}$ $\frac{1}{u^{\beta}} + \lambda u^{\beta},$

- ► Canino, Canino Degiovanni, Hirano Saccon Shioji, Perera - —, Long - Sun - Wu, Gonçalves - Santos
- \blacktriangleright Boccardo for related results
- \triangleright Crandall Rabinowitz Tartar: the existence of one solution via bifurcation theory

メロト メ御い メ君 トメ 君 トッ 君

Theorem 1 Problem [\(1\)](#page-1-0) has two distinct nontrivial solutions for $\lambda > 0$ large.

K ロ ▶ (d) | K 글) | K 글) | [글 | 10 Q Q |

Consider the perturbation

$$
g_{\varepsilon}(t) = \begin{cases} \frac{t^{q}}{(t+\varepsilon)^{q+\beta}} \text{ for } t \geq 0\\ 0 \text{ for } t < 0, \end{cases}
$$
 (2)

Consider the perturbation

$$
g_{\varepsilon}(t) = \begin{cases} \frac{t^{q}}{(t+\varepsilon)^{q+\beta}} & \text{for } t \geq 0 \\ 0 & \text{for } t < 0, \end{cases}
$$
 (2)

where $0 < q < p < 1$

Consider the perturbation

$$
g_{\varepsilon}(t) = \begin{cases} \frac{t^{q}}{(t+\varepsilon)^{q+\beta}} & \text{for } t \geq 0 \\ 0 & \text{for } t < 0, \end{cases}
$$
 (2)

where $0 < q < p < 1$ and the corresponding perturbed problem

$$
\begin{cases}\n-\Delta u + g_{\varepsilon}(u) = \lambda u^{p} & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega\n\end{cases}
$$
\n(3)

Consider the perturbation

$$
g_{\varepsilon}(t) = \begin{cases} \frac{t^{q}}{(t+\varepsilon)^{q+\beta}} & \text{for } t \geq 0 \\ 0 & \text{for } t < 0, \end{cases}
$$
 (2)

where $0 < q < p < 1$ and the corresponding perturbed problem

$$
\begin{cases}\n-\Delta u + g_{\varepsilon}(u) = \lambda u^{p} & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega\n\end{cases}
$$
\n(3)

(ロ) (御) (君) (君) (君) 君 のぬの

The associated functional $l_\varepsilon\in C^1(H^1_0(\Omega),\mathbb{R})$ is given by

Consider the perturbation

$$
g_{\varepsilon}(t) = \begin{cases} \frac{t^{q}}{(t+\varepsilon)^{q+\beta}} & \text{for } t \geq 0 \\ 0 & \text{for } t < 0, \end{cases}
$$
 (2)

where $0 < q < p < 1$ and the corresponding perturbed problem

$$
\begin{cases}\n-\Delta u + g_{\varepsilon}(u) = \lambda u^{p} & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega\n\end{cases}
$$
\n(3)

The associated functional $l_\varepsilon\in C^1(H^1_0(\Omega),\mathbb{R})$ is given by

$$
I_{\varepsilon}(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 + \int_{\Omega} G_{\varepsilon}(u) - \frac{\lambda}{p+1} \int_{\Omega} (u^+)^{p+1}
$$

where $\mathit{G}_{\varepsilon}(u)=\int_{0}^{t}g_{\varepsilon}(s)ds\geq0.$

Two solutions for the perturbed problem

For every $\lambda>0$, there is $\rho>0$ such that, $l_\varepsilon(u)\geq \frac{1}{4}$ $\frac{1}{4}\rho^2$ whenever $\|u\|_{H^1_0} = \rho$ and $0 < \varepsilon < 1$.

(ロ) (御) (君) (君) (君) 君 のぬの

For every $\lambda>0$, there is $\rho>0$ such that, $l_\varepsilon(u)\geq \frac{1}{4}$ $\frac{1}{4}\rho^2$ whenever $\|u\|_{H^1_0} = \rho$ and $0 < \varepsilon < 1$.

★ ロ ▶ → 御 ▶ → 결 ▶ → 결 ▶ │ 결

 299

Lemma 2

For $\lambda > 0$ large enough, we have $I_{\varepsilon}(\varphi_1) < b < 0$.

For every $\lambda>0$, there is $\rho>0$ such that, $l_\varepsilon(u)\geq \frac{1}{4}$ $\frac{1}{4}\rho^2$ whenever $\|u\|_{H^1_0} = \rho$ and $0 < \varepsilon < 1$.

K ロ K K 御 K K W B K X 환 K 시 편 K 시 편

 299

Lemma 2

For $\lambda > 0$ large enough, we have $I_{\varepsilon}(\varphi_1) < b < 0$.

Here, $\varphi_1 > 0$ is the first eigenfunction of $-\Delta$ in $H_0^1(\Omega)$.

For every $\lambda>0$, there is $\rho>0$ such that, $l_\varepsilon(u)\geq \frac{1}{4}$ $\frac{1}{4}\rho^2$ whenever $\|u\|_{H^1_0} = \rho$ and $0 < \varepsilon < 1$.

K ロ K K 御 K K W B K X 환 K 시 편 K 시 편

 299

Lemma 2

For $\lambda > 0$ large enough, we have $I_{\varepsilon}(\varphi_1) < b < 0$.

Here, $\varphi_1 > 0$ is the first eigenfunction of $-\Delta$ in $H_0^1(\Omega)$.

Proposition 1

For $\lambda > 0$ large enough, and $0 < \varepsilon < 1$; there is $b < 0$ and a global minimizer $u_{\varepsilon}^1 \in H_0^1(\Omega)$ with $l_{\varepsilon}(u_{\varepsilon}^1) < b$.

★ ロメ (4 御) > (唐) > (唐) → 唐

Proposition 1

For $\lambda > 0$ large enough, and $0 < \varepsilon < 1$; there is $b < 0$ and a global minimizer $u_{\varepsilon}^1 \in H_0^1(\Omega)$ with $l_{\varepsilon}(u_{\varepsilon}^1) < b$.

Proposition 2

For $\lambda > 0$ large enough, and $0 < \varepsilon < 1$; there is a > 0 and a critical point $u_\varepsilon^2\in H^1_0(\Omega)$ of mountain pass type such that $l_\varepsilon(u_\varepsilon^2)>$ a.

★ ロメ (4 御) > (唐) > (唐) → 唐

Concluding Remarks for the Perturbed Problem

Fix $\lambda > 0$ sufficiently large.

$$
-\infty < \beta \leq c_1^{\varepsilon} \leq b < 0 < a \leq c_2^{\varepsilon} \leq \alpha < \infty \tag{4}
$$

(ロ) (御) (君) (君) (君) 君 のぬの

$$
-\infty < \beta \leq c_1^{\varepsilon} \leq b < 0 < a \leq c_2^{\varepsilon} \leq \alpha < \infty \tag{4}
$$

(ロ) (御) (君) (君) (君) 君 のぬの

where the constants β , b, a do not depend on $0 < \varepsilon < 1$.

$$
-\infty < \beta \leq c_1^{\varepsilon} \leq b < 0 < a \leq c_2^{\varepsilon} \leq \alpha < \infty \tag{4}
$$

K ロ ▶ (K@) ▶ (대 결 > (제 결 >) (결)

 η

where the constants β , b, a do not depend on $0 < \varepsilon < 1$. Claim: the upper bound α is independent of $\varepsilon > 0$.

$$
-\infty < \beta \leq c_1^{\varepsilon} \leq b < 0 < a \leq c_2^{\varepsilon} \leq \alpha < \infty \tag{4}
$$

K ロ K K @ K K X B X K B X C B .

 η

where the constants β , b, a do not depend on $0 < \varepsilon < 1$. Claim: the upper bound α is independent of $\varepsilon > 0$. Observe that the solutions u_{ε} of [\(3\)](#page-15-0) are a priori bounded:

$$
-\infty < \beta \leq c_1^{\varepsilon} \leq b < 0 < a \leq c_2^{\varepsilon} \leq \alpha < \infty \tag{4}
$$

K ロ ▶ K 레 ▶ | K 회 ▶ | K 환 ▶ │ 환 │ ⊙ Q Q ⊙

where the constants β , b, a do not depend on $0 < \varepsilon < 1$. Claim: the upper bound α is independent of $\varepsilon > 0$. Observe that the solutions u_{ε} of [\(3\)](#page-15-0) are a priori bounded: multiply [\(3\)](#page-15-0) by u_{ε} , integrate, discard the term involving g_{ε} and use the Sobolev imbedding, to obtain

$$
c(\Omega)\big(\int_{\Omega}u_{\varepsilon}^{p+1}\big)^{\frac{2}{p+1}}\leq \int_{\Omega}|\nabla u_{\varepsilon}|^2\leq \lambda \int_{\Omega}u_{\varepsilon}^{p+1}.
$$

K □ ▶ K @ ▶ K 할 > K 할 > → 할 → 9 Q @

$$
c(\Omega)\big(\int_{\Omega}u_{\varepsilon}^{p+1}\big)^{\frac{2}{p+1}}\leq \int_{\Omega}|\nabla u_{\varepsilon}|^2\leq \lambda \int_{\Omega}u_{\varepsilon}^{p+1}
$$

.

Since $0 < p < 1$, a bootstrap argument implies that the norms $\|u_\varepsilon\|_{H_0^1(\Omega)}$ and $\|u_\varepsilon\|_{L^\infty(\Omega)}$ are bounded independent of $\varepsilon.$
$$
c(\Omega)\big(\int_{\Omega}u_{\varepsilon}^{p+1}\big)^{\frac{2}{p+1}}\leq \int_{\Omega}|\nabla u_{\varepsilon}|^2\leq \lambda \int_{\Omega}u_{\varepsilon}^{p+1}
$$

Since $0 < p < 1$, a bootstrap argument implies that the norms $\| \mu_\varepsilon \|_{H^1_0(\Omega)}$ and $\| \mu_\varepsilon \|_{L^\infty(\Omega)}$ are bounded independent of $\varepsilon.$ From this, $c_2^{\varepsilon} = I_{\varepsilon}(u_{\varepsilon}^{\varepsilon}) \leq \alpha$, with $\alpha > 0$ independent of $\varepsilon > 0$.

$$
c(\Omega)\big(\int_{\Omega}u_{\varepsilon}^{p+1}\big)^{\frac{2}{p+1}}\leq \int_{\Omega}|\nabla u_{\varepsilon}|^2\leq \lambda \int_{\Omega}u_{\varepsilon}^{p+1}
$$

제 ロン 제 御 > 제 결 > 제 결 > ○ 결

 299

Since $0 < p < 1$, a bootstrap argument implies that the norms $\| \mu_\varepsilon \|_{H^1_0(\Omega)}$ and $\| \mu_\varepsilon \|_{L^\infty(\Omega)}$ are bounded independent of $\varepsilon.$ From this, $c_2^{\varepsilon} = I_{\varepsilon}(u_{\varepsilon}^2) \leq \alpha$, with $\alpha > 0$ independent of $\varepsilon > 0$. The claim is proved.

$$
c(\Omega)\big(\int_{\Omega}u_{\varepsilon}^{p+1}\big)^{\frac{2}{p+1}}\leq \int_{\Omega}|\nabla u_{\varepsilon}|^2\leq \lambda \int_{\Omega}u_{\varepsilon}^{p+1}
$$

K ロ K K @ K K X B X X B X X B X

 299

Since $0 < p < 1$, a bootstrap argument implies that the norms $\|u_\varepsilon\|_{H_0^1(\Omega)}$ and $\|u_\varepsilon\|_{L^\infty(\Omega)}$ are bounded independent of $\varepsilon.$ From this, $c_2^{\varepsilon} = I_{\varepsilon}(u_{\varepsilon}^2) \le \alpha$, with $\alpha > 0$ independent of $\varepsilon > 0$. The claim is proved.

Now, let $\varepsilon \to 0$.

$$
c(\Omega)\big(\int_{\Omega}u_{\varepsilon}^{p+1}\big)^{\frac{2}{p+1}}\leq \int_{\Omega}|\nabla u_{\varepsilon}|^2\leq \lambda \int_{\Omega}u_{\varepsilon}^{p+1}
$$

제 ロン 제 御 > 제 결 > 제 결 > ○ 결

 299

Since $0 < p < 1$, a bootstrap argument implies that the norms $\| \mu_\varepsilon \|_{H^1_0(\Omega)}$ and $\| \mu_\varepsilon \|_{L^\infty(\Omega)}$ are bounded independent of $\varepsilon.$ From this, $c_2^{\varepsilon} = I_{\varepsilon}(u_{\varepsilon}^2) \leq \alpha$, with $\alpha > 0$ independent of $\varepsilon > 0$. The claim is proved.

Now, let
$$
\varepsilon \to 0
$$
.
Then $c_{\varepsilon}^1 \to c_1$, $c_{\varepsilon}^2 \to c_2$ with

$$
\beta\leq c_1\leq b<0
$$

$$
c(\Omega)\big(\int_{\Omega}u_{\varepsilon}^{p+1}\big)^{\frac{2}{p+1}}\leq \int_{\Omega}|\nabla u_{\varepsilon}|^2\leq \lambda \int_{\Omega}u_{\varepsilon}^{p+1}
$$

K ロ K K 優 K K 활 K K 활 K … 활

 299

Since $0 < p < 1$, a bootstrap argument implies that the norms $\|u_\varepsilon\|_{H_0^1(\Omega)}$ and $\|u_\varepsilon\|_{L^\infty(\Omega)}$ are bounded independent of $\varepsilon.$ From this, $c_2^{\varepsilon} = I_{\varepsilon}(u_{\varepsilon}^2) \le \alpha$, with $\alpha > 0$ independent of $\varepsilon > 0$. The claim is proved. $N_{\rm H}$, let ~ 0.0

Now, let
$$
\varepsilon \to 0
$$
.
Then $c_{\varepsilon}^1 \to c_1$, $c_{\varepsilon}^2 \to c_2$ with

$$
\beta\leq c_1\leq b<0
$$

Moreover,

$$
c(\Omega)\big(\int_{\Omega}u_{\varepsilon}^{p+1}\big)^{\frac{2}{p+1}}\leq \int_{\Omega}|\nabla u_{\varepsilon}|^2\leq \lambda \int_{\Omega}u_{\varepsilon}^{p+1}
$$

メロト メ御 トメ 君 トメ 君 トッ 君 し

 299

Since $0 < p < 1$, a bootstrap argument implies that the norms $\|u_\varepsilon\|_{H_0^1(\Omega)}$ and $\|u_\varepsilon\|_{L^\infty(\Omega)}$ are bounded independent of $\varepsilon.$ From this, $c_2^{\varepsilon} = I_{\varepsilon}(u_{\varepsilon}^2) \le \alpha$, with $\alpha > 0$ independent of $\varepsilon > 0$. The claim is proved.

Now, let
$$
\varepsilon \to 0
$$
.
Then $c_{\varepsilon}^1 \to c_1$, $c_{\varepsilon}^2 \to c_2$ with

$$
\beta\leq c_1\leq b<0
$$

Moreover, $u_\varepsilon^1 \to u^1$ and $u_\varepsilon^2 \to u^2$ a.e., since solutions of [\(3\)](#page-15-0) are a priori bounded.

$$
c(\Omega)\big(\int_{\Omega}u_{\varepsilon}^{p+1}\big)^{\frac{2}{p+1}}\leq \int_{\Omega}|\nabla u_{\varepsilon}|^2\leq \lambda \int_{\Omega}u_{\varepsilon}^{p+1}
$$

Since $0 < p < 1$, a bootstrap argument implies that the norms $\| \mu_\varepsilon \|_{H^1_0(\Omega)}$ and $\| \mu_\varepsilon \|_{L^\infty(\Omega)}$ are bounded independent of $\varepsilon.$ From this, $c_2^{\varepsilon} = I_{\varepsilon}(u_{\varepsilon}^2) \leq \alpha$, with $\alpha > 0$ independent of $\varepsilon > 0$. The claim is proved.

Now, let
$$
\varepsilon \to 0
$$
.
Then $c_{\varepsilon}^1 \to c_1$, $c_{\varepsilon}^2 \to c_2$ with

$$
\beta\leq c_1\leq b<0
$$

Moreover, $u_\varepsilon^1 \to u^1$ and $u_\varepsilon^2 \to u^2$ a.e., since solutions of [\(3\)](#page-15-0) are a priori bounded. We also have, $u^1 \neq u^2$ a.e. and they are nontrivial and nonnegative.

$$
c(\Omega)\big(\int_{\Omega}u_{\varepsilon}^{p+1}\big)^{\frac{2}{p+1}}\leq \int_{\Omega}|\nabla u_{\varepsilon}|^2\leq \lambda \int_{\Omega}u_{\varepsilon}^{p+1}
$$

Since $0 < p < 1$, a bootstrap argument implies that the norms $\| \mu_\varepsilon \|_{H^1_0(\Omega)}$ and $\| \mu_\varepsilon \|_{L^\infty(\Omega)}$ are bounded independent of $\varepsilon.$ From this, $c_2^{\varepsilon} = I_{\varepsilon}(u_{\varepsilon}^2) \leq \alpha$, with $\alpha > 0$ independent of $\varepsilon > 0$. The claim is proved.

Now, let
$$
\varepsilon \to 0
$$
.
Then $c_{\varepsilon}^1 \to c_1$, $c_{\varepsilon}^2 \to c_2$ with

$$
\beta\leq c_1\leq b<0
$$

Moreover, $u_\varepsilon^1 \to u^1$ and $u_\varepsilon^2 \to u^2$ a.e., since solutions of [\(3\)](#page-15-0) are a priori bounded. We also have, $u^1 \neq u^2$ a.e. and they are nontrivial and nonnegative.

Our objective is to obtain gradient estimates for solutions of [\(3\)](#page-15-0).

$$
c(\Omega)\big(\int_{\Omega}u_{\varepsilon}^{p+1}\big)^{\frac{2}{p+1}}\leq \int_{\Omega}|\nabla u_{\varepsilon}|^2\leq \lambda \int_{\Omega}u_{\varepsilon}^{p+1}
$$

Since $0 < p < 1$, a bootstrap argument implies that the norms $\|u_\varepsilon\|_{H_0^1(\Omega)}$ and $\|u_\varepsilon\|_{L^\infty(\Omega)}$ are bounded independent of $\varepsilon.$ From this, $c_2^{\varepsilon} = I_{\varepsilon}(u_{\varepsilon}^2) \le \alpha$, with $\alpha > 0$ independent of $\varepsilon > 0$. The claim is proved.

Now, let
$$
\varepsilon \to 0
$$
.
Then $c_{\varepsilon}^1 \to c_1$, $c_{\varepsilon}^2 \to c_2$ with

$$
\beta\leq c_1\leq b<0
$$

Moreover, $u_\varepsilon^1 \to u^1$ and $u_\varepsilon^2 \to u^2$ a.e., since solutions of [\(3\)](#page-15-0) are a priori bounded. We also have, $u^1 \neq u^2$ a.e. and they are nontrivial and nonnegative.

Our objective is to obtain gradient estimates for solutions of [\(3\)](#page-15-0). Then, taking $\varepsilon \to 0$,

.

$$
c(\Omega)\big(\int_{\Omega}u_{\varepsilon}^{p+1}\big)^{\frac{2}{p+1}}\leq \int_{\Omega}|\nabla u_{\varepsilon}|^2\leq \lambda \int_{\Omega}u_{\varepsilon}^{p+1}
$$

Since $0 < p < 1$, a bootstrap argument implies that the norms $\|u_\varepsilon\|_{H_0^1(\Omega)}$ and $\|u_\varepsilon\|_{L^\infty(\Omega)}$ are bounded independent of $\varepsilon.$ From this, $c_2^{\varepsilon} = I_{\varepsilon}(u_{\varepsilon}^2) \le \alpha$, with $\alpha > 0$ independent of $\varepsilon > 0$. The claim is proved.

Now, let
$$
\varepsilon \to 0
$$
.
Then $c_{\varepsilon}^1 \to c_1$, $c_{\varepsilon}^2 \to c_2$ with

$$
\beta\leq c_1\leq b<0
$$

Moreover, $u_\varepsilon^1 \to u^1$ and $u_\varepsilon^2 \to u^2$ a.e., since solutions of [\(3\)](#page-15-0) are a priori bounded. We also have, $u^1 \neq u^2$ a.e. and they are nontrivial and nonnegative.

Our objective is to obtain gradient estimates for solutions of [\(3\)](#page-15-0). Then, taking $\varepsilon \to 0$, we show that the functions u_1 and u_2 are solutions of [\(1\)](#page-1-0).

.

Gradient Estimates

K ロ ▶ (d) | K 글) | K 글) | [글 | 2000

Let the weight ψ be such that

$$
\psi\in\mathcal{C}^2(\overline{\Omega}),\ \psi>0\ \text{in}\ \Omega,\ \psi=0\ \text{on}\ \partial\Omega\ \text{and}\ \frac{|\nabla\psi|^2}{\psi}\ \text{is bounded in}\ \Omega.
$$

Let the weight ψ be such that

$$
\psi\in\mathcal{C}^2(\overline{\Omega}),\ \psi>0\ \text{in}\ \Omega,\ \psi=0\ \text{on}\ \partial\Omega\ \text{and}\ \frac{|\nabla\psi|^2}{\psi}\ \text{is bounded in}\ \Omega.
$$

Observe that $\psi = \varphi_1^2$ is a possible example.

Let the weight ψ be such that

$$
\psi\in\mathcal{C}^2(\overline{\Omega}),\ \psi>0\ \text{in}\ \Omega,\ \psi=0\ \text{on}\ \partial\Omega\ \text{and}\ \frac{|\nabla\psi|^2}{\psi}\ \text{is bounded in}\ \Omega.
$$

Observe that $\psi = \varphi_1^2$ is a possible example.

Lemma 3

If u_{ε} is a solution of [\(3\)](#page-15-0), then there is a constant $M > 0$ independent of ε such that

$$
\psi(x)|\nabla u_{\varepsilon}(x)|^2\leq M(u_{\varepsilon}(x)^{1-\beta}+u_{\varepsilon}(x))\quad \forall x\in\Omega,
$$

★ ロ ▶ → 御 ▶ → 평 ▶ → 평 ▶ │ 평

 299

where M depends only on Ω , N, β , ψ and $||u_{\varepsilon}||_{L^{\infty}(\Omega)}$.

 \blacktriangleright The proof of this lemma is based on an argument by Dávila -Montenegro.

- \triangleright The proof of this lemma is based on an argument by Dávila -Montenegro.
- **F** Remark that a nontrivial solution u_{ε} of [\(3\)](#page-15-0) is nonnegative and belongs to $C^2(\overline{\Omega})$. However, we cannot use the maximum principle to ensure that u_{ε} is positive or identically zero, since $u^{q-1}/(u+\varepsilon)^{q+\beta}$ is singular when $u \sim 0$.

K ロ K K @ K K X B K K B K (B K)

- \triangleright The proof of this lemma is based on an argument by Dávila -Montenegro.
- **F** Remark that a nontrivial solution u_{ϵ} of [\(3\)](#page-15-0) is nonnegative and belongs to $C^2(\overline{\Omega})$. However, we cannot use the maximum principle to ensure that u_{ε} is positive or identically zero, since $u^{q-1}/(u+\varepsilon)^{q+\beta}$ is singular when $u \sim 0$.
- \blacktriangleright Consider the functions

$$
w=\frac{|\nabla u|^2}{Z(u)}, \qquad v=w\psi,
$$

where $Z(u_\varepsilon)=u_\varepsilon^{1-\beta}+u_\varepsilon+\delta$, with $\delta>0,$ in order to have $Z > 0$.

K ロ X (1) X (1) X (1) X (1) X (1) 2

- \triangleright The proof of this lemma is based on an argument by Dávila -Montenegro.
- **F** Remark that a nontrivial solution u_{ϵ} of [\(3\)](#page-15-0) is nonnegative and belongs to $C^2(\overline{\Omega})$. However, we cannot use the maximum principle to ensure that u_{ε} is positive or identically zero, since $u^{q-1}/(u+\varepsilon)^{q+\beta}$ is singular when $u \sim 0$.
- \blacktriangleright Consider the functions

$$
w=\frac{|\nabla u|^2}{Z(u)}, \qquad v=w\psi,
$$

where $Z(u_\varepsilon)=u_\varepsilon^{1-\beta}+u_\varepsilon+\delta$, with $\delta>0,$ in order to have $Z > 0$. In the end of the proof, we let $\delta \rightarrow 0$.

- \triangleright The proof of this lemma is based on an argument by Dávila -Montenegro.
- **F** Remark that a nontrivial solution u_{ϵ} of [\(3\)](#page-15-0) is nonnegative and belongs to $C^2(\overline{\Omega})$. However, we cannot use the maximum principle to ensure that u_{ε} is positive or identically zero, since $u^{q-1}/(u+\varepsilon)^{q+\beta}$ is singular when $u \sim 0$.
- \blacktriangleright Consider the functions

$$
w=\frac{|\nabla u|^2}{Z(u)}, \qquad v=w\psi,
$$

where $Z(u_\varepsilon)=u_\varepsilon^{1-\beta}+u_\varepsilon+\delta$, with $\delta>0,$ in order to have $Z > 0$. In the end of the proof, we let $\delta \rightarrow 0$.

 \triangleright We also use the fact that a nontrivial solution u_{ε} of [\(3\)](#page-15-0) belongs to C^3 on a neighborhood of every point where it is positive

Next result shows that u_{ε} converges in C_{loc}^1 to some u which is in $C_{loc}^{\frac{1-\beta}{1+\beta}}$.

K ロ X K @ X K 및 X K 및 X H 및

Next result shows that u_{ε} converges in C_{loc}^1 to some u which is in $C_{loc}^{\frac{1-\beta}{1+\beta}}$.

Lemma 4 For any $\Omega' \subset \Omega$ there exists C such that

$$
|\nabla u_\varepsilon(x)-\nabla u_\varepsilon(y)|\leq C|x-y|^{\frac{1-\beta}{1+\beta}}\quad \forall x,y\in \Omega'.
$$

The constant C depends only on Ω , N, β , p, $||u_{\varepsilon}||_{L^{\infty}(\Omega)}$, but not on ε .

★ ロン → 御 > → (할 > → 할 > → 할

Considering u, a weak limit of solutions u_{ε} of [\(3\)](#page-15-0),

Lemma 5
\n
$$
\frac{1}{u^{\beta}}\chi_{\Omega_{+}}\in L^{1}_{loc}(\Omega), \text{ where } \Omega_{+}=\{x\in\Omega: u(x)>0\}.
$$

Considering u, a weak limit of solutions u_{ε} of [\(3\)](#page-15-0),

Lemma 5
\n
$$
\frac{1}{u^{\beta}}\chi_{\Omega_{+}}\in L^{1}_{loc}(\Omega), \text{ where } \Omega_{+}=\{x\in\Omega: u(x)>0\}.
$$

 \blacktriangleright The proof is done by choosing appropriate test functions for the perturbed problem.

(ロ) (御) (君) (君) (君) 君 のぬの

K ロ ▶ (d) | K 글) | K 글) | [글 | 10 Q Q |

Let $\eta \in C^{\infty}(\mathbb{R})$, $0 \leq \eta \leq 1$, $\eta(s) = 0$ for $s \leq 1/2$, $\eta(s) = 1$ for $s > 1$.

Let $\eta \in C^{\infty}(\mathbb{R})$, $0 \leq \eta \leq 1$, $\eta(s) = 0$ for $s \leq 1/2$, $\eta(s) = 1$ for $s > 1$. Given $\varphi \in C_c^1(\Omega)$,

(ロ) (個) (目) (目) (目) 目 のQC

Let $\eta \in C^{\infty}(\mathbb{R})$, $0 \leq \eta \leq 1$, $\eta(s) = 0$ for $s \leq 1/2$, $\eta(s) = 1$ for $s > 1$. Given $\varphi \in \mathcal{C}^1_c(\Omega)$, for $m > 0$, we have

$$
\int_{\Omega}\nabla u_{\varepsilon}\nabla (\varphi \eta(u_{\varepsilon}/m))=\int_{\hat{\Omega}}(-g_{\varepsilon}(u_{\varepsilon})+\lambda u_{\varepsilon}^p)\varphi \eta(u_{\varepsilon}/m), \qquad (5)
$$

(ロ) (個) (目) (目) (目) 目 のQC

Let $\eta \in C^{\infty}(\mathbb{R})$, $0 \leq \eta \leq 1$, $\eta(s) = 0$ for $s \leq 1/2$, $\eta(s) = 1$ for $s > 1$. Given $\varphi \in \mathcal{C}^1_c(\Omega)$, for $m > 0$, we have

$$
\int_{\Omega} \nabla u_{\varepsilon} \nabla (\varphi \eta(u_{\varepsilon}/m)) = \int_{\hat{\Omega}} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^p) \varphi \eta(u_{\varepsilon}/m), \qquad (5)
$$

where $\hat{\Omega}$ is an open set such that $\overline{\hat{\Omega}} \subset \Omega$ and support $(\varphi) \subset \hat{\Omega}$.

Let $\eta \in C^{\infty}(\mathbb{R})$, $0 \leq \eta \leq 1$, $\eta(s) = 0$ for $s \leq 1/2$, $\eta(s) = 1$ for $s > 1$. Given $\varphi \in \mathcal{C}^1_c(\Omega)$, for $m > 0$, we have

$$
\int_{\Omega} \nabla u_{\varepsilon} \nabla (\varphi \eta(u_{\varepsilon}/m)) = \int_{\hat{\Omega}} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^p) \varphi \eta(u_{\varepsilon}/m), \qquad (5)
$$

K ロ X K @ X X X B X X B X X B .

 Ω

where $\hat{\Omega}$ is an open set such that $\overline{\hat{\Omega}} \subset \Omega$ and support $(\varphi) \subset \hat{\Omega}$. Set $\Omega_0 = \Omega_+ \cap \hat{\Omega}$.

Let $\eta \in C^{\infty}(\mathbb{R})$, $0 \leq \eta \leq 1$, $\eta(s) = 0$ for $s \leq 1/2$, $\eta(s) = 1$ for $s > 1$. Given $\varphi \in \mathcal{C}^1_c(\Omega)$, for $m > 0$, we have

$$
\int_{\Omega} \nabla u_{\varepsilon} \nabla (\varphi \eta(u_{\varepsilon}/m)) = \int_{\hat{\Omega}} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^p) \varphi \eta(u_{\varepsilon}/m), \qquad (5)
$$

K ロ K K @ K K X B X K B X X B .

 $2Q$

where $\hat{\Omega}$ is an open set such that $\hat{\Omega} \subset \Omega$ and support $(\varphi) \subset \hat{\Omega}$. Set $\Omega_0 = \Omega_+ \cap \hat{\Omega}$. Since $u_{\varepsilon} \to u$ in $C^1_{loc}(\Omega)$,

Let $\eta \in C^{\infty}(\mathbb{R})$, $0 \leq \eta \leq 1$, $\eta(s) = 0$ for $s \leq 1/2$, $\eta(s) = 1$ for $s \geq 1$. Given $\varphi \in \mathcal{C}^1_c(\Omega)$, for $m > 0$, we have

$$
\int_{\Omega} \nabla u_{\varepsilon} \nabla (\varphi \eta(u_{\varepsilon}/m)) = \int_{\hat{\Omega}} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^p) \varphi \eta(u_{\varepsilon}/m), \qquad (5)
$$

where $\hat{\Omega}$ is an open set such that $\hat{\Omega} \subset \Omega$ and support $(\varphi) \subset \hat{\Omega}$. Set $\Omega_0 = \Omega_+ \cap \hat{\Omega}$. Since $u_\varepsilon \to u$ in $C^1_{loc}(\Omega)$, for every given $m>0$, there is an $\varepsilon_0>0$ such that

$$
u_{\varepsilon}(x) \leq m/2, \quad \forall x \in \Omega_0 \setminus \Omega_+ \text{ and } 0 < \varepsilon \leq \varepsilon_0. \tag{6}
$$

Let $\eta \in C^{\infty}(\mathbb{R})$, $0 \leq \eta \leq 1$, $\eta(s) = 0$ for $s \leq 1/2$, $\eta(s) = 1$ for $s \geq 1$. Given $\varphi \in \mathcal{C}^1_c(\Omega)$, for $m > 0$, we have

$$
\int_{\Omega} \nabla u_{\varepsilon} \nabla (\varphi \eta(u_{\varepsilon}/m)) = \int_{\hat{\Omega}} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^p) \varphi \eta(u_{\varepsilon}/m), \qquad (5)
$$

where $\hat{\Omega}$ is an open set such that $\hat{\Omega} \subset \Omega$ and support $(\varphi) \subset \hat{\Omega}$. Set $\Omega_0 = \Omega_+ \cap \hat{\Omega}$. Since $u_\varepsilon \to u$ in $C^1_{loc}(\Omega)$, for every given $m>0$, there is an $\varepsilon_0>0$ such that

$$
u_{\varepsilon}(x) \leq m/2, \quad \forall x \in \Omega_0 \setminus \Omega_+ \text{ and } 0 < \varepsilon \leq \varepsilon_0. \tag{6}
$$

Taking $0 < \varepsilon < \varepsilon_0$,

K ロ ▶ (d) | K 글) | K 글) | [글 | 10 Q Q |

Taking $0 < \varepsilon < \varepsilon_0$, We split the previous integral as

$$
A_{\varepsilon}:=\int_{\Omega_0}(-g_{\varepsilon}(u_{\varepsilon})+\lambda u_{\varepsilon}^p)\varphi\eta(u_{\varepsilon}/m)
$$

and

$$
B_\varepsilon:=\int_{\hat{\Omega}\setminus\Omega_0}(-g_\varepsilon(u_\varepsilon)+\lambda u_\varepsilon^p)\varphi\eta(u_\varepsilon/m).
$$

Taking $0 < \varepsilon < \varepsilon_0$, We split the previous integral as

$$
A_{\varepsilon}:=\int_{\Omega_0} (-g_{\varepsilon}(u_{\varepsilon})+\lambda u_{\varepsilon}^p)\varphi\eta(u_{\varepsilon}/m)
$$

and

$$
B_\varepsilon:=\int_{\hat{\Omega}\setminus\Omega_0}(-g_\varepsilon(u_\varepsilon)+\lambda u_\varepsilon^p)\varphi\eta(u_\varepsilon/m).
$$

Clearly, $B_{\varepsilon} = 0$ by [\(6\)](#page-59-0) and the definition of η .

Taking $0 < \varepsilon < \varepsilon_0$, We split the previous integral as

$$
A_{\varepsilon}:=\int_{\Omega_0}(-g_{\varepsilon}(u_{\varepsilon})+\lambda u_{\varepsilon}^p)\varphi\eta(u_{\varepsilon}/m)
$$

and

$$
B_\varepsilon:=\int_{\hat{\Omega}\setminus\Omega_0}(-g_\varepsilon(u_\varepsilon)+\lambda u_\varepsilon^p)\varphi\eta(u_\varepsilon/m).
$$

Clearly, $B_{\varepsilon} = 0$ by [\(6\)](#page-59-0) and the definition of η . Moreover,

$$
A_\varepsilon \to \int_{\Omega_0} (-u^{-\beta} + \lambda u^p) \varphi \eta(u/m) \quad \text{ as } \varepsilon \to 0.
$$
Taking $0 < \varepsilon < \varepsilon_0$, We split the previous integral as

$$
A_{\varepsilon}:=\int_{\Omega_0}(-g_{\varepsilon}(u_{\varepsilon})+\lambda u_{\varepsilon}^p)\varphi\eta(u_{\varepsilon}/m)
$$

and

$$
B_{\varepsilon}:=\int_{\hat{\Omega}\setminus\Omega_0}(-g_{\varepsilon}(u_{\varepsilon})+\lambda u_{\varepsilon}^p)\varphi\eta(u_{\varepsilon}/m).
$$

Clearly, $B_{\varepsilon} = 0$ by [\(6\)](#page-59-0) and the definition of η . Moreover,

$$
A_\varepsilon \to \int_{\Omega_0} (-u^{-\beta} + \lambda u^p) \varphi \eta(u/m) \quad \text{ as } \varepsilon \to 0.
$$

If $u \le m/4$, for a sufficiently small $\varepsilon > 0$, we have $u_{\varepsilon} \le m/2$. The integral A_{ε} restricted to this set is zero.

(ロ) (御) (君) (君) (君) 君 のぬの

Taking $0 < \varepsilon < \varepsilon_0$, We split the previous integral as

$$
A_{\varepsilon}:=\int_{\Omega_0}(-g_{\varepsilon}(u_{\varepsilon})+\lambda u_{\varepsilon}^p)\varphi\eta(u_{\varepsilon}/m)
$$

and

$$
B_\varepsilon:=\int_{\hat{\Omega}\setminus\Omega_0}(-g_\varepsilon(u_\varepsilon)+\lambda u_\varepsilon^p)\varphi\eta(u_\varepsilon/m).
$$

Clearly, $B_{\varepsilon} = 0$ by [\(6\)](#page-59-0) and the definition of η . Moreover,

$$
A_\varepsilon \to \int_{\Omega_0} (-u^{-\beta} + \lambda u^p) \varphi \eta(u/m) \quad \text{ as } \varepsilon \to 0.
$$

If $u \le m/4$, for a sufficiently small $\varepsilon > 0$, we have $u_{\varepsilon} \le m/2$. The integral A_{ε} restricted to this set is zero. If $u > m/4$, we have $u_{\varepsilon} \ge m/8$ for $\varepsilon > 0$ small enough.

Taking $0 < \varepsilon < \varepsilon_0$. We split the previous integral as

$$
A_{\varepsilon}:=\int_{\Omega_0}(-g_{\varepsilon}(u_{\varepsilon})+\lambda u_{\varepsilon}^p)\varphi\eta(u_{\varepsilon}/m)
$$

and

$$
B_{\varepsilon}:=\int_{\hat{\Omega}\setminus\Omega_0}(-g_{\varepsilon}(u_{\varepsilon})+\lambda u_{\varepsilon}^p)\varphi\eta(u_{\varepsilon}/m).
$$

Clearly, $B_{\varepsilon} = 0$ by [\(6\)](#page-59-0) and the definition of η . Moreover,

$$
A_{\varepsilon}\to \int_{\Omega_0}(-u^{-\beta}+\lambda u^p)\varphi\eta(u/m)\quad \text{ as }\varepsilon\to 0.
$$

If $u \le m/4$, for a sufficiently small $\varepsilon > 0$, we have $u_{\varepsilon} \le m/2$. The integral A_{ε} restricted to this set is zero. If $u > m/4$, we have $u_{\varepsilon} \ge m/8$ for $\varepsilon > 0$ small enough. Then, we apply the Dominated Convergence Theorem.

$$
A_\varepsilon \to \int_{\Omega_0} (-u^{-\beta} + \lambda u^p) \varphi \qquad \text{as } \varepsilon \to 0 \quad \text{(and then as } m \to 0\text{)}
$$

$$
A_\varepsilon \to \int_{\Omega_0} (-u^{-\beta} + \lambda u^p) \varphi \qquad \text{ as } \varepsilon \to 0 \quad \text{(and then as } m \to 0\text{)}
$$

Note that $\eta(u/m) \leq 1$ and $-u^{-\beta} + u^p \in L^1(\Omega_0)$.

$$
A_\varepsilon \to \int_{\Omega_0} (-u^{-\beta} + \lambda u^p) \varphi \qquad \text{as } \varepsilon \to 0 \quad \text{(and then as } m \to 0\text{)}
$$

(ロ) (個) (目) (目) (目) 目 のQC

Note that $\eta(u/m) \leq 1$ and $-u^{-\beta} + u^p \in L^1(\Omega_0)$. Now,

$$
A_\varepsilon \to \int_{\Omega_0} (-u^{-\beta} + \lambda u^p) \varphi \qquad \text{ as } \varepsilon \to 0 \quad \text{(and then as } m \to 0\text{)}
$$

(ロ) (御) (君) (君) (君) 君 のぬの

Note that $\eta(u/m) \leq 1$ and $-u^{-\beta} + u^p \in L^1(\Omega_0)$. Now, considering the first integral in [\(5\)](#page-59-1),

$$
A_{\varepsilon} \to \int_{\Omega_0} (-u^{-\beta} + \lambda u^p) \varphi \quad \text{as } \varepsilon \to 0 \quad \text{(and then as } m \to 0\text{)}
$$

Note that $\eta(u/m) \leq 1$ and $-u^{-\beta} + u^p \in L^1(\Omega_0)$. Now, considering the first integral in [\(5\)](#page-59-1), we set

$$
\int_{\Omega}\nabla u_{\varepsilon}\nabla(\varphi\eta(u_{\varepsilon}/m)):=H_{\varepsilon}+J_{\varepsilon}.
$$

(ロ) (御) (君) (君) (君) 君 のぬの

$$
A_\varepsilon \to \int_{\Omega_0} (-u^{-\beta} + \lambda u^p) \varphi \qquad \text{as } \varepsilon \to 0 \quad \text{(and then as } m \to 0\text{)}
$$

Note that $\eta(u/m) \leq 1$ and $-u^{-\beta} + u^p \in L^1(\Omega_0)$. Now, considering the first integral in [\(5\)](#page-59-1), we set

$$
\int_{\Omega}\nabla u_{\varepsilon}\nabla(\varphi\eta(u_{\varepsilon}/m)):=H_{\varepsilon}+J_{\varepsilon}.
$$

Clearly,

$$
H_\varepsilon:=\int_\Omega (\nabla u_\varepsilon \nabla \varphi) \eta(u_\varepsilon/m) \to \int_{\Omega_0} (\nabla u \nabla \varphi) \eta(u/m) \quad \text{ as } \varepsilon \to 0.
$$

K ロ ▶ (K@) ▶ (대 결 > (제 결 >) (결)

 299

and

$$
A_\varepsilon \to \int_{\Omega_0} (-u^{-\beta} + \lambda u^p) \varphi \qquad \text{as } \varepsilon \to 0 \quad \text{(and then as } m \to 0\text{)}
$$

Note that $\eta(u/m) \leq 1$ and $-u^{-\beta} + u^p \in L^1(\Omega_0)$. Now, considering the first integral in [\(5\)](#page-59-1), we set

$$
\int_{\Omega}\nabla u_{\varepsilon}\nabla(\varphi\eta(u_{\varepsilon}/m)):=H_{\varepsilon}+J_{\varepsilon}.
$$

Clearly,

$$
H_\varepsilon:=\int_\Omega (\nabla u_\varepsilon \nabla \varphi) \eta(u_\varepsilon/m) \to \int_{\Omega_0} (\nabla u \nabla \varphi) \eta(u/m) \quad \text{ as } \varepsilon \to 0.
$$

and

$$
\int_{\Omega_0} (\nabla u \nabla \varphi) \eta(u/m) \to \int_{\Omega_0} \nabla u \nabla \varphi \quad \text{ as } m \to 0,
$$

★ ロ ▶ → 御 ▶ → 결 ▶ → 결 ▶ │ 결 299

$$
A_\varepsilon \to \int_{\Omega_0} (-u^{-\beta} + \lambda u^p) \varphi \qquad \text{as } \varepsilon \to 0 \quad \text{(and then as } m \to 0\text{)}
$$

Note that $\eta(u/m) \leq 1$ and $-u^{-\beta} + u^p \in L^1(\Omega_0)$. Now, considering the first integral in [\(5\)](#page-59-1), we set

$$
\int_{\Omega}\nabla u_{\varepsilon}\nabla(\varphi\eta(u_{\varepsilon}/m)):=H_{\varepsilon}+J_{\varepsilon}.
$$

Clearly,

$$
H_\varepsilon:=\int_\Omega (\nabla u_\varepsilon \nabla \varphi) \eta(u_\varepsilon/m) \to \int_{\Omega_0} (\nabla u \nabla \varphi) \eta(u/m) \quad \text{ as } \varepsilon \to 0.
$$

and

$$
\int_{\Omega_0} (\nabla u \nabla \varphi) \eta(u/m) \to \int_{\Omega_0} \nabla u \nabla \varphi \quad \text{ as } m \to 0,
$$

by the Dominated Convergence Theorem.

We assert that

$$
J_\varepsilon:=\int_{\Omega_0}\frac{|\nabla u_\varepsilon|^2}{m}\eta'(u_\varepsilon/m)\varphi\to 0\quad\text{ as }\varepsilon\to 0\quad\text{(and then as }m\to 0\text{)}.
$$

K ロ ▶ (d) | K 글) | K 글) | [글 | 20 Q Q

We assert that

$$
J_{\varepsilon} := \int_{\Omega_0} \frac{|\nabla u_{\varepsilon}|^2}{m} \eta'(u_{\varepsilon}/m) \varphi \to 0 \quad \text{ as } \varepsilon \to 0 \quad \text{(and then as } m \to 0\text{)}.
$$

By the estimate $|\nabla u_\varepsilon|^2\leq \mathcal{M}(u_\varepsilon^{1-\beta}+u_\varepsilon)$ in Ω_0 (provided by Lemma 3), we obtain

$$
|J_{\varepsilon}| \leq M \int_{\Omega_0 \cap \{\frac{m}{2} \leq u_{\varepsilon} \leq m\}} \frac{(u_{\varepsilon}^{1-\beta} + u_{\varepsilon})}{m} \eta'(u_{\varepsilon}/m) \varphi \to
$$

$$
\to M \int_{\Omega_0 \cap \{\frac{m}{2} \leq u \leq m\}} \frac{(u^{1-\beta} + u)}{m} \eta'(u/m) \varphi \quad \text{as } \varepsilon \to 0,
$$

K ロ X 《 御 X 〈 할 X 〈 할 X 〉 할

 $2Q$

but this last integral goes to 0 as $m \rightarrow 0$.

We have shown that,

제 ロン 제 御 > 제 결 > 제 결 > ○ 결

$$
\int_{\Omega} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^p)\varphi \eta(u_{\varepsilon}/m) \to \int_{\Omega_0} (-u^{-\beta} + \lambda u^p)\varphi
$$

and

$$
\int_{\Omega} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^p)\varphi \eta(u_{\varepsilon}/m) \to \int_{\Omega_0} (-u^{-\beta} + \lambda u^p)\varphi
$$

and

$$
\int_{\Omega}\nabla u_{\varepsilon}\nabla (\varphi \eta(u_{\varepsilon}/m))\to \int_{\Omega}\nabla u \nabla \varphi
$$

$$
\int_{\Omega} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^p)\varphi \eta(u_{\varepsilon}/m) \to \int_{\Omega_0} (-u^{-\beta} + \lambda u^p)\varphi
$$

and

$$
\int_{\Omega}\nabla u_{\varepsilon}\nabla(\varphi\eta(u_{\varepsilon}/m))\rightarrow\int_{\Omega}\nabla u\nabla\varphi
$$

Combining these facts with [\(5\)](#page-59-1), we obtain

$$
\int_{\Omega} \nabla u \nabla \varphi = \int_{\{u>0\}} \big(-\frac{1}{u^{\beta}} + \lambda u^p \big) \varphi
$$

for every $\varphi \in \mathcal{C}_c^1(\Omega)$.

$$
\int_{\Omega} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^p)\varphi \eta(u_{\varepsilon}/m) \to \int_{\Omega_0} (-u^{-\beta} + \lambda u^p)\varphi
$$

and

$$
\int_{\Omega}\nabla u_{\varepsilon}\nabla(\varphi\eta(u_{\varepsilon}/m))\rightarrow\int_{\Omega}\nabla u\nabla\varphi
$$

Combining these facts with [\(5\)](#page-59-1), we obtain

$$
\int_{\Omega} \nabla u \nabla \varphi = \int_{\{u>0\}} \big(-\frac{1}{u^{\beta}} + \lambda u^p \big) \varphi
$$

세미 시세 제품 시 제품 시 제품 시 시 품 시

 $2Q$

for every $\varphi \in \mathcal{C}_c^1(\Omega)$. This concludes the proof of Theorem 1.

The existence of a positive solution

Theorem 2 Problem [\(1\)](#page-1-0) has a positive solution for $\lambda > 0$ large.

(ロ) (御) (君) (君) (君) 君 のぬの

Theorem 2 Problem [\(1\)](#page-1-0) has a positive solution for $\lambda > 0$ large.

 \triangleright We are unable to prove that one of the solutions of Theorem 1 is positive.

(ロ) (御) (唐) (唐) (唐) 2000

Theorem 2 Problem [\(1\)](#page-1-0) has a positive solution for $\lambda > 0$ large.

 \triangleright We are unable to prove that one of the solutions of Theorem 1 is positive. We believe that one of them is positive and the other one vanishes somewhere in Ω.

K ロ ▶ K 레 ▶ | K 회 ▶ | K 환 ▶ │ 환 │ ⊙ Q Q ⊙

Theorem 2 Problem [\(1\)](#page-1-0) has a positive solution for $\lambda > 0$ large.

 \triangleright We are unable to prove that one of the solutions of Theorem 1 is positive. We believe that one of them is positive and the other one vanishes somewhere in Ω. This would be in agreement with the result for the radial problem proved by Ouyang - Shi - Yao.

K ロ K K @ K K X B X K B X X B .

 $2Q$

 \blacktriangleright Theorem 2 is related to a result by Dávila:

I Theorem 2 is related to a result by Dávila: for λ grater than a precise constant, the maximal solution u_{λ} is a strict local minimizer *I* in the convex subset of $H_0^1(\Omega)$ of nonnegative functions in Ω.

K ロ ▶ K 레 ▶ | K 회 ▶ | K 환 ▶ │ 환 │ ⊙ Q Q ⊙

Proof of Theorem 2

K ロ ▶ (d) | K 글) | K 글) | [글 | 10 Q Q |

Associated with problem (1) we have the functional $I: H^1_0(\Omega) \to \mathbb{R}$ given by

$$
I(u)=\int_{\Omega}\frac{1}{2}|\nabla u|^2-F(u^+),
$$

(ロ) (御) (君) (君) (君) 君 のぬの

where $f(u) = -\frac{1}{u^2}$ $\frac{1}{u^{\beta}} + \lambda u^{\rho}$ and $F(u) = \int_0^u f(s) ds$.

It is known (Dávila-Montenegro) that $\underline{u}=c\varphi_{1}^{\frac{2}{1+\beta}}$ is a subsolution (if λ is large) for the problem [\(1\)](#page-1-0), which in our new notation is

$$
\begin{cases}\n-\Delta u = f(u) & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega.\n\end{cases}
$$
\n(7)

Take a sequence of smooth domains

$$
\emptyset \neq \Omega_1 \subset\subset \Omega_2 ... \subset\subset \Omega
$$

such that $\Omega = \bigcup_{k=1}^{\infty} \Omega_k$. Define the truncated function

$$
\hat{f}(u) = \begin{cases} f(\underline{u}(x)) \text{ for } s \leq \underline{u}(x) \\ f(s) \text{ for } s \geq \underline{u}(x) \end{cases}
$$
 (8)

K ロ X K @ X X B X X B X → B

Consider the truncated problems on each domain Ω_k ,

$$
\begin{cases}\n-\Delta u_k = \hat{f}(u_k) & \text{in } \Omega_k \\
u_k = \underline{u}(x) & \text{on } \partial \Omega_k.\n\end{cases}
$$
\n(9)

In order to find a solution to (9) we consider the translated problem for $v_k = u_k - \underline{u}$ with homogeneous boundary conditions

$$
\begin{cases}\n-\Delta v_k = \hat{f}(v_k + \underline{u}) - \Delta \underline{u} & \text{in } \Omega_k \\
v_k = 0 & \text{on } \partial \Omega_k.\n\end{cases}
$$
\n(10)

Define the functional $\widetilde{I}_k : H^1_0(\Omega_k) \to \mathbb{R}$ by

$$
\tilde{I}_k(v) = \int_{\Omega_k} \frac{1}{2} |\nabla v|^2 - \tilde{F}(v) + \nabla \underline{u} \nabla v,
$$

here

$$
\tilde{F}(v)=\int_0^v \hat{f}(t^+ + \underline{u})dt.
$$

Notice that

$$
\tilde{F}(v) = \begin{cases}\nf(\underline{u}(x))v \text{ for } v \le 0 \\
\hat{F}(v + \underline{u}) - \hat{F}(\underline{u}) \text{ for } v > 0\n\end{cases}
$$
\n(11)

K ロ X 《 汉 X X X X X X X X X X X X X X

 $2Q$

where $\hat{F}(s) = \int_0^s \hat{f}(t) dt$.

\widetilde{I}_k is coercive and satisfies the Palais-Smale condition.

- \widetilde{I}_k is coercive and satisfies the Palais-Smale condition.
- ► There is $v_k \in H_0^1(\Omega_k)$ such that

$$
\tilde{I}_k(v_k)=\inf_{v\in H_0^1(\Omega_k)}\tilde{I}_k(v).
$$

- \blacktriangleright \hat{I}_k is coercive and satisfies the Palais-Smale condition.
- ► There is $v_k \in H_0^1(\Omega_k)$ such that

$$
\tilde{I}_k(v_k)=\inf_{v\in H_0^1(\Omega_k)}\tilde{I}_k(v).
$$

K ロ ▶ (d) | K 글 > | K 글 > | [글 | } | 9 Q Q |

$$
u_k = v_k + \underline{u}
$$
 is a solution of (9).

- $\triangleright v_k \geq 0$ on Ω_k (by the maximum principle since <u>u</u> is a subsolution).
- ► Given k_0 , $\|v_k\|_{H^1_0(\Omega_{k_0})}$ is bounded for every $k\geq k_0$.
Taking a subsequence, we obtain

 $u_k \rightharpoonup u$ in $H_0^1(\Omega)$, $u_k \to u$ in L^{σ} for $1 \leq \sigma < 2N/(N-2)$,

- $u_k \rightarrow u$ a.e in Ω .
- \blacktriangleright Hence $u \leq u$ in Ω .

Let φ be a test function in $C_0^{\infty}(\Omega)$. There is a $k'>0$ and a bounded domain Ω' such that $\mathit{support}(\varphi)\subset\subset \Omega'\subset\subset \Omega_k$ for every $k \geq k'$. Thus,

$$
\int_{\Omega'} \nabla u_k \nabla \varphi = \int_{\Omega'} f(u_k) \varphi \quad \text{for every } k \geq k'.
$$

Letting $k \to \infty$ we obtain

$$
\int_{\Omega'} \nabla u \nabla \varphi = \int_{\Omega'} f(u) \varphi.
$$

(ロ) (御) (唐) (唐) (唐) 2000

This last integral also holds in Ω , so u is a weak solution.

Let φ be a test function in $C_0^{\infty}(\Omega)$. There is a $k'>0$ and a bounded domain Ω' such that $\mathit{support}(\varphi)\subset\subset \Omega'\subset\subset \Omega_k$ for every $k \geq k'$. Thus,

$$
\int_{\Omega'} \nabla u_k \nabla \varphi = \int_{\Omega'} f(u_k) \varphi \quad \text{for every } k \geq k'.
$$

Letting $k \to \infty$ we obtain

$$
\int_{\Omega'} \nabla u \nabla \varphi = \int_{\Omega'} f(u) \varphi.
$$

(ロ) (御) (唐) (唐) (唐) 2000

This last integral also holds in Ω , so u is a weak solution.