Nontrivial solutions for a a class of singular problems

Marcelo Montenegro Universidade Estadual de Campinas Elves A. B. Silva Universidade de Brasília

- ◆ □ ▶ → @ ▶ → 注 → ↓ 注 → りへで

$$\begin{cases} -\Delta u = \left(-u^{-\beta} + \lambda u^{p}\right) \chi_{\{u>0\}} & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$
(1)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\begin{cases} -\Delta u = \left(-u^{-\beta} + \lambda u^{p}\right) \chi_{\{u>0\}} & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega \end{cases}$$
(1)

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

• Ω is a bounded smooth domain in $\mathbb{R}^n, n \geq 1$

$$\begin{cases} -\Delta u = \left(-u^{-\beta} + \lambda u^{p}\right) \chi_{\{u>0\}} & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega \end{cases}$$
(1)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Ω is a bounded smooth domain in ℝⁿ, n ≥ 1
 0 < β < 1, 0 < p < 1, λ > 0

$$\begin{cases} -\Delta u = \left(-u^{-\beta} + \lambda u^{p}\right) \chi_{\{u>0\}} & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega \end{cases}$$
(1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Ω is a bounded smooth domain in \mathbb{R}^n , $n \geq 1$
- ▶ $0 < \beta < 1$, $0 , <math>\lambda > 0$
- This problem has been studied in several articles: Choi- Lazer
 McKenna, Cîrstea Ghergu Radulescu, Dávila, Dávila -Montenegro, Diaz - Morel - Oswald

$$\begin{cases} -\Delta u = \left(-u^{-\beta} + \lambda u^{p}\right) \chi_{\{u>0\}} & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega \end{cases}$$
(1)

- Ω is a bounded smooth domain in $\mathbb{R}^n, n \geq 1$
- ▶ $0 < \beta < 1$, $0 , <math>\lambda > 0$
- This problem has been studied in several articles: Choi- Lazer
 McKenna, Cîrstea Ghergu Radulescu, Dávila, Dávila -Montenegro, Diaz - Morel - Oswald
- By a solution we mean a function u ∈ H¹₀(Ω) satisfying (1) in the weak sense, that is,

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

$$\begin{cases} -\Delta u = \left(-u^{-\beta} + \lambda u^{p}\right) \chi_{\{u>0\}} & \text{in } \Omega \\ u = 0 & \text{on } \partial\Omega \end{cases}$$
(1)

• Ω is a bounded smooth domain in $\mathbb{R}^n, n \geq 1$

▶
$$0 < \beta < 1$$
, $0 , $\lambda > 0$$

- This problem has been studied in several articles: Choi- Lazer
 McKenna, Cîrstea Ghergu Radulescu, Dávila, Dávila -Montenegro, Diaz - Morel - Oswald
- By a solution we mean a function u ∈ H¹₀(Ω) satisfying (1) in the weak sense, that is,

$$\int_{\Omega} \nabla u \nabla \varphi = \int_{\{u>0\}} \left(-\frac{1}{u^{\beta}} + \lambda u^{p} \right) \varphi$$

for every $\varphi \in C_c^1(\Omega)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆舂▶ ★注≯ ★注≯ 注目

 $-\Delta u = \frac{1}{u^{\beta}} + \lambda u^{p},$

 $-\Delta u = \frac{1}{u^{\beta}} + \lambda u^{p},$

Canino, Canino - Degiovanni, Hirano - Saccon - Shioji, Perera
 ---, Long - Sun - Wu, Gonçalves - Santos

 $-\Delta u = \frac{1}{u^{\beta}} + \lambda u^{p},$

Canino, Canino - Degiovanni, Hirano - Saccon - Shioji, Perera
 ---, Long - Sun - Wu, Gonçalves - Santos

Boccardo for related results

 $-\Delta u = \frac{1}{u^{\beta}} + \lambda u^{p},$

- Canino, Canino Degiovanni, Hirano Saccon Shioji, Perera
 ---, Long Sun Wu, Gonçalves Santos
- Boccardo for related results
- Crandall Rabinowitz Tartar: the existence of one solution via bifurcation theory

 $-\Delta u = \frac{1}{u^{\beta}} + \lambda u^{p},$

- Canino, Canino Degiovanni, Hirano Saccon Shioji, Perera
 ---, Long Sun Wu, Gonçalves Santos
- Boccardo for related results
- Crandall Rabinowitz Tartar: the existence of one solution via bifurcation theory

Theorem 1 Problem (1) has two distinct nontrivial solutions for $\lambda > 0$ large.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで

Consider the perturbation

$$g_{arepsilon}(t) = \left\{ egin{array}{c} t^{q} \ \overline{(t+arepsilon)^{q+eta}} \ ext{ for } t \geq 0 \ 0 \ ext{ for } t < 0, \end{array}
ight.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Consider the perturbation

$$g_{arepsilon}(t) = \left\{ egin{array}{c} t^q \ \overline{(t+arepsilon)^{q+eta}} \ \ ext{for} \ t\geq 0 \ 0 \ \ ext{for} \ t<0, \end{array}
ight.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

where 0 < q < p < 1

Consider the perturbation

where 0 < q < p < 1 and the corresponding perturbed problem

$$\begin{cases} -\Delta u + g_{\varepsilon}(u) = \lambda u^{\rho} & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$
(3)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Consider the perturbation

where 0 < q < p < 1 and the corresponding perturbed problem

$$\begin{cases} -\Delta u + g_{\varepsilon}(u) = \lambda u^{\rho} & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$
(3)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The associated functional $I_{\varepsilon} \in C^{1}(H^{1}_{0}(\Omega), \mathbb{R})$ is given by

Consider the perturbation

$$g_{arepsilon}(t) = \left\{ egin{array}{c} t^q \ \overline{(t+arepsilon)^{q+eta}} \ \ ext{for } t \geq 0 \ 0 \ \ ext{for } t < 0, \end{array}
ight.$$

where 0 < q < p < 1 and the corresponding perturbed problem

$$\begin{cases} -\Delta u + g_{\varepsilon}(u) = \lambda u^{\rho} & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$
(3)

The associated functional $I_{\varepsilon} \in C^{1}(H^{1}_{0}(\Omega), \mathbb{R})$ is given by

$$I_{\varepsilon}(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 + \int_{\Omega} G_{\varepsilon}(u) - \frac{\lambda}{p+1} \int_{\Omega} (u^+)^{p+1}$$

where $G_{\varepsilon}(u) = \int_0^t g_{\varepsilon}(s) ds \ge 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Two solutions for the perturbed problem

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Lemma 1 For every $\lambda > 0$, there is $\rho > 0$ such that, $I_{\varepsilon}(u) \ge \frac{1}{4}\rho^2$ whenever $\|u\|_{H_0^1} = \rho$ and $0 < \varepsilon < 1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Lemma 1

For every $\lambda > 0$, there is $\rho > 0$ such that, $I_{\varepsilon}(u) \ge \frac{1}{4}\rho^2$ whenever $\|u\|_{H_0^1} = \rho$ and $0 < \varepsilon < 1$.

(日) (四) (문) (문) (문)

Lemma 2 For $\lambda > 0$ large enough, we have $I_{\varepsilon}(\varphi_1) < b < 0$.

Lemma 1 For every $\lambda > 0$, there is $\rho > 0$ such that, $I_{\varepsilon}(u) \ge \frac{1}{4}\rho^2$ whenever $\|u\|_{H_0^1} = \rho$ and $0 < \varepsilon < 1$. Lemma 2

For $\lambda > 0$ large enough, we have $I_{\varepsilon}(\varphi_1) < b < 0$.

Here, $\varphi_1 > 0$ is the first eigenfunction of $-\Delta$ in $H_0^1(\Omega)$.

Lemma 1 For every $\lambda > 0$, there is $\rho > 0$ such that, $I_{\varepsilon}(u) \ge \frac{1}{4}\rho^2$ whenever $\|u\|_{H_0^1} = \rho$ and $0 < \varepsilon < 1$. Lemma 2

For $\lambda > 0$ large enough, we have $I_{\varepsilon}(\varphi_1) < b < 0$.

Here, $\varphi_1 > 0$ is the first eigenfunction of $-\Delta$ in $H_0^1(\Omega)$.

Proposition 1

For $\lambda > 0$ large enough, and $0 < \varepsilon < 1$; there is b < 0 and a global minimizer $u_{\varepsilon}^1 \in H_0^1(\Omega)$ with $l_{\varepsilon}(u_{\varepsilon}^1) < b$.

< □ > < □ > < □ > < □ > < □ > < □ > = □

Proposition 1

For $\lambda > 0$ large enough, and $0 < \varepsilon < 1$; there is b < 0 and a global minimizer $u_{\varepsilon}^{1} \in H_{0}^{1}(\Omega)$ with $I_{\varepsilon}(u_{\varepsilon}^{1}) < b$.

Proposition 2

For $\lambda > 0$ large enough, and $0 < \varepsilon < 1$; there is a > 0 and a critical point $u_{\varepsilon}^2 \in H_0^1(\Omega)$ of mountain pass type such that $I_{\varepsilon}(u_{\varepsilon}^2) > a$.

(日) (國) (필) (필) (필) 표

Concluding Remarks for the Perturbed Problem

Fix $\lambda > 0$ sufficiently large.

$$-\infty < \beta \le c_1^{\varepsilon} \le b < 0 < a \le c_2^{\varepsilon} \le \alpha < \infty$$
(4)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$-\infty < \beta \le c_1^{\varepsilon} \le b < 0 < a \le c_2^{\varepsilon} \le \alpha < \infty$$
(4)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

where the constants β , *b*, *a* do not depend on $0 < \varepsilon < 1$.

$$-\infty < \beta \le c_1^{\varepsilon} \le b < 0 < a \le c_2^{\varepsilon} \le \alpha < \infty$$
(4)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

where the constants β , *b*, *a* do not depend on $0 < \varepsilon < 1$. Claim: the upper bound α is independent of $\varepsilon > 0$.

$$-\infty < \beta \le c_1^{\varepsilon} \le b < 0 < a \le c_2^{\varepsilon} \le \alpha < \infty$$
(4)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

where the constants β , *b*, *a* do not depend on $0 < \varepsilon < 1$. Claim: the upper bound α is independent of $\varepsilon > 0$. Observe that the solutions u_{ε} of (3) are a priori bounded:

$$-\infty < \beta \le c_1^{\varepsilon} \le b < 0 < a \le c_2^{\varepsilon} \le \alpha < \infty$$
(4)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

where the constants β , *b*, *a* do not depend on $0 < \varepsilon < 1$. Claim: the upper bound α is independent of $\varepsilon > 0$. Observe that the solutions u_{ε} of (3) are a priori bounded: multiply (3) by u_{ε} , integrate, discard the term involving g_{ε} and use the Sobolev imbedding, to obtain

$$c(\Omega) ig(\int_{\Omega} u_{\varepsilon}^{p+1} ig)^{rac{2}{p+1}} \leq \int_{\Omega} |
abla u_{\varepsilon}|^2 \leq \lambda \int_{\Omega} u_{\varepsilon}^{p+1}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$$c(\Omega)\big(\int_{\Omega} u_{\varepsilon}^{p+1}\big)^{\frac{2}{p+1}} \leq \int_{\Omega} |\nabla u_{\varepsilon}|^{2} \leq \lambda \int_{\Omega} u_{\varepsilon}^{p+1}.$$

Since $0 , a bootstrap argument implies that the norms <math>\|u_{\varepsilon}\|_{H^{1}_{0}(\Omega)}$ and $\|u_{\varepsilon}\|_{L^{\infty}(\Omega)}$ are bounded independent of ε .

$$c(\Omega) \big(\int_{\Omega} u_{\varepsilon}^{p+1}\big)^{\frac{2}{p+1}} \leq \int_{\Omega} |\nabla u_{\varepsilon}|^{2} \leq \lambda \int_{\Omega} u_{\varepsilon}^{p+1}$$

$$c(\Omega) \big(\int_{\Omega} u_{\varepsilon}^{p+1}\big)^{\frac{2}{p+1}} \leq \int_{\Omega} |\nabla u_{\varepsilon}|^{2} \leq \lambda \int_{\Omega} u_{\varepsilon}^{p+1}$$

$$c(\Omega) \big(\int_{\Omega} u_{\varepsilon}^{p+1}\big)^{\frac{2}{p+1}} \leq \int_{\Omega} |\nabla u_{\varepsilon}|^{2} \leq \lambda \int_{\Omega} u_{\varepsilon}^{p+1}$$

Now, let $\varepsilon \rightarrow 0$.

$$c(\Omega) \big(\int_{\Omega} u_{\varepsilon}^{p+1}\big)^{\frac{2}{p+1}} \leq \int_{\Omega} |\nabla u_{\varepsilon}|^{2} \leq \lambda \int_{\Omega} u_{\varepsilon}^{p+1}$$

Now, let
$$arepsilon o 0.$$

Then $c_arepsilon^1 o c_1$, $c_arepsilon^2 o c_2$ with

$$\beta \leq c_1 \leq b < 0 < a \leq c_2 \leq \alpha,$$

$$c(\Omega) \big(\int_{\Omega} u_{\varepsilon}^{p+1}\big)^{\frac{2}{p+1}} \leq \int_{\Omega} |\nabla u_{\varepsilon}|^{2} \leq \lambda \int_{\Omega} u_{\varepsilon}^{p+1}$$

Then
$$c_{\varepsilon}^1
ightarrow c_1$$
, $c_{\varepsilon}^2
ightarrow c_2$ with

$$\beta \leq c_1 \leq b < 0 < a \leq c_2 \leq \alpha,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □

Moreover,

$$c(\Omega) \big(\int_{\Omega} u_{\varepsilon}^{p+1}\big)^{\frac{2}{p+1}} \leq \int_{\Omega} |\nabla u_{\varepsilon}|^{2} \leq \lambda \int_{\Omega} u_{\varepsilon}^{p+1}$$

Now, let $\varepsilon \to 0$. Then $c_{\varepsilon}^{1} \to c_{1}$, $c_{\varepsilon}^{2} \to c_{2}$ with

$$\beta \leq c_1 \leq b < 0 < a \leq c_2 \leq \alpha,$$

Moreover, $u_{\varepsilon}^1 \to u^1$ and $u_{\varepsilon}^2 \to u^2$ a.e., since solutions of (3) are a priori bounded.

$$c(\Omega) \big(\int_{\Omega} u_{\varepsilon}^{p+1}\big)^{\frac{2}{p+1}} \leq \int_{\Omega} |\nabla u_{\varepsilon}|^{2} \leq \lambda \int_{\Omega} u_{\varepsilon}^{p+1}$$

Now, let
$$arepsilon o 0.$$

Then $c_arepsilon^1 o c_1$, $c_arepsilon^2 o c_2$ with

$$\beta \leq c_1 \leq b < 0 < a \leq c_2 \leq \alpha,$$

Moreover, $u_{\varepsilon}^1 \to u^1$ and $u_{\varepsilon}^2 \to u^2$ a.e., since solutions of (3) are a priori bounded. We also have, $u^1 \neq u^2$ a.e. and they are nontrivial and nonnegative.

$$c(\Omega) \big(\int_{\Omega} u_{\varepsilon}^{p+1}\big)^{\frac{2}{p+1}} \leq \int_{\Omega} |\nabla u_{\varepsilon}|^{2} \leq \lambda \int_{\Omega} u_{\varepsilon}^{p+1}$$

Now, let $\varepsilon \to 0$. Then $c_{\varepsilon}^1 \to c_1$, $c_{\varepsilon}^2 \to c_2$ with

$$\beta \leq c_1 \leq b < 0 < a \leq c_2 \leq \alpha,$$

Moreover, $u_{\varepsilon}^1 \to u^1$ and $u_{\varepsilon}^2 \to u^2$ a.e., since solutions of (3) are a priori bounded. We also have, $u^1 \neq u^2$ a.e. and they are nontrivial and nonnegative.

Our objective is to obtain gradient estimates for solutions of (3).

$$c(\Omega) \big(\int_{\Omega} u_{\varepsilon}^{p+1}\big)^{\frac{2}{p+1}} \leq \int_{\Omega} |\nabla u_{\varepsilon}|^{2} \leq \lambda \int_{\Omega} u_{\varepsilon}^{p+1}$$

Now, let
$$arepsilon o 0.$$

Then $c_arepsilon^1 o c_1$, $c_arepsilon^2 o c_2$ with

$$\beta \leq c_1 \leq b < 0 < a \leq c_2 \leq \alpha,$$

Moreover, $u_{\varepsilon}^1 \to u^1$ and $u_{\varepsilon}^2 \to u^2$ a.e., since solutions of (3) are a priori bounded. We also have, $u^1 \neq u^2$ a.e. and they are nontrivial and nonnegative.

Our objective is to obtain gradient estimates for solutions of (3). Then, taking $\varepsilon \rightarrow 0$,

$$c(\Omega) \big(\int_{\Omega} u_{\varepsilon}^{p+1}\big)^{\frac{2}{p+1}} \leq \int_{\Omega} |\nabla u_{\varepsilon}|^{2} \leq \lambda \int_{\Omega} u_{\varepsilon}^{p+1}$$

Now, let $\varepsilon \to 0$. Then $c_{\varepsilon}^1 \to c_1$, $c_{\varepsilon}^2 \to c_2$ with

$$\beta \leq c_1 \leq b < 0 < a \leq c_2 \leq \alpha,$$

Moreover, $u_{\varepsilon}^1 \to u^1$ and $u_{\varepsilon}^2 \to u^2$ a.e., since solutions of (3) are a priori bounded. We also have, $u^1 \neq u^2$ a.e. and they are nontrivial and nonnegative.

Our objective is to obtain gradient estimates for solutions of (3). Then, taking $\varepsilon \to 0$, we show that the functions u_1 and u_2 are solutions of (1).

Gradient Estimates

- ◆ □ ▶ → @ ▶ → 注 ▶ → 注 → りへで

Let the weight ψ be such that

$$\psi \in C^2(\overline{\Omega}), \ \psi > 0 \text{ in } \Omega, \ \psi = 0 \text{ on } \partial \Omega \text{ and } \frac{|\nabla \psi|^2}{\psi} \text{ is bounded in } \Omega.$$

Let the weight ψ be such that

$$\psi \in C^2(\overline{\Omega}), \ \psi > 0 \ \text{in} \ \Omega, \ \psi = 0 \ \text{on} \ \partial \Omega \ \text{and} \ rac{|
abla \psi|^2}{\psi} \ \text{is bounded in} \ \Omega.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Observe that $\psi = \varphi_1^2$ is a possible example.

Let the weight ψ be such that

$$\psi \in C^2(\overline{\Omega}), \ \psi > 0 \text{ in } \Omega, \ \psi = 0 \text{ on } \partial \Omega \text{ and } \frac{|\nabla \psi|^2}{\psi} \text{ is bounded in } \Omega.$$

Observe that $\psi = \varphi_1^2$ is a possible example.

Lemma 3

If u_{ε} is a solution of (3), then there is a constant M > 0 independent of ε such that

$$|\psi(x)|
abla u_arepsilon(x)|^2 \leq M(u_arepsilon(x)^{1-eta}+u_arepsilon(x)) \quad orall x\in\Omega,$$

◆□ → ◆□ → ◆ = → ◆ = → ○ へ ⊙

where M depends only on Ω , N, β , ψ and $||u_{\varepsilon}||_{L^{\infty}(\Omega)}$.

 The proof of this lemma is based on an argument by Dávila -Montenegro.

- The proof of this lemma is based on an argument by Dávila -Montenegro.
- Remark that a nontrivial solution u_ε of (3) is nonnegative and belongs to C²(Ω). However, we cannot use the maximum principle to ensure that u_ε is positive or identically zero, since u^{q-1}/(u + ε)^{q+β} is singular when u ~ 0.

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 三臣……

- The proof of this lemma is based on an argument by Dávila -Montenegro.
- Remark that a nontrivial solution u_ε of (3) is nonnegative and belongs to C²(Ω). However, we cannot use the maximum principle to ensure that u_ε is positive or identically zero, since u^{q-1}/(u + ε)^{q+β} is singular when u ~ 0.
- Consider the functions

$$w = \frac{|\nabla u|^2}{Z(u)}, \qquad v = w\psi,$$

where $Z(u_{\varepsilon}) = u_{\varepsilon}^{1-\beta} + u_{\varepsilon} + \delta$, with $\delta > 0$, in order to have Z > 0.

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 三臣……

- The proof of this lemma is based on an argument by Dávila -Montenegro.
- Remark that a nontrivial solution u_ε of (3) is nonnegative and belongs to C²(Ω). However, we cannot use the maximum principle to ensure that u_ε is positive or identically zero, since u^{q-1}/(u + ε)^{q+β} is singular when u ~ 0.
- Consider the functions

$$w = \frac{|\nabla u|^2}{Z(u)}, \qquad v = w\psi,$$

where $Z(u_{\varepsilon}) = u_{\varepsilon}^{1-\beta} + u_{\varepsilon} + \delta$, with $\delta > 0$, in order to have Z > 0. In the end of the proof, we let $\delta \to 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- The proof of this lemma is based on an argument by Dávila -Montenegro.
- Remark that a nontrivial solution u_ε of (3) is nonnegative and belongs to C²(Ω). However, we cannot use the maximum principle to ensure that u_ε is positive or identically zero, since u^{q-1}/(u + ε)^{q+β} is singular when u ~ 0.
- Consider the functions

$$w = \frac{|\nabla u|^2}{Z(u)}, \qquad v = w\psi,$$

where $Z(u_{\varepsilon}) = u_{\varepsilon}^{1-\beta} + u_{\varepsilon} + \delta$, with $\delta > 0$, in order to have Z > 0. In the end of the proof, we let $\delta \to 0$.

• We also use the fact that a nontrivial solution u_{ε} of (3) belongs to C^3 on a neighborhood of every point where it is positive

Next result shows that u_{ε} converges in C^1_{loc} to some u which is in $C^{\frac{1-\beta}{1+\beta}}_{loc}$.

(日) (문) (문) (문) (문)

Next result shows that u_{ε} converges in C_{loc}^1 to some u which is in $C_{loc}^{\frac{1-\beta}{1+\beta}}$.

Lemma 4 For any $\Omega' \subset \Omega$ there exists C such that

$$|
abla u_arepsilon(x)-
abla u_arepsilon(y)|\leq C|x-y|^{rac{1-eta}{1+eta}}\quad orall x,y\in \Omega'.$$

The constant *C* depends only on Ω , *N*, β , *p*, $||u_{\varepsilon}||_{L^{\infty}(\Omega)}$, but not on ε .

Considering u, a weak limit of solutions u_{ε} of (3),

$$\begin{array}{l} \mathsf{Lemma 5} \\ \frac{1}{u^{\beta}}\chi_{\Omega_{+}} \in \mathcal{L}^{1}_{loc}(\Omega), \text{ where } \Omega_{+} = \{x \in \Omega : u(x) > 0\}. \end{array}$$

Considering u, a weak limit of solutions u_{ε} of (3),

Lemma 5

$$\frac{1}{u^{\beta}}\chi_{\Omega_{+}} \in L^{1}_{loc}(\Omega)$$
, where $\Omega_{+} = \{x \in \Omega : u(x) > 0\}$.

The proof is done by choosing appropriate test functions for the perturbed problem.

- ◆ □ ▶ → @ ▶ → 注 → ↓ 注 → りへで

Let $\eta \in C^{\infty}(\mathbb{R})$, $0 \leq \eta \leq 1$, $\eta(s) = 0$ for $s \leq 1/2$, $\eta(s) = 1$ for $s \geq 1$.

Let $\eta \in C^{\infty}(\mathbb{R})$, $0 \leq \eta \leq 1$, $\eta(s) = 0$ for $s \leq 1/2$, $\eta(s) = 1$ for $s \geq 1$. Given $\varphi \in C_c^1(\Omega)$,

Let $\eta \in C^{\infty}(\mathbb{R})$, $0 \leq \eta \leq 1$, $\eta(s) = 0$ for $s \leq 1/2$, $\eta(s) = 1$ for $s \geq 1$. Given $\varphi \in C_c^1(\Omega)$, for m > 0, we have

$$\int_{\Omega} \nabla u_{\varepsilon} \nabla (\varphi \eta (u_{\varepsilon}/m)) = \int_{\hat{\Omega}} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^{p}) \varphi \eta (u_{\varepsilon}/m), \quad (5)$$

Let $\eta \in C^{\infty}(\mathbb{R})$, $0 \leq \eta \leq 1$, $\eta(s) = 0$ for $s \leq 1/2$, $\eta(s) = 1$ for $s \geq 1$. Given $\varphi \in C_c^1(\Omega)$, for m > 0, we have

$$\int_{\Omega} \nabla u_{\varepsilon} \nabla (\varphi \eta (u_{\varepsilon}/m)) = \int_{\hat{\Omega}} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^{p}) \varphi \eta (u_{\varepsilon}/m), \quad (5)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

where $\hat{\Omega}$ is an open set such that $\overline{\hat{\Omega}} \subset \Omega$ and $\mathrm{support}(\varphi) \subset \hat{\Omega}$.

Let $\eta \in C^{\infty}(\mathbb{R})$, $0 \leq \eta \leq 1$, $\eta(s) = 0$ for $s \leq 1/2$, $\eta(s) = 1$ for $s \geq 1$. Given $\varphi \in C_c^1(\Omega)$, for m > 0, we have

$$\int_{\Omega} \nabla u_{\varepsilon} \nabla (\varphi \eta (u_{\varepsilon}/m)) = \int_{\hat{\Omega}} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^{p}) \varphi \eta (u_{\varepsilon}/m), \quad (5)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where $\hat{\Omega}$ is an open set such that $\overline{\hat{\Omega}} \subset \Omega$ and support $(\varphi) \subset \hat{\Omega}$. Set $\Omega_0 = \Omega_+ \cap \hat{\Omega}$.

Let $\eta \in C^{\infty}(\mathbb{R})$, $0 \leq \eta \leq 1$, $\eta(s) = 0$ for $s \leq 1/2$, $\eta(s) = 1$ for $s \geq 1$. Given $\varphi \in C_c^1(\Omega)$, for m > 0, we have

$$\int_{\Omega} \nabla u_{\varepsilon} \nabla (\varphi \eta (u_{\varepsilon}/m)) = \int_{\hat{\Omega}} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^{p}) \varphi \eta (u_{\varepsilon}/m), \quad (5)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where $\hat{\Omega}$ is an open set such that $\overline{\hat{\Omega}} \subset \Omega$ and $\operatorname{support}(\varphi) \subset \hat{\Omega}$. Set $\Omega_0 = \Omega_+ \cap \hat{\Omega}$. Since $u_{\varepsilon} \to u$ in $C^1_{loc}(\Omega)$,

Let $\eta \in C^{\infty}(\mathbb{R})$, $0 \leq \eta \leq 1$, $\eta(s) = 0$ for $s \leq 1/2$, $\eta(s) = 1$ for $s \geq 1$. Given $\varphi \in C_c^1(\Omega)$, for m > 0, we have

$$\int_{\Omega} \nabla u_{\varepsilon} \nabla (\varphi \eta (u_{\varepsilon}/m)) = \int_{\hat{\Omega}} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^{p}) \varphi \eta (u_{\varepsilon}/m), \quad (5)$$

where $\hat{\Omega}$ is an open set such that $\hat{\Omega} \subset \Omega$ and $\mathrm{support}(\varphi) \subset \hat{\Omega}$. Set $\Omega_0 = \Omega_+ \cap \hat{\Omega}$. Since $u_{\varepsilon} \to u$ in $C^1_{loc}(\Omega)$, for every given m > 0, there is an $\varepsilon_0 > 0$ such that

$$u_{arepsilon}(x) \leq m/2, \quad orall x \in \Omega_0 \setminus \Omega_+ ext{ and } 0 < arepsilon \leq arepsilon_0.$$
 (6)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Let $\eta \in C^{\infty}(\mathbb{R})$, $0 \leq \eta \leq 1$, $\eta(s) = 0$ for $s \leq 1/2$, $\eta(s) = 1$ for $s \geq 1$. Given $\varphi \in C_c^1(\Omega)$, for m > 0, we have

$$\int_{\Omega} \nabla u_{\varepsilon} \nabla (\varphi \eta (u_{\varepsilon}/m)) = \int_{\hat{\Omega}} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^{p}) \varphi \eta (u_{\varepsilon}/m), \quad (5)$$

where $\hat{\Omega}$ is an open set such that $\hat{\Omega} \subset \Omega$ and $\mathrm{support}(\varphi) \subset \hat{\Omega}$. Set $\Omega_0 = \Omega_+ \cap \hat{\Omega}$. Since $u_{\varepsilon} \to u$ in $C^1_{loc}(\Omega)$, for every given m > 0, there is an $\varepsilon_0 > 0$ such that

$$u_{arepsilon}(x) \leq m/2, \quad orall x \in \Omega_0 \setminus \Omega_+ ext{ and } 0 < arepsilon \leq arepsilon_0.$$
 (6)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Taking $0 < \varepsilon < \varepsilon_0$,

Taking $0 < \varepsilon < \varepsilon_0$, We split the previous integral as

$$A_{\varepsilon} := \int_{\Omega_0} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^{\boldsymbol{p}}) \varphi \eta(u_{\varepsilon}/m)$$

 and

$$B_{arepsilon} := \int_{\hat{\Omega} \setminus \Omega_0} (-g_{arepsilon}(u_{arepsilon}) + \lambda u_{arepsilon}^p) arphi \eta(u_{arepsilon}/m).$$

Taking $0 < \varepsilon < \varepsilon_0$, We split the previous integral as

$$A_{\varepsilon} := \int_{\Omega_0} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^{p}) \varphi \eta(u_{\varepsilon}/m)$$

and

$$B_{\varepsilon} := \int_{\hat{\Omega} \setminus \Omega_0} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^p) \varphi \eta(u_{\varepsilon}/m).$$

Clearly, $B_{\varepsilon} = 0$ by (6) and the definition of η .

Taking $0 < \varepsilon < \varepsilon_0$, We split the previous integral as

$$A_{\varepsilon} := \int_{\Omega_0} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^{p}) \varphi \eta(u_{\varepsilon}/m)$$

and

$$B_{\varepsilon} := \int_{\hat{\Omega} \setminus \Omega_0} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^p) \varphi \eta(u_{\varepsilon}/m).$$

Clearly, $B_{\varepsilon} = 0$ by (6) and the definition of η . Moreover,

$$A_arepsilon o \int_{\Omega_0} (-u^{-eta} + \lambda u^p) arphi \eta(u/m) \quad ext{ as } arepsilon o 0.$$

Taking $0 < \varepsilon < \varepsilon_0$, We split the previous integral as

$$A_{\varepsilon} := \int_{\Omega_0} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^{\boldsymbol{p}}) \varphi \eta(u_{\varepsilon}/m)$$

and

$$B_{\varepsilon} := \int_{\hat{\Omega} \setminus \Omega_0} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^p) \varphi \eta(u_{\varepsilon}/m).$$

Clearly, $B_{\varepsilon} = 0$ by (6) and the definition of η . Moreover,

$$egin{aligned} & A_arepsilon & o \int_{\Omega_0} (-u^{-eta} + \lambda u^p) arphi \eta(u/m) & ext{ as } arepsilon o 0. \end{aligned}$$

If $u \le m/4$, for a sufficiently small $\varepsilon > 0$, we have $u_{\varepsilon} \le m/2$. The integral A_{ε} restricted to this set is zero.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Taking $0 < \varepsilon < \varepsilon_0$, We split the previous integral as

$$A_{\varepsilon} := \int_{\Omega_0} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^{p}) \varphi \eta(u_{\varepsilon}/m)$$

and

$$B_{\varepsilon} := \int_{\hat{\Omega} \setminus \Omega_0} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^p) \varphi \eta(u_{\varepsilon}/m).$$

Clearly, $B_{\varepsilon} = 0$ by (6) and the definition of η . Moreover,

$$egin{aligned} & A_arepsilon & o \int_{\Omega_0} (-u^{-eta} + \lambda u^p) arphi \eta(u/m) & ext{ as } arepsilon o 0. \end{aligned}$$

If $u \le m/4$, for a sufficiently small $\varepsilon > 0$, we have $u_{\varepsilon} \le m/2$. The integral A_{ε} restricted to this set is zero. If u > m/4, we have $u_{\varepsilon} \ge m/8$ for $\varepsilon > 0$ small enough.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Taking $0 < \varepsilon < \varepsilon_0$, We split the previous integral as

$$A_{\varepsilon} := \int_{\Omega_0} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^{p}) \varphi \eta(u_{\varepsilon}/m)$$

and

$$B_{\varepsilon} := \int_{\hat{\Omega} \setminus \Omega_0} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^p) \varphi \eta(u_{\varepsilon}/m).$$

Clearly, $B_{\varepsilon} = 0$ by (6) and the definition of η . Moreover,

$$A_arepsilon o \int_{\Omega_0} (-u^{-eta} + \lambda u^p) arphi \eta(u/m) \quad ext{ as } arepsilon o 0.$$

If $u \leq m/4$, for a sufficiently small $\varepsilon > 0$, we have $u_{\varepsilon} \leq m/2$. The integral A_{ε} restricted to this set is zero. If u > m/4, we have $u_{\varepsilon} \geq m/8$ for $\varepsilon > 0$ small enough. Then, we apply the Dominated Convergence Theorem.

$$A_{arepsilon} o \int_{\Omega_0} (-u^{-eta} + \lambda u^{
ho}) arphi \qquad ext{as } arepsilon o 0 \quad (ext{and then as } m o 0)$$

$$A_arepsilon o \int_{\Omega_0} (-u^{-eta} + \lambda u^p) arphi \qquad ext{as } arepsilon o 0 \quad (ext{and then as } m o 0)$$

Note that $\eta(u/m) \leq 1$ and $-u^{-\beta} + u^{p} \in L^{1}(\Omega_{0})$.

$$A_{arepsilon} o \int_{\Omega_0} (-u^{-eta} + \lambda u^p) arphi \qquad ext{as } arepsilon o 0 \quad (ext{and then as } m o 0)$$

Note that $\eta(u/m) \leq 1$ and $-u^{-\beta} + u^{p} \in L^{1}(\Omega_{0})$. Now,

$$A_arepsilon o \int_{\Omega_0} (-u^{-eta} + \lambda u^p) arphi \qquad ext{as } arepsilon o 0 \quad (ext{and then as } m o 0)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Note that $\eta(u/m) \leq 1$ and $-u^{-\beta} + u^{p} \in L^{1}(\Omega_{0})$. Now, considering the first integral in (5),

$$A_arepsilon o \int_{\Omega_0} (-u^{-eta} + \lambda u^p) arphi \qquad ext{as } arepsilon o 0 \quad (ext{and then as } m o 0)$$

Note that $\eta(u/m) \leq 1$ and $-u^{-\beta} + u^{p} \in L^{1}(\Omega_{0})$. Now, considering the first integral in (5), we set

$$\int_{\Omega} \nabla u_{\varepsilon} \nabla (\varphi \eta (u_{\varepsilon}/m)) := H_{\varepsilon} + J_{\varepsilon}.$$

$$A_arepsilon o \int_{\Omega_0} (-u^{-eta} + \lambda u^p) arphi \qquad ext{as } arepsilon o 0 \quad (ext{and then as } m o 0)$$

Note that $\eta(u/m) \leq 1$ and $-u^{-\beta} + u^{p} \in L^{1}(\Omega_{0})$. Now, considering the first integral in (5), we set

$$\int_{\Omega} \nabla u_{\varepsilon} \nabla (\varphi \eta (u_{\varepsilon}/m)) := H_{\varepsilon} + J_{\varepsilon}.$$

Clearly,

$$H_{\varepsilon} := \int_{\Omega} (\nabla u_{\varepsilon} \nabla \varphi) \eta(u_{\varepsilon}/m) \to \int_{\Omega_0} (\nabla u \nabla \varphi) \eta(u/m) \quad \text{ as } \varepsilon \to 0.$$

(日) (四) (문) (문) (문)

and

$$A_arepsilon o \int_{\Omega_0} (-u^{-eta} + \lambda u^p) arphi \qquad ext{as } arepsilon o 0 \quad (ext{and then as } m o 0)$$

Note that $\eta(u/m) \leq 1$ and $-u^{-\beta} + u^{p} \in L^{1}(\Omega_{0})$. Now, considering the first integral in (5), we set

$$\int_{\Omega} \nabla u_{\varepsilon} \nabla (\varphi \eta (u_{\varepsilon}/m)) := H_{\varepsilon} + J_{\varepsilon}.$$

Clearly,

$$\mathcal{H}_arepsilon := \int_\Omega (
abla u_arepsilon
abla arphi) \eta(u_arepsilon/m) o \int_{\Omega_0} (
abla u
abla arphi) \eta(u/m) \quad ext{ as } arepsilon o 0.$$

and

$$\int_{\Omega_0} (
abla u
abla arphi) \eta(u/m)
ightarrow \int_{\Omega_0}
abla u
abla arphi \quad ext{as } m
ightarrow 0,$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

$$A_arepsilon o \int_{\Omega_0} (-u^{-eta} + \lambda u^p) arphi \qquad ext{as } arepsilon o 0 \quad (ext{and then as } m o 0)$$

Note that $\eta(u/m) \leq 1$ and $-u^{-\beta} + u^{p} \in L^{1}(\Omega_{0})$. Now, considering the first integral in (5), we set

$$\int_{\Omega} \nabla u_{\varepsilon} \nabla (\varphi \eta (u_{\varepsilon}/m)) := H_{\varepsilon} + J_{\varepsilon}.$$

Clearly,

$$\mathcal{H}_arepsilon := \int_\Omega (
abla u_arepsilon
abla arphi) \eta(u_arepsilon/m) o \int_{\Omega_0} (
abla u
abla arphi) \eta(u/m) \quad ext{ as } arepsilon o 0.$$

and

$$\int_{\Omega_0} (
abla u
abla arphi) \eta(u/m) o \int_{\Omega_0}
abla u
abla arphi \quad ext{as } m o 0,$$

by the Dominated Convergence Theorem.

We assert that

$$J_{\varepsilon}:=\int_{\Omega_0}\frac{|\nabla u_{\varepsilon}|^2}{m}\eta'(u_{\varepsilon}/m)\varphi\to 0 \quad \text{ as } \varepsilon\to 0 \quad (\text{and then as } m\to 0).$$

We assert that

$$J_{\varepsilon}:=\int_{\Omega_0}\frac{|\nabla u_{\varepsilon}|^2}{m}\eta'(u_{\varepsilon}/m)\varphi\to 0 \quad \text{ as } \varepsilon\to 0 \quad (\text{and then as } m\to 0).$$

By the estimate $|\nabla u_{\varepsilon}|^2 \leq M(u_{\varepsilon}^{1-\beta} + u_{\varepsilon})$ in Ω_0 (provided by Lemma 3), we obtain

$$egin{aligned} |J_arepsilon| &\leq M \int_{\Omega_0 \cap \{rac{m}{2} \leq u_arepsilon \leq m\}} rac{(u_arepsilon^{1-eta}+u_arepsilon)}{m} \eta'(u_arepsilon/m) arphi
ightarrow \ &
ightarrow M \int_{\Omega_0 \cap \{rac{m}{2} \leq u \leq m\}} rac{(u^{1-eta}+u)}{m} \eta'(u/m) arphi \quad ext{as } arepsilon
ightarrow 0, \end{aligned}$$

(中) (문) (문) (문) (문)

but this last integral goes to 0 as $m \rightarrow 0$.

We have shown that,

We have shown that, as $\varepsilon \rightarrow 0$ and $m \rightarrow 0,$

$$\int_{\Omega} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^{p}) \varphi \eta(u_{\varepsilon}/m) \to \int_{\Omega_{0}} (-u^{-\beta} + \lambda u^{p}) \varphi$$

 and

$$\int_{\Omega} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^{p}) \varphi \eta(u_{\varepsilon}/m) \to \int_{\Omega_{0}} (-u^{-\beta} + \lambda u^{p}) \varphi$$

and

$$\int_{\Omega} \nabla u_{\varepsilon} \nabla (\varphi \eta (u_{\varepsilon}/m)) \rightarrow \int_{\Omega} \nabla u \nabla \varphi$$

$$\int_{\Omega} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^{p}) \varphi \eta(u_{\varepsilon}/m) \to \int_{\Omega_{0}} (-u^{-\beta} + \lambda u^{p}) \varphi$$

and

$$\int_{\Omega} \nabla u_{\varepsilon} \nabla (\varphi \eta (u_{\varepsilon}/m)) \to \int_{\Omega} \nabla u \nabla \varphi$$

Combining these facts with (5), we obtain

$$\int_{\Omega} \nabla u \nabla \varphi = \int_{\{u>0\}} \left(-\frac{1}{u^{\beta}} + \lambda u^{p} \right) \varphi$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

for every $\varphi \in C_c^1(\Omega)$.

$$\int_{\Omega} (-g_{\varepsilon}(u_{\varepsilon}) + \lambda u_{\varepsilon}^{p}) \varphi \eta(u_{\varepsilon}/m) \to \int_{\Omega_{0}} (-u^{-\beta} + \lambda u^{p}) \varphi$$

and

$$\int_{\Omega} \nabla u_{\varepsilon} \nabla (\varphi \eta (u_{\varepsilon}/m)) \to \int_{\Omega} \nabla u \nabla \varphi$$

Combining these facts with (5), we obtain

$$\int_{\Omega} \nabla u \nabla \varphi = \int_{\{u>0\}} \left(-\frac{1}{u^{\beta}} + \lambda u^{p} \right) \varphi$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

for every $\varphi \in C_c^1(\Omega)$. This concludes the proof of Theorem 1.

The existence of a positive solution

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Theorem 2 Problem (1) has a positive solution for $\lambda > 0$ large.

Theorem 2 Problem (1) has a positive solution for $\lambda > 0$ large.

We are unable to prove that one of the solutions of Theorem 1 is positive.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Theorem 2 Problem (1) has a positive solution for $\lambda > 0$ large.

We are unable to prove that one of the solutions of Theorem 1 is positive. We believe that one of them is positive and the other one vanishes somewhere in Ω.

Theorem 2 Problem (1) has a positive solution for $\lambda > 0$ large.

We are unable to prove that one of the solutions of Theorem 1 is positive. We believe that one of them is positive and the other one vanishes somewhere in Ω. This would be in agreement with the result for the radial problem proved by Ouyang - Shi - Yao.

<ロ> (四) (四) (四) (四) (四) (四) (四)

▶ Theorem 2 is related to a result by Dávila:

Theorem 2 is related to a result by Dávila: for λ grater than a precise constant, the maximal solution u_λ is a strict local minimizer *I* in the convex subset of H¹₀(Ω) of nonnegative functions in Ω.

Proof of Theorem 2

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで

Associated with problem (1) we have the functional $I : H_0^1(\Omega) \to \mathbb{R}$ given by

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$I(u) = \int_{\Omega} \frac{1}{2} |\nabla u|^2 - F(u^+),$$

where $f(u) = -\frac{1}{u^{\beta}} + \lambda u^{p}$ and $F(u) = \int_{0}^{u} f(s) ds$.

It is known (Dávila-Montenegro) that $\underline{u} = c\varphi_1^{\frac{2}{1+\beta}}$ is a subsolution (if λ is large) for the problem (1), which in our new notation is

$$\begin{cases} -\Delta u = f(u) & \text{in } \Omega\\ u = 0 & \text{on } \partial \Omega. \end{cases}$$
(7)

Take a sequence of smooth domains

$$\emptyset \neq \Omega_1 \subset \subset \Omega_2 ... \subset \subset \Omega$$

such that $\Omega = \bigcup_{k=1}^{\infty} \Omega_k$. Define the truncated function

$$\hat{f}(u) = \begin{cases} f(\underline{u}(x)) \text{ for } s \leq \underline{u}(x) \\ f(s) \text{ for } s \geq \underline{u}(x) \end{cases}$$
(8)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

Consider the truncated problems on each domain Ω_k ,

$$\begin{cases} -\Delta u_k = \hat{f}(u_k) & \text{in } \Omega_k \\ u_k = \underline{u}(x) & \text{on } \partial \Omega_k. \end{cases}$$
(9)

In order to find a solution to (9) we consider the translated problem for $v_k = u_k - \underline{u}$ with homogeneous boundary conditions

$$\begin{cases} -\Delta v_k = \hat{f}(v_k + \underline{u}) - \Delta \underline{u} & \text{in } \Omega_k \\ v_k = 0 & \text{on } \partial \Omega_k. \end{cases}$$
(10)

Define the functional $\widetilde{I}_k: H^1_0(\Omega_k) \to \mathbb{R}$ by

$$ilde{l}_k(\mathbf{v}) = \int_{\Omega_k} rac{1}{2} |
abla \mathbf{v}|^2 - ilde{F}(\mathbf{v}) +
abla \underline{u}
abla \mathbf{v},$$

here

$$\tilde{F}(v) = \int_0^v \hat{f}(t^+ + \underline{u}) dt.$$

Notice that

$$\tilde{F}(v) = \begin{cases} f(\underline{u}(x))v \text{ for } v \leq 0\\ \hat{F}(v+\underline{u}) - \hat{F}(\underline{u}) \text{ for } v > 0 \end{cases}$$
(11)

◆□▶ ◆舂▶ ◆注≯ ◆注≯ □注□

where $\hat{F}(s) = \int_0^s \hat{f}(t) dt$.

• \tilde{l}_k is coercive and satisfies the Palais-Smale condition.

- \tilde{l}_k is coercive and satisfies the Palais-Smale condition.
- There is $v_k \in H^1_0(\Omega_k)$ such that

$$\widetilde{I}_k(v_k) = \inf_{v \in H_0^1(\Omega_k)} \widetilde{I}_k(v).$$

- \tilde{l}_k is coercive and satisfies the Palais-Smale condition.
- There is $v_k \in H^1_0(\Omega_k)$ such that

$$\widetilde{I}_k(v_k) = \inf_{v \in H^1_0(\Omega_k)} \widetilde{I}_k(v).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- $u_k = v_k + \underline{u}$ is a solution of (9).
- ► $v_k \ge 0$ on Ω_k (by the maximum principle since \underline{u} is a subsolution).
- Given k_0 , $||v_k||_{H_0^1(\Omega_{k_0})}$ is bounded for every $k \ge k_0$.

Taking a subsequence, we obtain

•
$$u_k \rightarrow u$$
 in $H_0^1(\Omega)$,
• $u_k \rightarrow u$ in L^{σ} for $1 \le \sigma < 2N/(N-2)$,

•
$$u_k \rightarrow u$$
 a.e in Ω .

Let φ be a test function in $C_0^{\infty}(\Omega)$. There is a k' > 0 and a bounded domain Ω' such that $support(\varphi) \subset \subset \Omega' \subset \subset \Omega_k$ for every $k \geq k'$. Thus,

$$\int_{\Omega'}
abla u_k
abla arphi = \int_{\Omega'} f(u_k) arphi$$
 for every $k \geq k'.$

Letting $k \to \infty$ we obtain

$$\int_{\Omega'} \nabla u \nabla \varphi = \int_{\Omega'} f(u) \varphi.$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

This last integral also holds in Ω , so *u* is a weak solution.

Let φ be a test function in $C_0^{\infty}(\Omega)$. There is a k' > 0 and a bounded domain Ω' such that $support(\varphi) \subset \subset \Omega' \subset \subset \Omega_k$ for every $k \geq k'$. Thus,

$$\int_{\Omega'}
abla u_k
abla arphi = \int_{\Omega'} f(u_k) arphi$$
 for every $k \geq k'.$

Letting $k \to \infty$ we obtain

$$\int_{\Omega'} \nabla u \nabla \varphi = \int_{\Omega'} f(u) \varphi.$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

This last integral also holds in Ω , so *u* is a weak solution.