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» By a solution we mean a function u € H}(Q) satisfying (1) in
the weak sense, that is,

1
VuVyp = / - — 4+ P
/Q 4 {u>0} ( u? )SD

for every ¢ € CL(Q).
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Existence of two solutions

Theorem 1
Problem (1) has two distinct nontrivial solutions for A > 0 large.



Perturbed Problem



Perturbed Problem

Consider the perturbation

t9
——— fort>0
g-(t) =4 (t+e)ath (2)

0 for t <0,



Perturbed Problem

Consider the perturbation
B frt>o0
—— = for t >
g-(t) =4 (t+e)ath - (2)
0 for t <0,

where 0 < g<p<l1



Perturbed Problem

Consider the perturbation

t9
——— fort>0
g-(t) =4 (t+e)ath (2)

0 for t <0,

where 0 < g < p < 1 and the corresponding perturbed problem

(3)

—Au+g.(u)y=AuP inQ
u=20 on 0Q2



Perturbed Problem

Consider the perturbation

t9
——— fort>0
g-(t) =4 (t+e)ath (2)

0 for t <0,

where 0 < g < p < 1 and the corresponding perturbed problem

(3)

—Au+g.(u)y=AuP inQ
u=20 on 0Q2

The associated functional . € C*(H3(Q),R) is given by



Perturbed Problem

Consider the perturbation

t9
——— fort>0
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0 for t <0,
where 0 < g < p < 1 and the corresponding perturbed problem

(3)

—Au+g.(u)y=AuP inQ
u=20 on 0Q2

The associated functional . € C*(H3(Q),R) is given by

I-(u) = ;/Q’vu’2+/966(”) _ L (u+)p+1

p+1/q

where G.(u) = [ g-(s)ds > 0.
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Proposition 2

For A > 0 large enough, and 0 < € < 1, there is a > 0 and a critical
point u? € H}(Q) of mountain pass type such that I.(u?) > a.
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The critical values ¢} = I.(u}) and ¢2 = I.(u?) satisfy

—0o<f<cg<b<l0<a<g<a<x (4)
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Claim: the upper bound « is independent of € > 0.

Observe that the solutions u. of (3) are a priori bounded:

multiply (3) by ue, integrate, discard the term involving g. and use
the Sobolev imbedding, to obtain
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s — with

B<a<b<0<alo<a,

Moreover, u} — u' and u? — u? a.e., since solutions of (3) are a

priori bounded. We also have, u! # u? a.e. and they are nontrivial
and nonnegative.

Our objective is to obtain gradient estimates for solutions of (3).
Then, taking ¢ — 0, we show that the functions u; and u; are
solutions of (1).
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Y e C?(Q), v >0inQ, ¢_00naQand| is bounded in Q.

Observe that 1) = ¢? is a possible example.

Lemma 3
If u. is a solution of (3), then there is a constant M > 0
independent of € such that

¢(X)|VUE(X)|2 < I\/I(us(x)l_ﬁ + u(x)) ¥x € Q,

where M depends only on Q, N, 3, 1 and ||ug|| o (q)-
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Remark that a nontrivial solution u. of (3) is nonnegative and
belongs to C2(2). However, we cannot use the maximum
principle to ensure that u. is positive or identically zero, since
w1 /(u + €)9+P is singular when u ~ 0.

Consider the functions

[Vul? _
Z(U) ) V= Wwv

w =

where Z(u.) = u}™? + u. + 8, with & > 0, in order to have
Z > 0. In the end of the proof, we let § — 0.
We also use the fact that a nontrivial solution u. of (3)

belongs to C3 on a neighborhood of every point where it is
positive
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Lemma 4
For any Q' C Q there exists C such that

—B
Vu.(x) — Vae(y)| < Clx — y|575  Vx,y € @

The constant C depends only on Q, N, 3, p,
one.

Ug || Loo(Q) but not
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» The proof is done by choosing appropriate test functions for
the perturbed problem.
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and
B. = /Q o )+ A/ m)

Clearly, B. = 0 by (6) and the definition of 1. Moreover,

Ac— | (—u P+ uP)on(u/m) as e — 0.
Qo
If u < m/4, for a sufficiently small £ > 0, we have u. < m/2. The
integral A. restricted to this set is zero.

If u> m/4, we have u. > m/8 for € > 0 small enough. Then, we
apply the Dominated Convergence Theorem.



Now we take a second limit as m — 0 to conclude that



Now we take a second limit as m — 0 to conclude that

Ac— | (—u P+ \uP)p ase — 0 (and then as m — 0)
Qo



Now we take a second limit as m — 0 to conclude that

Ac— | (—u P+ \uP)p ase — 0 (and then as m — 0)
Qo

Note that n(u/m) <1 and —u=P + uP € L}(Qo).



Now we take a second limit as m — 0 to conclude that

Ac— | (—u P+ \uP)p ase — 0 (and then as m — 0)
Qo

Note that n(u/m) <1 and —u=P + uP € L}(Qo).
Now,



Now we take a second limit as m — 0 to conclude that

Ac— | (—u P+ \uP)p ase — 0 (and then as m — 0)
Qo

Note that n(u/m) <1 and —u=P + uP € L}(Qo).
Now, considering the first integral in (5),



Now we take a second limit as m — 0 to conclude that
Ac— | (—u P+ \uP)p ase — 0 (and then as m — 0)
Qo

Note that n(u/m) <1 and —u=P + uP € L}(Qo).
Now, considering the first integral in (5), we set

/Q Vu.V(en(us/m)) == He + Jz.



Now we take a second limit as m — 0 to conclude that

Ac— | (—u P+ \uP)p ase — 0 (and then as m — 0)
Qo

Note that n(u/m) <1 and —u=P + uP € L}(Qo).
Now, considering the first integral in (5), we set

/Q Vu.V(en(us/m)) == He + Jz.

Clearly,
H. = /Q(VUEVgo)n(ug/m) — /QO(Vquo)n(u/m) ase — 0.

and



Now we take a second limit as m — 0 to conclude that

Ac— | (—u P+ \uP)p ase — 0 (and then as m — 0)
Qo

Note that n(u/m) <1 and —u=P + uP € L}(Qo).

Now, considering the first integral in (5), we set

/Q Vu.V(en(us/m)) == He + Jz.

Clearly,
H. = /(VUEVgo)n(ug/m) — [ (VuVe)n(u/m) ase— 0.
Q Q0

and

(VuVe)n(u/m) — [ VuVe asm—0,
Qo Q0



Now we take a second limit as m — 0 to conclude that

Ac— | (—u P+ \uP)p ase — 0 (and then as m — 0)
Qo

Note that n(u/m) <1 and —u=P + uP € L}(Qo).

Now, considering the first integral in (5), we set

/Q Vu.V(en(us/m)) == He + Jz.

Clearly,

H. = /(VUEVgo)n(ug/m) — [ (VuVe)n(u/m) ase— 0.
Q Q0

and

(VuVe)n(u/m) — [ VuVe asm—0,
Qo Q0

by the Dominated Convergence Theorem.



We assert that

2
Jo = / |v:75 n'(u:/m)p —0 ase— 0 (and then as m — 0).
Qo



We assert that

2
Jo = / |v:75 n'(u:/m)p —0 ase— 0 (and then as m — 0).
Qo

By the estimate |Vu.|? < I\/I(ugl_/6 + u) in Qo (provided by
Lemma 3), we obtain

(ug_ﬂ +u) ,
S| <M —
| e’ > Q{2 <0 <m) m n (ua/m)tp —
1-8
- M un'(u/m)gp as e — 0,
Qon{F <u<m} m

but this last integral goes to 0 as m — 0.
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We have shown that, as ¢ — 0 and m — 0,

/ (—ge(ue) + APYgn(ue/m) — | (—u™ + AuP)e
Q Qo

and

/QVUEV(son(ue/m))H/fZVqu

Combining these facts with (5), we obtain

/Vchp:/ (—iﬁ—i-)\up)@
Q {u>0} u

for every p € CL(Q).
This concludes the proof of Theorem 1.
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The existence of a positive solution

Our second result reads as follows.

Theorem 2
Problem (1) has a positive solution for A\ > 0 large.

» We are unable to prove that one of the solutions of Theorem
1 is positive. We believe that one of them is positive and the
other one vanishes somewhere in Q. This would be in
agreement with the result for the radial problem proved by
Ouyang - Shi - Yao.



» Theorem 2 is related to a result by DAavila:



» Theorem 2 is related to a result by Davila: for A grater than a
precise constant, the maximal solution u) is a strict local

minimizer | in the convex subset of H}(£2) of nonnegative
functions in €.
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Proof of Theorem 2

Associated with problem (1) we have the functional / : H}(Q) — R
given by

(u) = / 1|w|2_ Fu),

where f(u) = —4 + AuP and F(u) = [;' f(



2

It is known ( Dévila-Montenegro) that u = co.*” is a subsolution

(if X is large) for the problem (1), which in our new notation is

—Au="f(u) inQ
u=0 on 0R2.

Take a sequence of smooth domains
0 #Q CcCQ..cCQ

such that Q = (J;2; Q.
Define the truncated function

s fu(x)) for
flu) = { f(s) for

=
—_~

0n 0n
vV IA
=

X X

(7)



Consider the truncated problems on each domain €y,

{ —Auk = )A‘(uk) in Qk (9)

ug = u(x)  on 0.

In order to find a solution to (9) we consider the translated
problem for vi = u), — u with homogeneous boundary conditions

{ —Av, = ?(Vk +u)—Au in Qg (10)

vie =0 on 0.



Define the functional Ty : H3 (%) — R by

Tu(v) = /Q LOvp - Fv) + vuvy,

here

Notice that

Flv) = f(u(x))v for
B IA-_(V +u) — I:_(g) for

where F fo

F(v) = /0 F(tT + u)dt.

v<0

(11)

v>0
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» Ty is coercive and satisfies the Palais-Smale condition.
> There is vk € H3(Qx) such that

7k(Vk) = Vefi[E{Qk) 7k(V).

> ux = vk + u is a solution of (9).
> vk > 0 on Q ( by the maximum principle since u is a
subsolution).

Given ko, HVkHH&(QkO) is bounded for every k > ko.



Taking a subsequence, we obtain
> u — uin H(Q),
> up — uin L7 for 1 <o <2N/(N —2),
> uy — ua.ein Q.

» Hence u < uin Q.



Let ¢ be a test function in C§°(S2). Thereis a k' > 0 and a
bounded domain Q" such that support(p) CC Q' CC Qy for every
k > k'. Thus,

/ VuVp = / f(uk)p forevery k > K.

Letting k — oo we obtain
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Q/ /

This last integral also holds in Q, so v is a weak solution.
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