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1 Introduction and main results
In this talk, we study the existence of multi-bump solutions for the time independent
semilinear Schrödinger equation

−4u + (1 + εa(x))u = |u|p−2u, u ∈ H1(RN), (1)

where N ≥ 1, 2 < p < 2∗, 2∗ is the critical Sobolev exponent defined by 2∗ = 2N
N−2 if

N ≥ 3 and 2∗ = ∞ if N = 1 or N = 2, and ε > 0 is a parameter. Assumptions on
a : RN → R will be formulated later.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

This kind of equation arises in many fields of physics. For the following nonlinear
Schrödinger equation

i~
∂ψ

∂t
= −~24ψ + V̂ ψ − g(x, |ψ|)ψ, (2)

where i is the imaginary unit, ∆ is the Laplacian operator, and ~ > 0 is the Planck
constant, a standing wave solution is a solution of the form

ψ(x, t) = e−iEt/~u(x), u(x) ∈ R.

Thus, looking for a standing wave ψ of (2) is equivalent to finding a solution u of the
equation

−~24u + V (x)u = f (x, u), (3)

where V (x) = V̂ (x) − E and f (x, u) = g(x, |u|)u. The function V is called the
potential of (3). If g(x, |u|) = |u|p−2 then (3) can be written as

−~24u + V (x)u = |u|p−2u. (4)

In the case in which ~ = 1 and V (x) = 1 + εa(x), (4) is reduced to (1). Since we are
interested in bound states, we require that u ∈ H1(RN).
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The nonlinear Schrödinger equation (2) models some phenomena in physics, for exam-
ple, in nonlinear optics, in plasma physics, and in condensed matter physics, and the
nonlinear term simulates the interaction effect, called Kerr effect in nonlinear optics,
among a large number of particles. The case where p = 4 and N = 3 is of particularly
physical interest, and in this case the equation is called the Gross-Pitaevskii equation.
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The limiting equation of (1) as ε→ 0 is

−4u + u = |u|p−2u, u ∈ H1(RN). (5)

It is well known that (5) has a unique positive radial solution, denoted by ω, which
decays exponentially at ∞. This ω will serve as a building block to construct multi-
bump solutions of (1). Let n ≥ 1 be an integer. For sufficiently separated y1, y2, · · · , yn
in RN , a solution of (1) which is close to

∑n
i=1 ω(· − yi) in a sense which will be

made clear later is called an n-bump solution. We are interested here in constructing
multi-bump solutions of (1).
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To state the main result on (1), we need the following condition on the function a.

(A) a ∈ C(RN), a(x) > 0 in RN , lim
|x|→∞

a(x) = 0 and lim
|x|→∞

ln(a(x))/|x| = 0.

Our main result is the following theorem.

Theorem 1. Let a satisfy (A). Then for any positive integer n there exists ε(n) > 0 such
that for 0 < ε < ε(n), (1) has an n-bump positive solution. As a consequence, for any
positive integer n, there exists ε1(n) > 0 such that for 0 < ε < ε1(n), (1) has at least n
positive solutions.
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There have been enormous studies on the solutions of (3) as ~ → 0, which exhibit
a concentration phenomenon and are called semi-classical states. Most of the former
researches were focused on the case infx∈RN V (x) > 0. In this case and for N = 1

and p = 4, Floer and Weinstein in [JFA, 1986], using Lyapunov-Schmidt reduction
argument, constructed for the first time semi-classical states which concentrate near a
nondegenerate critical point of the potential V . Their result was extended to higher
dimensions by Oh [CPDE, 1988; CMP, 1990], using also the Lyapunov-Schmidt re-
duction argument. For a potential V without any nondegenerate critical point, Ra-
binowitz [ZAMP, 1992] obtained existence result for (3) with ~ small, provided that
0 < infx∈RN V (x) < lim inf |x|→∞ V (x), using a global variational argument. Del Pino
and Felmer [CVPDE, 1996; JFA, 1997; AIHPAN, 1998] established existence of multi-
peak solutions having exactly k maximum points provided that there are k disjoint open
bounded sets Λi such that infx∈∂Λi

V (x) > infx∈Λi
V (x), each Λi having one peak con-

centrating at its bottom. There have been also recent results on existence of solutions
concentrating on manifolds; see, Ambrosetti and Malchiodi [Progress in Mathematics,
No. 240, Birkhäuser, 2005], Ambrosetti, Malchiodi and Ni [CMP, 2003], del Pino,
Kowalczyk, and Wei [CPAM].
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Byeon and Wang [ARMA, 2002; CVPDE, 2003] were the first to study semi-classical
states of (3) with critical frequency, that is, infx∈RN V (x) = 0. They exhibit new con-
centration phenomena for bound states and their results were extended and generalized
by Byeon and Oshita [CPDE, 2004], Cao and Noussair [JDE, 2004], Cao and Peng
[MathAnn 2006].
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The solutions we obtain in Theorem 1 do not concentrate near any point in the space.
Instead, the bumps of the solutions we obtain are separated far apart and the distance
between any pair of bumps goes to infinity as ε → 0, and each bump has a fixed
profile as ε → 0. This is in sharp contrast to the concentration phenomenon described
above. It was shown by Kang and Wei [ADE, 2000] that, at a strict local maximum
point x0 of V (x) and for any positive integer k, (4) has a positive solution with k

interacting bumps concentrating near x0, while at a nondegenerate local minimum point
of V (x) such solutions do not exist. In our case, 1 + εa(x) has a maximum point and
we do not have solutions concentrating near this point, but we have solutions with
arbitrary many bumps near ∞ which is a strict minimum point of the potential 1 +

εa(x). Similar phenomenon has been observed for a Maxwell-Schrödinger system by
D’Aprile and Wei in [CVPDE, 2005], where the optimal configuration of the bumps
was described. Here we do not know whether the bumps obtained in this paper obey an
optimal configuration as in [D’Aprile and Wei, CVPDE, 2005].
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Existence of multi-bump solutions has been studied also for other class of equations.
Coti Zelati and Rabinowitz in [CPAM, 1992] constructed multi-bump solutions for
Schrödinger equations of the form

−∆u + V (x)u = f (x, u), x ∈ RN , (6)

where V and f are Ti periodic in xi. The building blocks are one-bump solutions at
the mountain pass level and the existence of such solutions as well as multi-bump solu-
tions is guaranteed by a nondegenerate assumption of the solutions near the mountain
pass level. Under the same nondegenerate assumption, Coti Zelati and Rabinowitz
in [JAMS, 1991] constructed multi-bump solutions for periodic Hamiltonian systems.
Multi-bump solutions have also been obtained for asymptotically periodic Schrödinger
equations by Alama and Li [IUMJ 1992].
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The conditions we impose on the potential a(x) are generic conditions. We neither
require a(x) to be periodic nor require a(x) to have non-degenerate critical points. In
fact, from the condition (A), we know that the potential a(x) may have only one critical
point and every critical point of a(x) may be degenerate.
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In a similar way, we obtain existence of multi-bump positive solutions of the equation

−4u + u = (1− εa(x))|u|p−2u, u ∈ H1(RN), (7)

where N ≥ 1, 2 < p < 2∗, 2∗ = 2N
N−2 is the critical Sobolev exponent if N ≥ 3 and

2∗ = ∞ if N = 1 or N = 2, and ε > 0 is a parameter.
We now formulate the assumptions on a.

(A) a ∈ C(RN), a(x) > 0 for x ∈ RN , lim|x|→∞ a(x) = 0, and there exist c > 0 and
σ > 0 such that a(x) ≥ ce−σ|x|.

(B) a ∈ C(RN), a(x) > 0 for x ∈ RN , lim|x|→∞ a(x) = 0, and for any σ > 0 there
exists c > 0 such that a(x) ≥ ce−σ|x|.
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Theorem 2. Let a satisfy (A). If n ∈ N satisfies

n < 1 +
p− 2

2σ(p− 1)
,

then there exists ε(n) > 0 such that for 0 < ε < ε(n), (7) has an n-bump positive
solution.

As a consequence of Theorem 2, we have the following result.

Corollary 3. Let a satisfy (B). Then for any n ∈ N, there exists ε(n) > 0 such that for
0 < ε < ε(n), (7) has an n-bump positive solution. Therefore, as ε → 0, (7) has more
and more multi-bump positive solutions.
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As a problem closely related to (7), we also consider the prescribed scalar curvature
equation

−4u = (1− εK(|x|))u
N+2
N−2 , u ∈ D1,2(RN), (8)

where N ≥ 3, ε > 0 is a parameter, and K satisfies the following assumptions.

(C) K ∈ C([0,∞)), K(r) > 0 for r > 0, limr→0K(r) = 0, limr→∞K(r) = 0, and there
exist c > 0 and µ > 0 such that K(r) ≥ crµ for r > 0 small and K(r) ≥ cr−µ for r
large.

(D) K ∈ C([0,∞)), K(r) > 0 for r > 0, limr→0K(r) = 0, limr→∞K(r) = 0, and for
any µ > 0 there exists c > 0 such thatK(r) ≥ crµ for r > 0 small andK(r) ≥ cr−µ

for r large.
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Theorem 4. Let K satisfy (C). If n ∈ N satisfies

n < 1 +
N − 2

µ(N + 2)
,

then there exists ε(n) > 0 such that for 0 < ε < ε(n), (8) has an n-tower positive
solution.

Here, by an n-tower positive solution of (8) we mean a radial solution which is suffi-
ciently close to

∑n
i=1Uλi

in the D1,2(RN) norm

‖u‖ =

(∫
RN

|∇u|2
)1

2

,

where λi > 0 (i = 1, 2, · · · , n) are such that λi
λj

+
λj

λi
are large enough for all i 6= j and

Uλ(x) =
λ

N−2
2 [N(N − 2)]

N−2
4

(1 + λ2|x|2)N−2
2

.

As a consequence of Theorem 4, we have the following result.

Corollary 5. Let K satisfy (D). Then for any n ∈ N, there exists ε(n) > 0 such that for
0 < ε < ε(n), (8) has an n-tower positive solution. Therefore, as ε → 0, (4) has more
and more multi-tower positive solutions.
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Note that the assumptions (B) and (D) can be satisfied by quite general functions. For
example, for any α > 0, c1 > 0, c2 > 0, functions of the form

a(x) =
c1

c2 + |x|α

satisfy the assumption (B), and functions of the form

K(r) =


c1

c2 + | ln r|α
, r > 0

0, r = 0

satisfy the assumption (D).



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Equations of the type of (8) arise in the scaler curvature problem in differential geome-
try. If (M, g0) is a Riemannian manifold of dimension N ≥ 3, with scaler curvature S0,
then to find a conformal metric g1 = u

4
N−2g0 having scaler curvature S1 is equivalent to

find a solution u to the equation

−4
N − 1

N − 2
∆g0u + S0u = S1u

N+2
N−2 . (9)

Up to a positive constant, if (M, g0) is the standard sphere then the stereographic pro-
jection π : SN → RN converts (9) into

−∆u = Su
N+2
N−2 , x ∈ RN , (10)

where S(x) = S1(π
−1(x)), and if (M, g0) is the standard RN then (9) is just (10). If

S(x) is a perturbation of 1 and has the form S(x) = 1− εK(|x|) and if we require u to
be in D1,2(RN) then (10) becomes (8).
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2 Proof of Theorem 2

We begin with introducing some notations. In the Hilbert space H1(RN), we shall use
the usual inner product

〈u, v〉 =

∫
RN

∇u · ∇v + uv

and the induced norm ‖ · ‖. Let | · |p be the usual norm of Lp(RN). We shall use C
and Ci to represent positive constants which may be variant even in the same line. Let
n ∈ N. We shall use

∑
i<j and

∑
i 6=j to represent summation over all subscripts i and j

satisfying 1 ≤ i < j ≤ n and 1 ≤ i 6= j ≤ n, respectively.
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Recall that, for 2 < p < 2∗, the equation

−4u + u = |u|p−2u, u ∈ H1(RN) (11)

has a unique positive radial solution w ∈ C∞(RN) which satisfies, for some c > 0,

w(r)r
N−1

2 er → c > 0, w′(r)r
N−1

2 er → −c, as r = |x| → ∞,

and each positive solution of (11) has the form wy := w(· − y) for some y ∈ RN . We
shall use wy as building blocks to construct multi-bump solutions of (1). For yi, yj ∈
RN , the identity ∫

RN
wp−1
yi

wyj = 〈wyi, wyj〉 =

∫
RN
wyiw

p−1
yj

will be frequently used in the sequel.
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The following lemma is a consequence of Bahri and P.L. Lions.

Lemma 6. There exists a positive constant c > 0 such that as |yi − yj| → ∞,∫
RN
wp−1
yi

wyj ∼ c|yi − yj|−
(N−1)

2 e−|yi−yj |.
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For λ > 0, define

Ωλ = {(y1, · · · , yn) ∈ (RN)n | |yi − yj| > λ for i 6= j}

if n ≥ 2 and Ωλ = RN if n = 1. For y = (y1, · · · , yn) ∈ Ωλ, denote

uy(x) =

n∑
i=1

wyi, M = {uy| y ∈ Ωλ},

Ty = span
{
∂wyi
∂xα

| α = 1, 2, · · · , N, i = 1, 2, · · · , n
}
,

and
Wy = {v ∈ H1(RN) | 〈v, v1〉 = 0, ∀v1 ∈ Ty}.
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Two orthogonal projections:

Py : H1(RN) → Ty, Qy : H1(RN) → Wy.

Solutions of (7) correspond to critical points of the functional

Jε(u) =
1

2

∫
RN

(|∇u|2 + |u|2)− 1

p

∫
RN
Pε|u|p, u ∈ H1(RN),

where Pε(x) = 1− εK(x). The equation ∇Jε(u) = 0 is equivalent to

Py∇Jε(u) = 0, Qy∇Jε(u) = 0.
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Set K = (p− 1)(−4 + 1)−1. For y ∈ Ωλ and ϕ ∈ H1(RN), define

Ayϕ = ϕ−
n∑
j=1

K(wp−2
yj

ϕ) + Lyϕ,

where

Lyϕ =
∑
i 6=j

N∑
α=1

〈
K(wp−2

yj
ϕ),

∂wyi
∂xα

〉∥∥∥∥∂wyi∂xα

∥∥∥∥−2 ∂wyi
∂xα

.

Note that Ay(Wy) ⊂ Wy for any y ∈ Ωλ.

Lemma 7. There exist λ0 > 0 and η0 > 0 such that for λ > λ0 and y ∈ Ωλ, Ay|Wy :

Wy → Wy is invertible and
‖(Ay|Wy)

−1‖ ≤ η0.

Lemma 8. Let v ∈ H1(RN). If ε→ 0, v → 0, and λ→∞, then

sup
y∈Ωλ, ϕ∈H1(RN ), ‖ϕ‖=1

‖Ayϕ−
(
ϕ−K

(
Pε|uy + v|p−2ϕ

))
‖ → 0.
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Lemma 9. There exist ε0 > 0 and Λ0 > 0 such that for 0 < ε < ε0 and λ > Λ0, there
exists a C1 map

vλ,ε : Ωλ → H1(RN),

depending on λ and ε, such that

(a) for any y ∈ Ωλ, vλ,ε,y ∈ Wy;

(b) for any y ∈ Ωλ, Qy∇Jε(uy + vλ,ε,y) = 0, where Qy : H1(RN) → Wy is the orthogo-
nal projection onto Wy;

(c) limλ→∞, ε→0 ‖vλ,ε,y‖ = 0 uniformly in y ∈ Ωλ; lim|y|→∞ ‖vλ,ε,y‖ = 0 uniformly in
ε ∈ (0, ε0) if n = 1.

Lemma 10. For 0 < ε < ε0 and λ > Λ0 , if y0 = (y0
1, · · · , y0

n) ∈ Ωλ is a critical point
of Jε(uy + vλ,ε,y), then uy0 + vλ,ε,y0 is a critical point of Jε.
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To prove Theorem 2, we need first to estimate Jε(uy + vλ,ε,y). Denote

c0 :=
1

2
‖w‖2 − 1

p
|w|pp.

Then

Jε(uy + vλ,ε,y) =
1

2
‖uy + vλ,ε,y‖2 − 1

p

∫
RN

(1− εa)|uy + vλ,ε,y|p

=nc0 −
1

p
|uy|pp +

n

p
|w|pp +

∑
i<j

∫
RN
wp−1
yi

wyj +
ε

p

∫
RN
aupy

+O


∑

i<j

∫
RN
wp−1
yi

wyj


2(p−1)

p

 +O

(
ε2
∫

RN
aupy

)

+O(‖vλ,ε,y‖2).
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Lemma 11.

‖vλ,ε,y‖ = O


∑

i<j

∫
RN
wp−1
yi

wyj


p−1
p

 +O

(
ε

(∫
RN
aupy

)p−1
p

)
.

Lemma 12.

Jε(uy + vλ,ε,y) =nc0 −
1

p
|uy|pp +

n

p
|w|pp +

∑
i<j

∫
RN
wp−1
yi

wyj +
ε

p

∫
RN
aupy

+O


∑

i<j

∫
RN
wp−1
yi

wyj


2(p−1)

p

 +O

(
ε2
∫

RN
aupy

)
.
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We are now ready to prove Theorem 2. Let n ∈ N and we first consider the case n ≥ 2.
Define

d = sup
y∈(RN )n

1

p

∫
RN
aupy. (12)

Then for any ε satisfying

0 < ε < ε1 := min

{
ε0,

p− 2

3pd
|w|pp

}
there exist µ∗ = µ∗(ε) > µ = µ(ε) > Λ0 such that, for z ∈ RN with |z| ∈ [µ(ε), µ∗(ε)],

3pdε

p− 2
≤
∫

RN
wp−1wz ≤

4pdε

p− 2
. (13)

We shall prove that, for ε > 0 sufficiently small, Jε(uy + vµ,ε,y) achieves its maximum
at some point in Ωµ(ε), which produces an n-bump positive solution of (7). Define

Mε := sup{Jε(uy + vµ,ε,y) | y ∈ Ωµ(ε)}.

Lemma 13. Assume n ≥ 2. Then there exists ε2 ∈ (0, ε1) such that for 0 < ε < ε2,

Mε > sup{Jε(uy + vµ,ε,y) | y ∈ Ωµ(ε) and |yi − yj| ∈ [µ(ε), µ∗(ε)] for some i 6= j}.
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Proof. For ε > 0 small enough, if y = (y1, · · · , yn) ∈ Ωµ(ε) and |yi − yj| ∈ [µ(ε), µ∗(ε)]

for some i 6= j, then by Lemma 12, (12), and (13), we obtain

Jε(uy + vµ,ε,y) ≤nc0 −
p− 2

p

∑
i<j

∫
RN
wp−1
yi

wyj +
ε

p

∫
RN
aupy

+ C

∑
i<j

∫
RN
wp−1
yi

wyj


2(p−1)

p

+ Cε2

≤nc0 − 3dε + dε + Cε
2(p−1)

p ≤ nc0 − dε. (14)
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On the other hand, for ε small enough such that the fifth and the seventh terms on the
right side of the equality from Lemma 12 satisfy

ε

p

∫
RN
aupy +O

(
ε2
∫

RN
aupy

)
> 0,

we have

lim inf
y∈Ωµ(ε), |yi−yj |→+∞ for all i 6=j

Jε(uy + vµ,ε,y) ≥ nc0. (15)

From (14) and (15), we obtain the result.
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For any 0 < ε < ε2, let yk(ε) = (yk1(ε), · · · , ykn(ε)) ∈ Ωµ(ε), k = 1, 2, · · · , be a maximiz-
ing sequence for Jε(uy + vµ,ε,y). Then Lemma 13 implies that

inf
k

min
i 6=j

|yki (ε)− ykj (ε)| ≥ µ∗.

Therefore, for any 0 < ε < ε2 and 1 ≤ i ≤ n, passing to a subsequence if necessary,
we may assume either limk→∞ y

k
i (ε) = y0

i (ε) ∈ RN with |y0
i (ε) − y0

j (ε)| ≥ µ∗ for i 6= j

or limk→∞ |yki (ε)| = ∞. Define, for 0 < ε < ε2,

Π(ε) = {1 ≤ i ≤ n | |yki (ε)| → ∞, as k →∞}.

We shall prove that Π(ε) = ∅ for ε > 0 sufficiently small and thus Jε(uy+vµ,ε,y) achieves
its maximum at (y0

1(ε), · · · , y0
n(ε)) in Ωµ(ε).

Lemma 14. Assume n ≥ 2. Then there exists ε(n) ∈ (0, ε2) such that for ε ∈ (0, ε(n)),
Π(ε) = ∅.
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Proof. We argue by contradiction and assume that Π(ε) 6= ∅ along a sequence εm → 0.
Without loss of generality, we may assume Π(εm) = {1, · · · , jn} for all m ∈ N and
for some 1 ≤ jn < n. The case in which jn = n can be handled similarly. For
convenience of notations, we shall denote ε = εm, yki = yki (εm), yk = (yk1 , · · · , ykn) and
yk∗ = (ykjn+1, · · · , ykn) for k = 1, 2, · · · . Then, as k →∞,

|yk1 | → ∞, · · · , |ykjn| → ∞,

and
yk∗ → y0

∗ := (y0
jn+1, · · · , y0

n).
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In view of Lemma 12 and (13), we see that

Jε(uyk + vµ,ε,yk) =nc0 −
1

p
|uyk|pp +

n

p
|w|pp +

∑
i<j

∫
RN
wp−1

yk
i
wyk

j
+
ε

p

∫
RN
aup

yk

+O

(
ε

2(p−1)
p

)
,

and

Jε(uyk∗
+ vµ,ε,yk∗

) =(n− jn)c0 −
1

p
|uyk∗

|pp +
n− jn
p

|w|pp +
∑

jn+1≤i<j≤n

∫
RN
wp−1

yk
i
wyk

j

+
ε

p

∫
RN
aup

yk∗
+O

(
ε

2(p−1)
p

)
.
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Therefore,

Jε(uyk+vµ,ε,yk)− Jε(uyk∗
+ vµ,ε,yk∗

)

=jnc0 −
1

p
|uyk|pp +

1

p
|uyk∗

|pp +
jn
p
|w|pp +

∑
i<j

∫
RN
wp−1

yk
i
wyk

j

−
∑

jn+1≤i<j≤n

∫
RN
wp−1

yk
i
wyk

j
+
ε

p

∫
RN
a(up

yk − up
yk∗

) +O

(
ε

2(p−1)
p

)
, (16)

which implies

Jε(uyk + vµ,ε,yk)− Jε(uyk∗
+ vµ,ε,yk∗

) ≤ jnc0 +
ε

p

∫
RN
a(up

yk − up
yk∗

) + Cε
2(p−1)

p .

Letting k →∞, in view of |yki | → ∞ for i = 1, · · · , jn, we see that

Mε ≤ Jε(uy0∗
+ vµ,ε,y0∗

) + jnc0 + Cε
2(p−1)

p . (17)
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On the other hand, since, according to the assumption,

n < 1 +
p− 2

2σ(p− 1)
,

we can choose δ such that

0 < δ <
p− 2− 2σ(n− 1)(p− 1)

2(1 + σ(n− 1))(p− 1)
. (18)

By Lemma 6 and (13), there exist Ci > 0, i = 1, 2, such that µ = µ(ε) satisfies

C1ε ≤ µ−
N−1

2 e−µ ≤ C2ε,

which implies for ε small enough

(1− δ) ln
1

ε
< µ < (1 + δ) ln

1

ε
. (19)
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Define

yεs = ((4s− 2n− 2)(1− p−1)µ, 0, · · · , 0) ∈ RN , s = 1, 2, · · · , n.

The open balls B(yεs, 2(1 − p−1)µ) (s = 1, 2, · · · , n) are mutually disjoint. Thus there
are jn integers from {1, 2, · · · , n}, denoted by s1 < s2 < · · · < sjn, such that

|yεsi − y0
j | ≥ 2(1− p−1)µ, i = 1, · · · , jn, j = jn + 1, · · · , n.

Denote yεsi by yεi , i = 1, 2, · · · , jn. Then, clearly,

|yεi | ≤ 2(n− 1)(1− p−1)µ, i = 1, · · · , jn, (20)

|yεi − yεj| ≥ 2(1− p−1)µ, 1 ≤ i < j ≤ jn, (21)

and
|yεi − y0

j | ≥ 2(1− p−1)µ, i = 1, · · · , jn, j = jn + 1, · · · , n. (22)

Therefore,
(yε1, · · · , yεjn, y

0
jn+1, · · · , y0

n) ∈ Ωµ.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Denote yε = (yε1, · · · , yεjn, y
0
jn+1, · · · , y0

n). We see that

Jε(uyε + vµ,ε,yε)− Jε(uy0∗
+ vµ,ε,y0∗

) ≥ jnc0 +
ε

p

∫
RN
a(upyε − up

y0∗
)− Cε

2(p−1)
p (1−δ).

Now, the assumption (A) together with (19) and (20) yields

ε

p

∫
RN
a(upyε − up

y0∗
) ≥ ε

p

∫
RN
awp

yε
1
≥ ε

p

∫
|x−yε

1|≤1

awp
yε
1

≥Cεe−σ(|yε
1|+1) ≥ Cεe−2σ(n−1)(1−p−1)(1+δ) ln 1

ε = Cε1+2σ(n−1)(1−p−1)(1+δ).

Since (18) implies

1 + 2σ(n− 1)(1− p−1)(1 + δ) <
2(p− 1)

p
(1− δ),

we then arrive at, for ε small enough,

Mε ≥ Jε(uy0∗
+ vµ,ε,y0∗

) + jnc0 + Cε1+2σ(n−1)(1−p−1)(1+δ). (23)

But (23) contradicts (17). Thus there exists ε(n) > 0 such that if 0 < ε < ε(n) then
Π(ε) = ∅ and Jε(uy + vµ,ε,y) achieves its maximum at some point (y0

1, · · · , y0
n) ∈ Ωµ(ε).
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Proof of Theorem 2. Combining the last two lemmas above gives the result.
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3 Proof of Theorem 4
Now, we turn to consider equation (8)

−4u = (1− εK(|x|))u
N+2
N−2 , u ∈ D1,2(RN).

In order to obtain results on radial solutions for equation (8), we make the follow-
ing transformation (see, [Catrina-Wang, CPAM, 2001] and, [Korevaar-Mazzeo-Pacard-
Schoen, InventMath, 1999])

u(x) = |x|−
N−2

2 w(− ln |x|), x ∈ RN . (24)

Let y = − ln |x|. Then u is a radial solution of (8) if and only if w is a solution of the
equation

−w′′(y) +
(N − 2)2

4
w(y) = (1− εK(e−y))(w(y))

N+2
N−2 , y ∈ R.
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Through the dilations

v(y) =

(
2

N − 2

)N−2
2

w

(
2

N − 2
y

)
, a(y) = K(e−

2
N−2y), (25)

the last equation becomes

−v′′(y) + v(y) = (1− εa(y))(v(y))
N+2
N−2 , y ∈ R. (26)

Proof of Theorem 4. It follows from Theorem 2.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Our approach also applies to the equations

−4u = (1− εK(|x|))|x|
(N−2)q−(N+2)

2 uq, x ∈ RN \ {0}, (27)

and
−4u + εV (|x|)u = |x|

(N−2)q−(N+2)
2 uq, x ∈ RN \ {0}, (28)

where N ≥ 3 and q > 1.
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Thank you�
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