Variational problems with linear growth in dimension 1

Meiyue Jiang
School of Mathematical Sciences Peking University
Beijing, 100871, China

International Conference on Variational Methods
Chern Institute, Nankai University
Dedicated to Professor Paul H. Rabinowitz

May 18, 2009

1. Introduction

Let $\Omega \subset \mathbf{R}^{n}$ be a bounded domain $L: \Omega \times$ $\mathbf{R} \times \mathbf{R}^{n} \rightarrow \mathbf{R}$, and let $L(x, u, p)$ be C^{1} in (u, p), convex in p and satisfying

$$
\begin{equation*}
\left|L_{p}(x, u, p)\right| \leq C(1+|p|) \tag{L1}
\end{equation*}
$$

We consider the critical points of the functional

$$
u \rightarrow I(u):=\int_{\Omega} L(x, u, \nabla u) d x
$$

for 1-dimensional Ω.
Example 1: Let $F(x, u): \Omega \times \mathbf{R} \rightarrow \mathbf{R}$ and $L(x, u, p)=\sqrt{1+|p|^{2}}-F(x, u)$. The EulerLagrange equation of $I(u)$

$$
\begin{align*}
-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right) & =f(x, u), \quad x \in \Omega, \tag{1}\\
u & =\phi, \quad x \in \partial \Omega
\end{align*}
$$

where $F(x, u)=\int_{0}^{u} f(x, s) d s$. (1) and its parabolic version have been extensively studied.

In geometry, the left hand side of (1) is the mean curvature of the graph

$$
\Sigma=\left\{(x, u(x)) \in \mathbf{R}^{n+1} \mid x \in \Omega\right\} .
$$

(1) Minimal surface: $f(x, u)=0$.
(2) Prescribed mean curvature: $f(x, u)=H(x)$.

Example 2: Let $L(x, u, p)=|p|-F(x, u)$, then the Euler-Lagrange equation of $I(u)$ is the following 1-Laplacian equation

$$
\begin{align*}
-\operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right) & =f(x, u), \quad x \in \Omega, \tag{2}\\
u & =\phi \quad x \in \partial \Omega .
\end{align*}
$$

The meaning of the solutions of (1) and (2) will be specified later.

Due to the condition (L1), the functional

$$
I(u)=\int_{\Omega} L(x, u, \nabla u) d x
$$

is well defined and C^{1} in the Sobolev space $W^{1,1}(\Omega)$ if some growth conditions are satisfied. However, it is well known that the functional I may not have critical points in this space.

One considers the solutions in BV space:

$$
B V(\Omega)=\left\{u \in L^{1}(\Omega)\|D u\|<\infty\right\}
$$

with the norm $\|u\|=\|u\|_{1}+\|D u\|$, where

$$
\begin{aligned}
& \|D u\|=\sup \left\{\int_{\Omega} u \cdot \operatorname{div\phi dx|\phi \in C_{0}^{1}(\Omega ,\mathbf {R}^{n}),}\right. \\
& |\phi(x)| \leq 1 \forall x \in \Omega\}:=\int_{\Omega}|D u| d x .
\end{aligned}
$$

For $u \in B V(\Omega)$, the trace $\left.u\right|_{\partial \Omega}$ can be defined. For the 1-Laplacian equation (2), taking the boundary value into account, one uses the functional
$I(u)=\int_{\Omega}|D u| d x+\int_{\partial \Omega}|u-\phi| d x-\int_{\Omega} F(x, u) d x$.

For the mean curvature equation (1) we need

$$
\begin{aligned}
& \int_{\Omega} \sqrt{1+|D u|^{2}} d x \\
:= & \sup \left\{\int_{\Omega}\left(\phi_{0}+u \cdot \operatorname{div} \phi_{1}\right) d x\right. \\
& \mid\left(\phi_{0}, \phi_{1}\right) \in C_{0}^{1}\left(\Omega, \mathbf{R}^{1+n}\right), \\
& \left.\left|\phi_{0}(x)\right|^{2}+\left|\phi_{1}(x)\right|^{2} \leq 1 \forall x \in \Omega\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
I(u) & =\int_{\Omega} \sqrt{1+|D u|^{2}} d x+\int_{\partial \Omega}|u-\phi| d x-\int_{\Omega} F(x, u) d x \\
& =I_{0}(u)-\int_{\Omega} F(x, u) d x .
\end{aligned}
$$

Definition 1. $u \in B V(\Omega)$ is called a solution of

$$
\begin{align*}
-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right) & =f(x, u), \quad x \in \Omega, \tag{3}\\
u & =\phi, \quad x \in \partial \Omega
\end{align*}
$$

if for $\forall v \in B V(\Omega)$,

$$
\begin{equation*}
I_{0}(v)-I_{0}(u) \geq \int_{\Omega} f(x, u)(v-u) d x \tag{4}
\end{equation*}
$$

Such a function is also called a critical point of the functional $I . u \in B V(\Omega)$ is called a solution of

$$
\begin{align*}
-\operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right) & =f(x, u), \quad x \in \Omega, \tag{5}\\
u & =\phi \quad x \in \partial \Omega
\end{align*}
$$

if for $\forall v \in B V(\Omega)$,

$$
\begin{align*}
& \int_{\Omega}(|D v|-|D u|) d x+\int_{\partial \Omega}(|v-\phi|-|u-\phi|) d x \\
\geq & \int_{\Omega} f(x, u)(v-u) d x . \tag{6}
\end{align*}
$$

Main Difficulties of Existence of Solutions:

(1) the functional I is not differentiable on $B V(\Omega)$;
(2) the working space $B V(\Omega)$ is not reflexive and its dual has not been completely understood. This makes the verification of P.S. condition very difficult.

Applying a non-smooth version of symmetric mountain pass theorem to the functional

$$
\tilde{I}(u)= \begin{cases}I(u), & u \in B V(\Omega) \\ +\infty, & u \in L^{p}(\Omega) \backslash B V(\Omega)\end{cases}
$$

the following theorem is proved:

Theorem 2. (M. Marzocchi) Let $f: \bar{\Omega} \times \mathbf{R} \rightarrow \mathbf{R}$ be a continuous function satisfying:
(1) $\exists \theta>1$ and $R>0$ such that

$$
\begin{equation*}
f(x, u) u \geq \theta F(x, u)>0, \quad|u| \geq R ; \tag{f1}
\end{equation*}
$$

(2) $\exists p<\frac{n}{n-1}$ such that

$$
|f(x, u)| \leq C\left(1+|u|^{p}\right), p<\frac{n}{n-1} \quad u \in \mathbf{R} \quad(f 2)
$$

and

$$
\begin{equation*}
f(x,-u)=-f(x, u), \quad x \in \Omega, u \in \mathbf{R} \tag{fa}
\end{equation*}
$$

then the equation

$$
\begin{align*}
-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right) & =f(x, u), \quad x \in \Omega, \tag{7}\\
u & =0, \quad x \in \partial \Omega
\end{align*}
$$

has a sequence of solutions $\left\{u_{j}\right\} \subset B V(\Omega)$ such that $I\left(u_{j}\right) \rightarrow+\infty$ as $j \rightarrow \infty$.

This result generalizes the well known theorem of Ambrosetti-Rabinowitz:
(1) $\exists \theta>2$ and $R>0$ such that

$$
\begin{equation*}
f(x, u) u \geq \theta F(x, u)>0, \quad|u| \geq R ; \tag{f1}
\end{equation*}
$$

(2) $\exists p<\frac{n+2}{n-2}$ such that

$$
\begin{equation*}
|f(x, u)| \leq C\left(1+|u|^{p}\right), \quad u \in \mathbf{R} \tag{f2}
\end{equation*}
$$

and

$$
\begin{equation*}
f(x,-u)=-f(x, u), \quad x \in \Omega, u \in \mathbf{R} \tag{f3}
\end{equation*}
$$

then the equation

$$
\begin{align*}
-\triangle u & =f(x, u), \quad x \in \Omega, \\
u & =0 \quad x \in \partial \Omega . \tag{8}
\end{align*}
$$

has a sequence of solutions $\left\{u_{j}\right\}$ such that $\left\|u_{j}\right\|_{\infty} \rightarrow+\infty$ as $j \rightarrow \infty$. The symmetric assumption (f3) is crucial.

Results without symmetry:
Rabinowitz, Bahri-Berestyski, Bahri-Lions et al, 1980s,

$$
F(x, u)=|u|^{p+1}+\text { l.o.t },
$$

$p \leq(<) p^{*}=\frac{n+2}{n-2}$, (8) has infinitely many solutions;

Bahri-Berestyski, Long et al, 1980s-1990s,

$$
V(x, u)=V_{0}(u)+\text { l.o.t }
$$

or

$$
V(x, u)=V_{0}(x, u)+\text { l.o.t. }
$$

with $V_{0}(x,-u)=V(x, u), x \in S^{1}, u \in \mathbf{R}^{n}$ satisfying $\exists \theta>2$ and $R>0$ such that

$$
\begin{equation*}
V_{0 u}(x, u) u \geq \theta V_{0}(x, u)>0, \quad|u| \geq R ; \tag{V1}
\end{equation*}
$$

then

$$
-u^{\prime \prime}=V_{u}(x, u)
$$

has infinitely many 2π-periodic solutions.

2. 1-Dimensional Problem

We start with periodic solutions of

$$
\begin{equation*}
-u^{\prime \prime}=f(x, u), u \in \mathbf{R} . \tag{9}
\end{equation*}
$$

Suppose f is continuous and 2π-periodic in x. Theorem 3. (Nehari 1961, Jacobowitz, 1976, Hartman, 1977, W.Y. Ding, 1982, ...) If f satisfies

$$
\begin{equation*}
\lim _{|u| \rightarrow \infty} \frac{f(x, u)}{u}=+\infty \tag{f4}
\end{equation*}
$$

and the initial problem of (9) is uniquely and globally solvable, then (9) has an unbounded sequence of 2π-periodic solutions.

The same conclusion holds for the Dirichlet and Neumann boundary conditions as well as the following p-Laplacian equation:

$$
\begin{equation*}
-\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}=f(x, u), \quad p>1 \tag{10}
\end{equation*}
$$

if f satisfies the 'superlinear' condition

$$
\begin{equation*}
\lim _{|u| \rightarrow \infty} \frac{f(x, u)}{|u|^{p-2} u}=+\infty \tag{f4}
\end{equation*}
$$

The main feature of this result is that f may not be odd in u.

Two Approaches for (9):
(i) Fixed points approach: Using the PoincaréBirkhoff fixed point theorem. The fixed points of the Poincaré map correspond to 2π-periodic solutions.
(ii) Variational approach: Find the critical points of the functional

$$
I(u)=\frac{1}{2} \int_{0}^{2 \pi} \dot{u}^{2} d t-\int_{0}^{2 \pi} F(x, u) d t .
$$

In this talk we will show how to generalize Theorem 3 to the equations

$$
\begin{equation*}
-\left(\frac{u^{\prime}}{\sqrt{1+u^{\prime 2}}}\right)^{\prime}=f(x, u) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
-\left(\frac{u^{\prime}}{\left|u^{\prime}\right|}\right)^{\prime}=f(x, u) \tag{12}
\end{equation*}
$$

on $B V$ space by variational method.

For the equations (11) and (12), the Poincaré map is not well defined and the associated functional is not differentiable (or Lipschitz) on BV space. There may be no continuous solution.

For simplicity we consider the periodic boundtry condition in $B V\left(S^{1}\right)$: $u \in B V\left(S^{1}\right)$ if

$$
\begin{gathered}
\int_{0}^{2 \pi}|D u| d x=\|D u\| \\
=\sup \left\{\int_{S^{1}} u \phi^{\prime} d x\left|\phi \in C^{1}\left(S^{1}\right),|\phi(x)| \leq 1 \forall x \in S^{1}\right\}<\infty,\right. \\
\|u\|=\|u\|_{1}+\|D u\|
\end{gathered}
$$

and

$$
\begin{aligned}
& \int_{S^{1}} \sqrt{1+|D u|^{2}} d x:=\sup \left\{\int_{S^{1}}\left(\phi_{0}+u \cdot \phi_{1}^{\prime}\right) d x\right. \\
& \left|\phi_{0}, \phi_{1} \in C^{1}\left(S^{1}\right),\left|\phi_{0}(x)\right|^{2}+\left|\phi_{1}(x)\right|^{2} \leq 1 \forall x \in S^{1}\right\}
\end{aligned}
$$

A function $u \in B V\left(S^{1}\right)$ is called a 2π-periodic solution of (11) if

$$
\begin{align*}
& \int_{0}^{2 \pi} \sqrt{1+|D v|^{2}} d x-\int_{0}^{2 \pi} \sqrt{1+|D u|^{2}} d x \tag{13}\\
\geq & \int_{0}^{2 \pi} f(x, u)(v-u) d x, \quad \forall v \in B V\left(S^{1}\right) .
\end{align*}
$$

$u \in B V\left(S^{1}\right)$ is called a 2π-periodic solution of (12) if

$$
\begin{align*}
& \int_{0}^{2 \pi}|D v| d x-\int_{0}^{2 \pi}|D u| d x \\
\geq & \int_{0}^{2 \pi} f(x, u)(v-u) d x, \quad \forall v \in B V\left(S^{1}\right) . \tag{14}
\end{align*}
$$

Theorem 4. Let $F(x, u)=\int_{0}^{u} f(x, s) d s$ be a C^{1} function, 2π-periodic in x such that
(1) f is 'superlinear',

$$
\begin{equation*}
\operatorname{sgn}(u) f(x, u) \rightarrow+\infty \quad \text { as }|u| \rightarrow+\infty ; \tag{f4}
\end{equation*}
$$

(2) there exists a constant $C>0$ such that

$$
\left|\frac{\partial F(x, u)}{\partial x}\right| \leq C(1+|F(x, u)|),(x, u) \in S^{1} \times \mathbf{R} .
$$

(fy)
Then there is a positive integer k_{0} such that for $k \geq k_{0}$, the equation (11) has a 2π-periodic solution $u_{k} \in B V\left(S^{1}\right)$ satisfying
(1) u_{k} is C^{2}, satisfies (11) on $S^{1} \backslash\left\{x_{1}, x_{2}, \cdots, x_{2 k}\right\}$ and $\forall v \in C^{1}\left(S^{1}\right)$,

$$
\int_{0}^{2 \pi} \frac{u^{\prime}}{\sqrt{1+u^{\prime 2}}} v^{\prime} d x=\int_{0}^{2 \pi} f(x, u) v d x
$$

(2) for each x_{i}, the follwoings hold:

$$
\begin{align*}
& \lim _{x \rightarrow x_{2 i-1}-0} u_{k}(x)>0>\lim _{x \rightarrow x_{2 i-1}+0} u_{k}(x), \\
& \lim _{x \rightarrow x_{2 i-1} \pm 0} u_{k}^{\prime}(x)=-\infty, \tag{15}\\
& \lim _{s \rightarrow x_{2 i}-0} u_{k}(x)<0<\lim _{x \rightarrow x_{2 i}+0} u_{k}(x), \tag{16}\\
& \lim _{x \rightarrow x_{2 i} \pm 0} u_{k}^{\prime}(x)=+\infty,
\end{align*}
$$

$\lim _{x \rightarrow x_{i}-0} F\left(x, u_{k}(x)\right)=\lim _{x \rightarrow x_{i}+0} F\left(x, u_{k}(x)\right)$; (17)
(3)

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \inf _{x \in S^{1}}\left|u_{k}(x)\right|=+\infty ; \tag{18}
\end{equation*}
$$

(4) If the function f satisfies

$$
f(x, u) u-F(x, u) \rightarrow+\infty \quad \text { as } \quad|u| \rightarrow \infty,(f 6)
$$

then

$$
\begin{equation*}
I\left(u_{k}\right) \rightarrow \infty \quad \text { as } \quad k \rightarrow \infty . \tag{19}
\end{equation*}
$$

Theorem 5. With the same assumptions as that of Theorem 4, the same conclusion holds for

$$
\begin{equation*}
-\left(\frac{u^{\prime}}{\left|u^{\prime}\right|}\right)^{\prime}=f(x, u) . \tag{20}
\end{equation*}
$$

Remarks: 1. Marzocchi's theorem (Theorem 2) can be applied to (11) and (12) if $f(x,-u)=-f(x, u), u \in \mathbf{R}$.
2. The solutions u_{k} in Theorems 4-5 are not continuous, but in $B V\left(S^{1}\right)$. The existence of classical and non-classical solutions has been studied by many authors and various methods. Based on the phase analysis and bifurcation method, detail analysis of the numbers of solutions (11) depending on a parameter λ is given for $f=\lambda u^{p}$ and $f=\lambda e^{u}$ by Omari, Pan, respectively.

3. A Class of BV Solutions

Let $f: S^{1} \times \mathbf{R} \rightarrow \mathbf{R}$ be continuous and 2π periodic in x.
Proposition 6. Let $u: S^{1} \rightarrow \mathbf{R}$ be a function such that
(1) u is C^{2} and satisfies the equation

$$
\begin{equation*}
-\left(\frac{u^{\prime}}{\sqrt{1+u^{\prime 2}}}\right)^{\prime}=f(x, u) \tag{21}
\end{equation*}
$$

outside a finite set $\left\{x_{1}, x_{2}, \cdots, x_{k}\right\} \subset S^{1}$;
(2) for $x \in\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$, the limits $\lim _{s \rightarrow x \pm 0} u(s)$ exist and u satisfies:
$\lim _{s \rightarrow x \pm 0} u^{\prime}(s)=+\infty$ if $\lim _{s \rightarrow x-0} u(s) \leq \lim _{s \rightarrow x+0} u(s)$
(22)
and

$$
\begin{equation*}
\lim _{s \rightarrow x \pm 0} u^{\prime}(s)=-\infty \text { if } \lim _{s \rightarrow x-0} u(s) \geq \lim _{s \rightarrow x+0} u(s) . \tag{23}
\end{equation*}
$$

Then $u \in B V\left(S^{1}\right)$ and satisfies

$$
\begin{align*}
& \quad \int_{0}^{2 \pi} \frac{u^{\prime}}{\sqrt{1+u^{\prime 2}}} v^{\prime} d x=\int_{0}^{2 \pi} f(x, u) v d x, \tag{24}\\
& \text { for } \forall v \in C^{1}\left(S^{1}\right), \text { and } \\
& \qquad \int_{0}^{2 \pi} \sqrt{1+|D v|^{2}} d x-\int_{0}^{2 \pi} \sqrt{1+|D u|^{2}} d x \tag{25}\\
& \geq \int_{\Omega} f(x, u)(v-u) d x .
\end{align*}
$$

Hence u is a solution of (21) in the sense of Definition 1.

The following is the counterpart of Proposition 6 for 1-Laplacian equation.

Proposition 7. Let $\left\{x_{1}, x_{2}, \cdots, x_{k}\right\} \subset S^{1}$ and $x_{1}<x_{2}<\cdots, x_{k} \leq 2 \pi$ and $\left\{u_{1}, u_{2}, \cdots, u_{k}\right\} \subset \mathbf{R}$ satisfying

$$
\begin{equation*}
\left(u_{i}-u_{i-1}\right)\left(u_{i+1}-u_{i}\right)<0 \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{x_{i}}^{x_{i+1}} f\left(x, u_{i}\right) d x=2(-1)^{i} \tag{27}
\end{equation*}
$$

Then the function $u: S^{1} \rightarrow \mathbf{R}$ given by

$$
\begin{equation*}
u(x)=u_{i}, \quad x \in\left[x_{i}, x_{i+1}\right) \tag{28}
\end{equation*}
$$

is a $B V$ solution of

$$
\begin{equation*}
-\left(\frac{u^{\prime}}{\left|u^{\prime}\right|}\right)^{\prime}=f(x, u) \tag{29}
\end{equation*}
$$

Remarks: 1. (27) are not differential equations. We will see that the solutions can be obtained by solving a Hamiltonian system.
2. The number of unknowns is $2 k$, and the number of equations is k. Thus it is overdetermined and there should be many solutions.

The key point in our approach to the problem is to use the Hamiltonian formalism. Using Legendre transformation,

$$
H(x, u, v)=\sup _{p}(v p-L(x, u, p))
$$

one knows that the equations (21) and (27) are "equivalent" to the Hamiltonian systems:

$$
\begin{equation*}
-u^{\prime}=H_{v}(x, u, v), \quad v^{\prime}=H_{u}(x, u, v) \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
-u^{\prime}=K_{v}(x, u, v), \quad v^{\prime}=K_{u}(x, u, v) \tag{31}
\end{equation*}
$$

where $H(x, u, v)=1-\sqrt{1-v^{2}}+F(x, u)$ and $K(x, u, v)=F(x, u),(u, v) \in \mathbf{R} \times(-1,1)$. One should note that the Hamiltonian H and K are only defined for $v \in(-1,1)$. We need to specify the behaviors of solutions of (30) and (31) near $v= \pm 1$. According to Propositions 6-7 we need to find
$(u, v): S^{1} \rightarrow \mathbf{R} \times(-1,1)$ such that
(1) (u, v) is C^{1} and satisfies (30) (or (31)) on the set $S^{1} \backslash\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$;
(2) v is continuous and satisfies

$$
\begin{equation*}
v(x)=\lim _{s \rightarrow x} v(s)= \pm 1 \tag{32}
\end{equation*}
$$

for each $x \in\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$;
(3) the limits $\lim _{s \rightarrow x \pm 0} u(s)$ exist for each $x \in$ $\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ and u satisfies
$\lim _{s \rightarrow x-0} u(s) \geq(\leq) \lim _{s \rightarrow x+0} u(s) \quad$ if $\quad v(x)=1(-1)$.
(33)

4. Proof of Theorem 4:

We sketch the proof of Theorem 4. That of Theorem 5 is similar. Let H_{1} be defined on $S^{1} \times \mathbf{R} \times \mathbf{R}$ such that

$$
H_{1}(x, u, v)= \begin{cases}H(x, u, v), & v \in[-1,1] \\ H(x,-u, 2-v), & v \in[1,3]\end{cases}
$$

and H_{1} is 4-periodic function in v. Consider the solutions of the equation

$$
\begin{equation*}
-u^{\prime}=H_{1, v}(x, u, v), \quad v^{\prime}=H_{1, u}(x, u, v) \tag{34}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
u(0)=u(2 \pi), \quad 4 k+v(0)=v(2 \pi) \tag{35}
\end{equation*}
$$

Solutions: $w_{k}=\left(u_{k}, v_{k}\right):[0,2 \pi] \rightarrow \mathbf{R}^{2}$ and a finite set $\left\{x_{1}, x_{2}, \cdots, x_{2 k}\right\} \subset[0,2 \pi)$ with the following properties:
(1) $\left(u_{k}, v_{k}\right)$ is C^{1} on $[0,2 \pi] \backslash\left\{x_{1}, x_{2}, \cdots, x_{2 k}\right\}$, satisfies (34) and (35);
(2) v_{k} is strictly increasing, continuous and for $j=1,2, \cdots, 2 k$, satisfies $v_{k}\left(x_{j}\right)$ is an odd integer;
(36)
(3) u_{k} is positive and

$$
\begin{equation*}
\lim _{x \rightarrow x_{j}-0} u(x)>0, \quad \lim _{x \rightarrow x_{j}+0} u(x)>0 ; \tag{37}
\end{equation*}
$$

(4) $H\left(x, u_{k}(x), v_{k}(x)\right)$ is continuous.

Then

$$
u(x)=\left\{\begin{array}{l}
u_{k}(x), \quad 4 j-5 \leq v_{k}(x)<4 j-3 \\
-u_{k}(x), \quad 4 j-3 \leq v_{k}(x)<4 j-1,
\end{array}\right.
$$

is a solution of

$$
-\left(\frac{u^{\prime}}{\sqrt{1+u^{\prime 2}}}\right)^{\prime}=f(x, u)
$$

in $B V\left(S^{1}\right)$ and has the properties listed in Theorem 4.

Difficulties: the right hand side of (34) is not continuous near $v= \pm 1$ and we can not specify the set $\left\{x_{1}, x_{2}, \cdots, x_{2 k}\right\}$ a priori.

For $0<\delta \ll 1$, let χ_{δ} be a C^{2} function such that

$$
\chi_{\delta}(s)= \begin{cases}1, & s \leq-\delta \\ 0, & s \geq \delta\end{cases}
$$

and $-\frac{4}{\delta} \leq \chi_{\delta}^{\prime} \leq 0$;
$F_{\delta}(x, u, v)= \begin{cases}\chi_{\delta}(v-1) F(x, u) & \\ +\left(1-\chi_{\delta}(v-1)\right) F(x,-u), & v \in[-1+\delta, \\ \chi_{\delta}(v-3) F(x,-u) & \\ +\left(1-\chi_{\delta}(v-3)\right) F(x, u), & v \in[1+\delta, 3\end{cases}$
G_{δ} be a C^{2} and 4-periodic function satisfying

$$
\begin{gathered}
G_{\delta}(v)= \begin{cases}1-\sqrt{1-v^{2}}, & v \in[-1+\delta, 1-\delta] \\
1-\sqrt{1-(2-v)^{2}}, & v \in[1+\delta, 3-\delta]\end{cases} \\
0 \leq G_{\delta}^{\prime}(v) \leq \frac{v}{\sqrt{1-v^{2}}}, \quad-1+\delta \leq v \leq 1, \\
\frac{(v-2)}{\sqrt{1-(2-v)^{2}}} \leq G_{\delta}^{\prime}(v) \leq 0, \quad 1 \leq v \leq 3+\delta .
\end{gathered}
$$

Then the function $H_{\delta}(x, u, v)=G_{\delta}(v)+F_{\delta}(x, u, v)$ is C^{1} and 2π-periodic in $x, 4$-periodic in v. We fix a positive integer k and consider the solutions of the Hamiltonian system

$$
-u^{\prime}=H_{\delta, v}(x, u, v), \quad v^{\prime}=H_{\delta, u}(x, u, v)
$$

with the boundary condition

$$
\begin{equation*}
u(0)=u(2 \pi), \quad 4 k+v(0)=v(2 \pi) . \tag{39}
\end{equation*}
$$

Proposition 8. Let $F(x, u)=\int_{0}^{u} f(x, s) d s$ be a C^{1} function, 2π-periodic in x such that
(1) f is 'superlinear’,

$$
\begin{equation*}
\operatorname{sgn}(u) f(x, u) \rightarrow+\infty \quad \text { as } \quad|u| \rightarrow+\infty \tag{f4}
\end{equation*}
$$

(2) there exists a constant $C>0$ such that

$$
\left|\frac{\partial F(x, u)}{\partial x}\right| \leq C(1+F(x, u)),(x, u) \in S^{1} \times \mathbf{R}
$$

Then for all $0<\delta \ll 1$ and integer $k \geq 1$, the equation (38) with the boundary condition (39) possesses 2 solutions $w_{k, \delta}^{i}=\left(u_{k, \delta}^{i}, v_{k, \delta}^{i}\right)$, $i=1,2$. Moreover, there exist two sequences $\{A(k)\}_{1}^{\infty}$ and $\{B(k)\}_{1}^{\infty}$, independent of δ with $\lim _{k \rightarrow \infty} B(k)=+\infty$ such that

$$
\begin{equation*}
A(k) \geq u_{k, \delta}^{i}(x) \geq B(k), \quad i=1,2, x \in S^{1} \tag{40}
\end{equation*}
$$

Using the estimate (40), we can take the limit $\delta \rightarrow 0$,

$$
u_{k}=\lim _{\delta \rightarrow 0} u_{k, \delta}, \quad v_{k}=\lim _{\delta \rightarrow 0} v_{k, \delta},
$$

then $\left(u_{k}, v_{k}\right)$ is a solution of

$$
\begin{equation*}
-u^{\prime}=H_{1, v}(x, u, v), \quad v^{\prime}=H_{1, u}(x, u, v) \tag{41}
\end{equation*}
$$

and

$$
\begin{equation*}
u(0)=u(2 \pi), \quad 4 k+v(0)=v(2 \pi), \tag{42}
\end{equation*}
$$

where $H(x, u, v)=1-\sqrt{1-v^{2}}+F(x, u)$ and

$$
H_{1}(x, u, v)= \begin{cases}H(x, u, v), & v \in[-1,1] \\ H(x,-u, 2-v), & v \in[1,3]\end{cases}
$$

and H_{1} is 4-periodic function in v. Then

$$
u(x)=\left\{\begin{array}{l}
u_{k}(x), \quad 4 j-5 \leq v_{k}(x)<4 j-3 \\
-u_{k}(x), \quad 4 j-3 \leq v_{k}(x)<4 j-1,
\end{array}\right.
$$

u is a solution of (5) in $B V\left(S^{1}\right)$ and has the properties listed in Theorem 4.

5. More Solutions

The solutions u_{k} given by Theorem 4 have the property: at each discontinuous point x_{j} of u_{k}, there holds

$$
\lim _{x \rightarrow x_{j}-0} F\left(x, u_{k}(x)\right)=\lim _{x \rightarrow x_{j}+0} F\left(x, u_{k}(x)\right) .
$$

Slightly modify the approach, much more BV solutions can be obtained if this restriction is removed.
Theorem 9. Let $F(x, u)=\int_{0}^{x} f(x, s) d s$ be a C^{1} function, 2π-periodic in xsatisfying conditions (f4) and (f5). Then for $\alpha_{0}>0$, there is a positive integer $k_{0}\left(\alpha_{0}\right)$ depending on α_{0} such that for $k \geq k_{0}$ and $\alpha=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}\right)$ with $\alpha_{i} \geq \alpha_{0}, i=1, \cdots, k$, the equation

$$
\begin{equation*}
-\left(\frac{u^{\prime}}{\sqrt{1+u^{\prime 2}}}\right)^{\prime}=f(x, u) \tag{43}
\end{equation*}
$$

possesses a 2π-periodic solution $u_{k}(\alpha ; x) \in B V\left(S^{1}\right)$ having the properties:
(1) there is a finite set $\left\{x_{1}, x_{2}, \cdots, x_{2 k}\right\} \subset S^{1}$ such that u_{k} is C^{2} and satisfies (43) on the set $S^{1} \backslash\left\{x_{1}, x_{2}, \cdots, x_{2 k}\right\}$ and $\forall v \in C^{1}\left(S^{1}\right)$,

$$
\int_{0}^{2 \pi} \frac{u_{k}^{\prime}}{\sqrt{1+u_{k}^{\prime 2}}} v^{\prime} d x=\int_{0}^{2 \pi} f\left(x, u_{k}\right) v d x
$$

(2) for each x_{i}, there hold:

$$
\begin{align*}
& \lim _{x \rightarrow x_{2 i-1}-0} u_{k}(x)>0>\lim _{x \rightarrow x_{2 i-1}+0} u_{k}(x), \tag{44}\\
& \lim _{x \rightarrow x_{2 i-1} \pm 0} u_{k}^{\prime}(x)=-\infty, \\
& \lim _{s \rightarrow x_{2 i}-0} u_{k}(x)<0<\lim _{x \rightarrow x_{2 i}+0} u_{k}(x), \tag{45}\\
& \lim _{x \rightarrow x_{2 i} \pm 0} u_{k}^{\prime}(x)=+\infty,
\end{align*}
$$

$$
\begin{equation*}
\alpha_{i} \lim _{x \rightarrow x_{2 i}-0} F\left(x, u_{k}(x)\right)=\lim _{x \rightarrow x_{2 i}+0} F\left(x, u_{k}(x)\right) \tag{46}
\end{equation*}
$$

$\lim _{x \rightarrow x_{2 i+1}-0} F\left(x, u_{k}(x)\right)=\alpha_{i} \lim _{x \rightarrow x_{2 i+1}+0} F\left(x, u_{k}(x)\right)$;
(47)
(3) for fixed k there hold

$$
\begin{equation*}
\max _{x \in S^{1}}\left|u_{k}(\alpha ; x)\right| \rightarrow \infty \quad|\alpha| \rightarrow \infty \tag{48}
\end{equation*}
$$

where $|\alpha|=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}$.
Theorem 10. Under the same condition as that of Theorem 9, the same conclusion holds for

$$
\begin{equation*}
-\left(\frac{u^{\prime}}{\left|u^{\prime}\right|}\right)^{\prime}=f(x, u) \tag{49}
\end{equation*}
$$

6 Concluding Remarks:

We only consider the "superlinear" case

$$
\operatorname{sgn}(u) f(x, u) \rightarrow+\infty \quad \text { as } \quad|u| \rightarrow+\infty .(f 4)
$$

Using the same methods, one can obtain some results for the "asymptotically linear" case

$$
\operatorname{sgn}(u) f(x, u) \rightarrow \lambda_{ \pm} \quad \text { as } \quad u \rightarrow \pm \infty .
$$

The existence is related to the eigenvalue problem of

$$
\begin{equation*}
-\left(\frac{u^{\prime}}{\left|u^{\prime}\right|}\right)^{\prime}=\lambda \frac{u}{|u|} . \tag{50}
\end{equation*}
$$

Theorems 4-5, Theorems 9-10 hold for other boundary value conditions, for instance, the Dirichlet and Neumann boundary conditions.

Conclusion: For equations

$$
\begin{equation*}
-\left(\frac{u^{\prime}}{\sqrt{1+u^{\prime 2}}}\right)^{\prime}=f(x, u) \tag{51}
\end{equation*}
$$

and

$$
\begin{equation*}
-\left(\frac{u^{\prime}}{\left|u^{\prime}\right|}\right)^{\prime}=f(x, u) \tag{52}
\end{equation*}
$$

there may be no solutions in $W^{1,1}$, but there are too many (uncountable many) solutions in BV space if f is superlinear.

