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1. Introduction

Let Ω ⊂ Rn be a bounded domain L : Ω ×
R×Rn → R, and let L(x, u, p) be C1 in (u, p),

convex in p and satisfying

|Lp(x, u, p)| ≤ C(1 + |p|). (L1)

We consider the critical points of the func-

tional

u → I(u) :=
∫

Ω
L(x, u,∇u)dx

for 1-dimensional Ω.

Example 1: Let F (x, u) : Ω × R → R and

L(x, u, p) =
√

1 + |p|2 − F (x, u). The Euler-

Lagrange equation of I(u)

−div(
∇u√

1 + |∇u|2
) = f(x, u), x ∈ Ω,

u = φ, x ∈ ∂Ω,

(1)

where F (x, u) =
∫ u
0 f(x, s)ds. (1) and its parabolic

version have been extensively studied.
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In geometry, the left hand side of (1) is the

mean curvature of the graph

Σ = {(x, u(x)) ∈ Rn+1|x ∈ Ω}.

(1) Minimal surface: f(x, u) = 0.

(2) Prescribed mean curvature: f(x, u) = H(x).

Example 2: Let L(x, u, p) = |p|−F (x, u), then

the Euler-Lagrange equation of I(u) is the fol-

lowing 1-Laplacian equation

−div(
∇u

|∇u|) = f(x, u), x ∈ Ω,

u = φ x ∈ ∂Ω.

(2)

The meaning of the solutions of (1) and (2)

will be specified later.
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Due to the condition (L1), the functional

I(u) =
∫

Ω
L(x, u,∇u)dx

is well defined and C1 in the Sobolev space

W1,1(Ω) if some growth conditions are satis-

fied. However, it is well known that the func-

tional I may not have critical points in this

space.

One considers the solutions in BV space:

BV (Ω) = {u ∈ L1(Ω)|‖Du‖ < ∞}
with the norm ‖u‖ = ‖u‖1 + ‖Du‖, where

‖Du‖ = sup{
∫

Ω
u · divφdx|φ ∈ C1

0(Ω,Rn),

|φ(x)| ≤ 1∀x ∈ Ω} :=
∫

Ω
|Du|dx.
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For u ∈ BV (Ω), the trace u|∂Ω can be de-

fined. For the 1-Laplacian equation (2), taking

the boundary value into account, one uses the

functional

I(u) =
∫

Ω
|Du|dx +

∫

∂Ω
|u− φ|dx−

∫

Ω
F (x, u)dx.

For the mean curvature equation (1) we need
∫

Ω

√
1 + |Du|2dx

:= sup{
∫

Ω
(φ0 + u · divφ1)dx

|(φ0, φ1) ∈ C1
0(Ω,R1+n),

|φ0(x)|2 + |φ1(x)|2 ≤ 1∀x ∈ Ω}
and

I(u) =
∫

Ω

√
1 + |Du|2dx +

∫

∂Ω
|u− φ|dx−

∫

Ω
F (x, u)dx

= I0(u)−
∫

Ω
F (x, u)dx.
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Definition 1. u ∈ BV (Ω) is called a solution of

−div(
∇u√

1 + |∇u|2
) = f(x, u), x ∈ Ω,

u = φ, x ∈ ∂Ω

(3)

if for ∀v ∈ BV (Ω),

I0(v)− I0(u) ≥
∫

Ω
f(x, u)(v − u)dx. (4)

Such a function is also called a critical point of

the functional I. u ∈ BV (Ω) is called a solution

of

−div(
∇u

|∇u|) = f(x, u), x ∈ Ω,

u = φ x ∈ ∂Ω
(5)

if for ∀v ∈ BV (Ω),
∫

Ω
(|Dv| − |Du|)dx +

∫

∂Ω
(|v − φ| − |u− φ|)dx

≥
∫

Ω
f(x, u)(v − u)dx.

(6)
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Main Difficulties of Existence of Solutions:

(1) the functional I is not differentiable on

BV (Ω);

(2) the working space BV (Ω) is not reflexive

and its dual has not been completely under-

stood. This makes the verification of P.S. con-

dition very difficult.

Applying a non-smooth version of symmetric

mountain pass theorem to the functional

Ĩ(u) =





I(u), u ∈ BV (Ω)

+∞, u ∈ Lp(Ω) \BV (Ω)

the following theorem is proved:

6



Theorem 2. (M. Marzocchi) Let f : Ω×R → R

be a continuous function satisfying:

(1) ∃θ > 1 and R > 0 such that

f(x, u)u ≥ θF (x, u) > 0, |u| ≥ R; (f1)

(2) ∃p < n
n−1 such that

|f(x, u)| ≤ C(1 + |u|p), p <
n

n− 1
u ∈ R (f2)

and

f(x,−u) = −f(x, u), x ∈ Ω, u ∈ R; (f3)

then the equation

−div(
∇u√

1 + |∇u|2
) = f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,

(7)

has a sequence of solutions {uj} ⊂ BV (Ω) such

that I(uj) → +∞ as j →∞.
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This result generalizes the well known theorem

of Ambrosetti-Rabinowitz:

(1) ∃θ > 2 and R > 0 such that

f(x, u)u ≥ θF (x, u) > 0, |u| ≥ R; (f1)

(2) ∃p < n+2
n−2 such that

|f(x, u)| ≤ C(1 + |u|p), u ∈ R (f2)

and

f(x,−u) = −f(x, u), x ∈ Ω, u ∈ R; (f3)

then the equation

−4u = f(x, u), x ∈ Ω,

u = 0 x ∈ ∂Ω.
(8)

has a sequence of solutions {uj} such that

‖uj‖∞ → +∞ as j → ∞. The symmetric as-

sumption (f3) is crucial.
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Results without symmetry:

Rabinowitz, Bahri-Berestyski, Bahri-Lions et

al, 1980s,

F (x, u) = |u|p+1 + l.o.t,

p ≤ (<)p∗ = n+2
n−2 , (8) has infinitely many solu-

tions;

Bahri-Berestyski, Long et al, 1980s-1990s,

V (x, u) = V0(u) + l.o.t,

or

V (x, u) = V0(x, u) + l.o.t.

with V0(x,−u) = V (x, u), x ∈ S1, u ∈ Rn satis-

fying ∃θ > 2 and R > 0 such that

V0u(x, u)u ≥ θV0(x, u) > 0, |u| ≥ R; (V 1)

then

−u” = Vu(x, u)

has infinitely many 2π-periodic solutions.
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2. 1-Dimensional Problem

We start with periodic solutions of

−u′′ = f(x, u), u ∈ R. (9)

Suppose f is continuous and 2π-periodic in x.

Theorem 3. ( Nehari 1961, Jacobowitz, 1976,

Hartman, 1977, W.Y. Ding, 1982, · · · ) If f

satisfies

lim
|u|→∞

f(x, u)

u
= +∞ (f4)

and the initial problem of (9) is uniquely and

globally solvable, then (9) has an unbounded

sequence of 2π-periodic solutions.
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The same conclusion holds for the Dirichlet

and Neumann boundary conditions as well as

the following p-Laplacian equation:

−(|u′|p−2u′)′ = f(x, u), p > 1 (10)

if f satisfies the ‘superlinear’ condition

lim
|u|→∞

f(x, u)

|u|p−2u
= +∞. (f4)′

The main feature of this result is that f may

not be odd in u.

Two Approaches for (9):

(i) Fixed points approach: Using the Poincaré-

Birkhoff fixed point theorem. The fixed points

of the Poincaré map correspond to 2π-periodic

solutions.
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(ii) Variational approach: Find the critical points

of the functional

I(u) =
1

2

∫ 2π

0
u̇2dt−

∫ 2π

0
F (x, u)dt.

In this talk we will show how to generalize The-

orem 3 to the equations

−(
u′√

1 + u′2
)′ = f(x, u), (11)

and

−(
u′

|u′|)
′ = f(x, u), (12)

on BV space by variational method.

For the equations (11) and (12), the Poincaré

map is not well defined and the associated

functional is not differentiable ( or Lips-

chitz) on BV space. There may be no con-

tinuous solution.
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For simplicity we consider the periodic bound-

ary condition in BV (S1): u ∈ BV (S1) if
∫ 2π

0
|Du|dx = ‖Du‖

=sup{
∫

S1
uφ′dx|φ ∈ C1(S1), |φ(x)| ≤ 1∀x ∈ S1} < ∞,

‖u‖ = ‖u‖1 + ‖Du‖
and
∫

S1

√
1 + |Du|2dx := sup{

∫

S1
(φ0 + u · φ′1)dx

|φ0, φ1 ∈ C1(S1), |φ0(x)|2 + |φ1(x)|2 ≤ 1∀x ∈ S1}.
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A function u ∈ BV (S1) is called a 2π-periodic

solution of (11) if
∫ 2π

0

√
1 + |Dv|2dx−

∫ 2π

0

√
1 + |Du|2dx

≥
∫ 2π

0
f(x, u)(v − u)dx, ∀v ∈ BV (S1).

(13)

u ∈ BV (S1) is called a 2π-periodic solution of

(12) if
∫ 2π

0
|Dv|dx−

∫ 2π

0
|Du|dx

≥
∫ 2π

0
f(x, u)(v − u)dx, ∀v ∈ BV (S1).

(14)
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Theorem 4. Let F (x, u) =
∫ u
0 f(x, s)ds be a C1

function, 2π-periodic in x such that

(1) f is ‘superlinear’,

sgn(u)f(x, u) → +∞ as|u| → +∞; (f4)

(2) there exists a constant C > 0 such that

|∂F (x, u)

∂x
| ≤ C(1 + |F (x, u)|), (x, u) ∈ S1 ×R.

(f5)

Then there is a positive integer k0 such that

for k ≥ k0, the equation (11) has a 2π-periodic

solution uk ∈ BV (S1) satisfying

(1) uk is C2, satisfies (11) on S1\{x1, x2, · · · , x2k}
and ∀v ∈ C1(S1),

∫ 2π

0

u′√
1 + u′2

v′dx =
∫ 2π

0
f(x, u)vdx;
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(2) for each xi, the follwoings hold:

lim
x→x2i−1−0

uk(x) > 0 > lim
x→x2i−1+0

uk(x),

lim
x→x2i−1±0

u′k(x) = −∞,
(15)

lim
s→x2i−0

uk(x) < 0 < lim
x→x2i+0

uk(x),

lim
x→x2i±0

u′k(x) = +∞,
(16)

lim
x→xi−0

F (x, uk(x)) = lim
x→xi+0

F (x, uk(x)); (17)

(3)

lim
k→∞

inf
x∈S1

|uk(x)| = +∞; (18)

(4) If the function f satisfies

f(x, u)u− F (x, u) → +∞ as |u| → ∞, (f6)

then

I(uk) →∞ as k →∞. (19)



Theorem 5. With the same assumptions as

that of Theorem 4, the same conclusion holds

for

−(
u′

|u′|)
′ = f(x, u). (20)

Remarks: 1. Marzocchi’s theorem (Theo-

rem 2) can be applied to (11) and (12) if

f(x,−u) = −f(x, u), u ∈ R.

2. The solutions uk in Theorems 4-5 are not

continuous, but in BV (S1). The existence of

classical and non-classical solutions has been

studied by many authors and various methods.

Based on the phase analysis and bifurcation

method, detail analysis of the numbers of solu-

tions (11) depending on a parameter λ is given

for f = λup and f = λeu by Omari, Pan, re-

spectively.
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3. A Class of BV Solutions

Let f : S1 × R → R be continuous and 2π-

periodic in x.

Proposition 6. Let u : S1 → R be a function

such that

(1) u is C2 and satisfies the equation

−(
u′√

1 + u′2
)′ = f(x, u) (21)

outside a finite set {x1, x2, · · · , xk} ⊂ S1;

(2) for x ∈ {x1, x2, · · · , xk}, the limits lims→x±0 u(s)

exist and u satisfies:

lim
s→x±0

u′(s) = +∞if lim
s→x−0

u(s) ≤ lim
s→x+0

u(s)

(22)

and

lim
s→x±0

u′(s) = −∞if lim
s→x−0

u(s) ≥ lim
s→x+0

u(s).

(23)
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Then u ∈ BV (S1) and satisfies

∫ 2π

0

u′√
1 + u′2

v′dx =
∫ 2π

0
f(x, u)vdx, (24)

for ∀v ∈ C1(S1), and
∫ 2π

0

√
1 + |Dv|2dx−

∫ 2π

0

√
1 + |Du|2dx

≥
∫

Ω
f(x, u)(v − u)dx.

(25)

Hence u is a solution of (21) in the sense of

Definition 1.

The following is the counterpart of Proposition

6 for 1-Laplacian equation.



Proposition 7. Let {x1, x2, · · · , xk} ⊂ S1 and
x1 < x2 < · · · , xk ≤ 2π and {u1, u2, · · · , uk} ⊂ R

satisfying

(ui − ui−1)(ui+1 − ui) < 0 (26)

and ∫ xi+1

xi

f(x, ui)dx = 2(−1)i. (27)

Then the function u : S1 → R given by

u(x) = ui, x ∈ [xi, xi+1) (28)

is a BV solution of

−(
u′

|u′|)
′ = f(x, u). (29)

Remarks: 1. (27) are not differential equa-
tions. We will see that the solutions can be
obtained by solving a Hamiltonian system.

2. The number of unknowns is 2k, and the
number of equations is k. Thus it is overde-
termined and there should be many solutions.
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The key point in our approach to the problem

is to use the Hamiltonian formalism. Using

Legendre transformation,

H(x, u, v) = sup
p

(vp− L(x, u, p)),

one knows that the equations (21) and (27)

are ”equivalent” to the Hamiltonian systems:

−u′ = Hv(x, u, v), v′ = Hu(x, u, v) (30)

and

−u′ = Kv(x, u, v), v′ = Ku(x, u, v) (31)

where H(x, u, v) = 1 −
√

1− v2 + F (x, u) and

K(x, u, v) = F (x, u), (u, v) ∈ R × (−1,1). One

should note that the Hamiltonian H and K are

only defined for v ∈ (−1,1). We need to spec-

ify the behaviors of solutions of (30) and (31)

near v = ±1. According to Propositions 6-7

we need to find
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(u, v) : S1 → R× (−1,1) such that

(1) (u, v) is C1 and satisfies (30) (or (31)) on

the set S1 \ {x1, x2, · · · , xk};

(2) v is continuous and satisfies

v(x) = lim
s→x

v(s) = ±1 (32)

for each x ∈ {x1, x2, · · · , xk};

(3) the limits lims→x±0 u(s) exist for each x ∈
{x1, x2, · · · , xk} and u satisfies

lim
s→x−0

u(s) ≥ (≤) lim
s→x+0

u(s) if v(x) = 1(−1).

(33)
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4. Proof of Theorem 4:

We sketch the proof of Theorem 4. That of

Theorem 5 is similar. Let H1 be defined on

S1 ×R×R such that

H1(x, u, v) =





H(x, u, v), v ∈ [−1,1]

H(x,−u,2− v), v ∈ [1,3]

and H1 is 4-periodic function in v. Consider

the solutions of the equation

−u′ = H1,v(x, u, v), v′ = H1,u(x, u, v) (34)

satisfying

u(0) = u(2π), 4k + v(0) = v(2π). (35)

Solutions: wk = (uk, vk) : [0,2π] → R2 and

a finite set {x1, x2, · · · , x2k} ⊂ [0,2π) with the

following properties:
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(1) (uk, vk) is C1 on [0,2π] \ {x1, x2, · · · , x2k},
satisfies (34) and (35);

(2) vk is strictly increasing, continuous and for
j = 1,2, · · · ,2k, satisfies

vk(xj) is an odd integer; (36)

(3) uk is positive and

lim
x→xj−0

u(x) > 0, lim
x→xj+0

u(x) > 0; (37)

(4) H(x, uk(x), vk(x)) is continuous.

Then

u(x) =





uk(x), 4j − 5 ≤ vk(x) < 4j − 3

−uk(x), 4j − 3 ≤ vk(x) < 4j − 1,

is a solution of

−(
u′√

1 + u′2
)′ = f(x, u)

in BV (S1) and has the properties listed in The-
orem 4.
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Difficulties: the right hand side of (34) is not

continuous near v = ±1 and we can not spec-

ify the set {x1, x2, · · · , x2k} a priori.

For 0 < δ << 1, let χδ be a C2 function such

that

χδ(s) =




1, s ≤ −δ

0, s ≥ δ

and −4
δ ≤ χ′δ ≤ 0;

Fδ(x, u, v) =





χδ(v − 1)F (x, u)

+(1− χδ(v − 1))F (x,−u), v ∈ [−1 + δ,1 + δ]

χδ(v − 3)F (x,−u)

+(1− χδ(v − 3))F (x, u), v ∈ [1 + δ,3 + δ];
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Gδ be a C2 and 4-periodic function satisfying

Gδ(v) =




1−

√
1− v2, v ∈ [−1 + δ,1− δ]

1−
√

1− (2− v)2, v ∈ [1 + δ,3− δ],

0 ≤ G′δ(v) ≤
v√

1− v2
, −1 + δ ≤ v ≤ 1,

(v − 2)√
1− (2− v)2

≤ G′δ(v) ≤ 0, 1 ≤ v ≤ 3 + δ.

Then the function Hδ(x, u, v) = Gδ(v)+Fδ(x, u, v)

is C1 and 2π-periodic in x, 4-periodic in v. We

fix a positive integer k and consider the solu-

tions of the Hamiltonian system

−u′ = Hδ,v(x, u, v), v′ = Hδ,u(x, u, v) (38)

with the boundary condition

u(0) = u(2π), 4k + v(0) = v(2π). (39)
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Proposition 8. Let F (x, u) =
∫ u
0 f(x, s)ds be a

C1 function, 2π-periodic in x such that

(1) f is ‘superlinear’,

sgn(u)f(x, u) → +∞ as |u| → +∞;

(f4)

(2) there exists a constant C > 0 such that

|∂F (x, u)

∂x
| ≤ C(1 + F (x, u)), (x, u) ∈ S1 ×R.

(f5)

Then for all 0 < δ << 1 and integer k ≥ 1,

the equation (38) with the boundary condition

(39) possesses 2 solutions wi
k,δ = (ui

k,δ, v
i
k,δ),

i = 1,2. Moreover, there exist two sequences

{A(k)}∞1 and {B(k)}∞1 , independent of δ with

limk→∞B(k) = +∞ such that

A(k) ≥ ui
k,δ(x) ≥ B(k), i = 1,2, x ∈ S1. (40)
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Using the estimate (40), we can take the limit

δ → 0,

uk = lim
δ→0

uk,δ, vk = lim
δ→0

vk,δ,

then (uk, vk) is a solution of

−u′ = H1,v(x, u, v), v′ = H1,u(x, u, v) (41)

and

u(0) = u(2π), 4k + v(0) = v(2π), (42)

where H(x, u, v) = 1−
√

1− v2 + F (x, u) and

H1(x, u, v) =





H(x, u, v), v ∈ [−1,1]

H(x,−u,2− v), v ∈ [1,3]

and H1 is 4-periodic function in v. Then

u(x) =





uk(x), 4j − 5 ≤ vk(x) < 4j − 3

−uk(x), 4j − 3 ≤ vk(x) < 4j − 1,

u is a solution of (5) in BV (S1) and has the

properties listed in Theorem 4.
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5. More Solutions

The solutions uk given by Theorem 4 have the

property: at each discontinuous point xj of uk,

there holds

lim
x→xj−0

F (x, uk(x)) = lim
x→xj+0

F (x, uk(x)).

Slightly modify the approach, much more BV

solutions can be obtained if this restriction is

removed.

Theorem 9. Let F (x, u) =
∫ x
0 f(x, s)ds be a C1

function, 2π-periodic in xsatisfying conditions

(f4) and (f5). Then for α0 > 0, there is a

positive integer k0(α0) depending on α0 such

that for k ≥ k0 and α = (α1, α2, · · · , αk) with

αi ≥ α0, i = 1, · · · , k, the equation

−(
u′√

1 + u′2
)′ = f(x, u) (43)

possesses a 2π-periodic solution uk(α;x) ∈ BV (S1)

having the properties:

27



(1) there is a finite set {x1, x2, · · · , x2k} ⊂ S1

such that uk is C2 and satisfies (43) on the set

S1 \ {x1, x2, · · · , x2k} and ∀v ∈ C1(S1),

∫ 2π

0

u′k√
1 + u′2k

v′dx =
∫ 2π

0
f(x, uk)vdx;

(2) for each xi, there hold:

lim
x→x2i−1−0

uk(x) > 0 > lim
x→x2i−1+0

uk(x),

lim
x→x2i−1±0

u′k(x) = −∞,
(44)

lim
s→x2i−0

uk(x) < 0 < lim
x→x2i+0

uk(x),

lim
x→x2i±0

u′k(x) = +∞,
(45)



αi lim
x→x2i−0

F (x, uk(x)) = lim
x→x2i+0

F (x, uk(x)),

(46)

lim
x→x2i+1−0

F (x, uk(x)) = αi lim
x→x2i+1+0

F (x, uk(x));

(47)

(3) for fixed k there hold

max
x∈S1

|uk(α;x)| → ∞ |α| → ∞ (48)

where |α| = α1 + α2 + · · ·+ αk.

Theorem 10. Under the same condition as

that of Theorem 9, the same conclusion holds

for

−(
u′

|u′|)
′ = f(x, u). (49)



6 Concluding Remarks:

We only consider the ”superlinear” case

sgn(u)f(x, u) → +∞ as |u| → +∞. (f4)

Using the same methods, one can obtain some

results for the ”asymptotically linear” case

sgn(u)f(x, u) → λ± as u → ±∞.

The existence is related to the eigenvalue prob-

lem of

−(
u′

|u′|)
′ = λ

u

|u|. (50)

Theorems 4-5, Theorems 9-10 hold for other

boundary value conditions, for instance, the

Dirichlet and Neumann boundary conditions.
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Conclusion: For equations

−(
u′√

1 + u′2
)′ = f(x, u) (51)

and

−(
u′

|u′|)
′ = f(x, u), (52)

there may be no solutions in W1,1, but there

are too many (uncountable many ) solutions

in BV space if f is superlinear.
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