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Definition M - a manifold, dimM < 4oco. If F': TM — [0, 400) satisfies

(F1) F'is C* on TM \ {0},

(F2) F(x,\y) = A\F(z,9), Yy € T,M, x € M, A >0, (= length(c) is well-defined).
(F3) Vy € T, M \ {0}, the following quadratic form is positive definite,

1 o
Gz y(u,v) = §8SatF2(x, Y+ su + tv)|i=s—o, Yu,v € T, M,

(:> Local existence and uniqueness of geodesics connecting nearby points)
then F': TM — [0,+00) is a Finsler metric, (M, F') is a Finsler manifold.
F' is reversible, if F(x,—y) = F(z,y), Yy € T,M,z € M.
1

F'is Riemannian, if F(z,y)* = 39(z)y -y, for some symmetric pos. def. matrix

function g(z) € GL(T,M) depending on x € M smoothly.



c:R — (M, F) is a closed geodesic, if
(i) it is a closed curve, and
(ii) it is always locally the shortest curve.
i.e., length(c|,,) =distance from p to ¢ for nearby p and g on c.

Closed geodesics—Global questions on Existence, Multiplicity, Stability.



Let c: S'=R/Z — (M, F) be a closed geodesic.
" (t) = c(mt), Ve R, teR.

c is prime, if ¢ # d™ for any CG d and m > 2.

F'is an irrev. Finsler metric on M.

Prime ¢ and d on (M, F') are distinct, if ¢(t) # d(t + 0), Vt and 0 € [0, 1].

Fis an rev. Finsler (Riemannian) metric on M.

Closed geodesics ¢ and d on (M, g) are geometrically distinct, if ¢(R) # d(R).

CG(M, F) = {distinct /geom. distinct CGs on (M, F') when F is irrev./rev. Finsler}



Existence of at least one closed geodesic (CG(M, F)):
1898, Hadamard, 1905 Poincaré.

1917-1927, Birkhoff: #CG(S9, g) > 1, ¥V Riemannian g on S9.

1951, Lyusternik-Fet: #CG(M, g) > 1, ¥ Riemannian g on a compact M.

Variational method =>

#CG(M, F) > 1, V Finsler metric F on a compact manifold M.

Question: Estimate #CG(M, F) or #CG(M,g) ?



For a compact manifold M, define its Betti numbers via its free loop space AM =

{c € WY2(SY M) | cis abs. contin.}:

1969, Gromoll-Meyer: (M, g) compact, dim M > 2, g is Riemannian. Then
{b;(M)}en is unbounded => #CG(M, g) = +oo.
1976, Vigué-Poirrier and Sullivan: (M, g) is a cpt. simply conn. Riem. mfd. Then
{br(M)}en is bounded <= H*(M; Q) has only one generator.
S B (M;Q) = Typr(2) = QL /(2" = 0)
with a generator x of degree d > 2 and hight h + 1 > 2.
1980, Matthias: These two theorems work for (rev. or irrev.) Finsler manifolds too.

Most interesting manifolds —— spheres !



Known multiplicity results for Riemannian S%:
1968, Klingenberg; 1982, Ballmann-Thorbergsson-Ziller:
1/4 < K,<1=> #CG(S% g) > d.

1965, Fet: (M, F)-cpt, bumpy, revers. Finsler manifold, => #CG(M, F) > 2.

Bumpy, i.e., all the closed geodesics (with their iterates) are non-degenerate.

1990, Bangert, Franks: #CG(S?, g) = +00, V Riemannian metric g on S2.

Others: Bangert, Hingston, Ballmann, Wang-Long, Wang,

Conjecture: #CG(M, g) = +oo V Riemannian metric g on every compact manifold M.



1973, Katok’s metric on S%:

d+1
#CG(SY, Frator) = Q[T], #CG(S?, Frator) = 2,

#CG(537 FKatok) - #CG(S47 FKatok) = 4.

where [a] = max{k € Z |k < a} for any real number a.

2003, Hofer-Wysocki-Zehnder on S%: #CG(S%, F) =2 or + oo,
provided the irrev. F'is bumpy, and all stable and unstable mfds intersect transversally
at every hyperbolic closed geodesics.

2005, Bangert-Long on S?: #CG(S?, F) > 2 Virrev. Finsler F.

Others: Rademacher, Wang, Duan, Long, .......



Multiplicity results
Theorem (Duan-Long, JDE 2007, Rademacher TAMS, 2008)

(5S¢, F)-compact irreversible Finsler, F is bumpy. = #CG(S¢, F) > 2.
Theorem (Rademacher, 2008)

(CP?, F)-irreversible Finsler, F is bumpy. —> #CG(CP? F) > 2.

A natural conjecture for compact manifold M with dim M = n:

There exist integers 0 < p, < ¢, < +o0 such that p, — +00 as n — +o0,

#CG(M, F) € [pn, qn] U {+00}, V irrev. Finsler metric F' on M.

Known: py = 2. (p3 > 2, py>2).

Conjecture: ¢ =27  ¢,(5") =2[3] ?



New multiplicity results:

Theorem (Long-Duan, AIM 2009): M is cpt, simply conn. dim M = 3,
(i) #*CG(M, F) > 2, Virrev. Finsler F' on M.

(ii) #CG(M,g) > 2, Vrev. Finsler (Riemannian) ¢ on M.

Theorem (Duan-Long, 2009): M is cpt, simply conn. dim M = 4,
(i) #*CG(M, F) > 2, Virrev. Finsler F' on M.
(ii) #CG(M,g) > 2, V rev. Finsler (Riemannian) g on M.



Ideas of our study

Let (M, F') be a compact simply conn. irrev./rev. Finsler (Riemannian) manifold.

Gromoll-Meyer + Vigue-Sullivan + #CG(M, F) < 400 =
H*(M; Q) = Typi(z) = Q[a]/(«" = 0)

with a generator x of degree d > 2 and hight h + 1 > 2.

Main (not all) examples: the compact rank one symmetric spaces, i.e.,
Spheres S? of dimension d with h = 1,
Complex projective spaces CP" of dimension 2h with d = 2,
Quaternionic projective spaces HP" of dimension 4h with d = 4,

Cayley plane CaP? of dimension 16 with d = 8 and h = 2.



Suggestions from Morse’s works on ellipsoids:

Theorem (Morse 1934). Let E; be a d-dim. ellipsoid in R4, For any given N € N,

every closed geodesic ¢ which s not an iterate of some main ellipse must have Morse

index satisfying i(c) > N, provided all the semi-azis of Ey are close to 1 enough.
Consequently, all the global homologies of the free loop space on M at dimensions less

than N are generated by iterates of the main ellipses only.

Let b;(M) = dim H;(AM, X" M; Q) = dim H;(AM/S*, A°A/S%; Q) for all j > 0.
S4 j: 012345678910 11 12 13 14 15 16 ---,

b, 00010101020 1 0 1 0 2 0

Need to understand properties of higher iterations of each single CG.



Need to understand properties of higher iterations of each single CG.

Need to try the homological level.

First things first:
Understand Morse indices and local homologies of iterates of each single prime CG.

By product: The existence of at least two CGs on a certain manifold.



The variational structure for CGs. Define

By = [ FGra,  vyen= B,
Ac")={reA[E() <E(C")}, A ={yeA|E(®) <~}
Cy(E,¢™ = Hy (M¢™) U St - ¢™)/SY A(e™)/SY)

= (Hiem)(Uan UL}, Upn) @ Hoyom(Nw U £}, Now)) ™

= Hyifom (N U {c™}, N )%,
where €(c™) = (1)) Let &, = E(c™) = m*>E(c) > 0 for all m > 1. Then

o =0< k) <kho<- - <Bm<Emar <o,
Km — +00 as m — 400,

i(c) >0, i(c") — 400 as m — +o0.

We write A" = A" = A" /S' = {y € A | E(y) < ki }/S"



Ideas to study iterates of only one closed geodesic:

Global homologies H; = H;(AM, KOM; Q)

with j > 0 of the free loop space pair (AM, KOM) (Example: d =4 and h = 1):

+00

coo0o601ro01o010290 1 0 1 0 2 01 0 1 O

0123456 789 10 11 12 13 14 15 16 17 18 19 20



Local homologies of only one CG ¢ Distribution diagram of dim C,;(E, ¢™).

Kan
Raon—1 *
Rn+1 *
K, * * *
Rp—1 * s *
K1 * .. *
. m -~ -~ -~ -~ -~
m 1 ¢ C() oot oot Cz(c”) e Ci(c")+u Cz’(c")—HH—l Cz’(c”)+u+2
j in Cj

Question: Can local homologies generate global homologies 7



Ideas to study iterates of only one closed geodesic:

1. Classify CGs into two classes: rational and irrational.
Assume #(M, F) =1 with dim M > 2 and the prime CG c is rational (or rational):
2. Morse indices of iterations of rational or irrational CGs.
3. Local homological properties of only one CG c.
4. Rademacher identity = local and global relations.
5. Morse theory —> local and global relations.
4 & 5 = Contradiction !



Classify CGs: Rational and irrational CGs
Definition(Long 1999) For M € Sp(2n),
QM) ={N €Sp(2n) | o(N)NU=0(M)NU, and
UN(N)=v\(M)VXeao(M)NU},
where v)\(M) = dimcdimc(M — A). We call the path conn. component QU(M) of

Q(M) containing M the homotopy component of M in Sp(2n). Denote by N ~ M, if
N € QY(M).

[M] = {P7'MP |;P €Sp(2n)} Cc Q°(M) !

Purpose: v ~ 3 and v(7) = B(1) = i1(y™) = i1(8™) for all m > 1.



Theorem.(Long 1999) For any M € Sp(2n), 3 basic normal form decomposition
M =~ MioMyo - - - oM.

Basic normal forms:

1 b -1 D cos) —sinf a 0
o) (0 S o (o ) o= ()
0 1 0 -1 sinf  cosf 0 1/a

where b =0, £1, a € R\ {0,£1}; 6 € R,

R(#) B b by
N(@,B)( >,WhereB< )
0 R(9) bs by

N(0, B) is trivial, if (by — b3)sinf > 0; is non-trivial, otherwise.



Notation: the direct sum of two symplectic matrices:

(

Ay
Ch

By
D,

)

Ay
Cy

By
D,

)

(Al 0 By 0 \
0 Ay, 0 B
C; 0 D 0

\0 C 0 D)



Let ¢ be a CG on a Finsler (M, F') with dim M = d.

The linearized Poincare map of ¢: P. € Sp(2d — 2) s.t.

P.~ Mo oM.
cosd —sinéb

cis irrational, if 3 > 1 M, = R(f) =
sinf  cos®

) with /7 € R\ Q,

c is rational, otherwise.

The analytical period n(c) of a closed geodesic ¢ is defined by

n(c) = min{k € N|v(c") = mgicu(cm), i(c"RY —i(c¢™) € 2Z, Vm € N}.



Morse indices of iterates of CGs

Theorem (Long, 2000) Let ¢ be a CG on (M, F) with linearized Poincaré map P.. Then

1 1\ —1
o Loy, ©
0 1 1
_1 1 oq—
o O Loy, ©
0 -1 0

P =

<>R(€1) <>R Qr

N
{0 5)
|

5y

A
i

_ o+
)
R(«

R ﬁro

9 ohy . oh_
0 1/2 ) (0 —1/2) ’

) {non — trivial ones}
R(a.)
B,

) {trivial ones}
R(Br,)



and there hold

i) = mi(c) +p- +po—7)+2 2 B(5 )~
p=
—p- —Po — 1+(2_1 (00 +q.)
+2<§; (52 =),
p=
o) = ve)+ g g+ 0+ 2¢0m. ),
i(c) = lim_ i(g) = i(c)+p-+po—7+ Z %,

J=1



Morse indices of iterates of rational CGs
Theorem. Let ¢ be a rational prime closed geodesic on a d-dimensional Finsler manifold

(M, F). Let n = n(c) be the analytical period of c. Then the following conclusions hold:
(A) (Periodicity) For all m € N,

i) =i(c") +i(c") +ple), (™) =v(c"),

where p(C) - pO(Pc) +p*(Pc) + QO(PC) + Q+(Pc) -+ T(Pc> =+ 2T*(Pc)
(B) (Boundedness) For all 1 < m < n,

i(c™) +v(c™) <i(c") +ple) +d — 3, v(c™) =v("M).

(C) (Period-mean index) ni(c) = i(c")+ p(c), where i(¢) = limy,_o0 i(¢™)/m.
(D) (Relative parity) i(c") = p(c) mod 2.

(E) (Nullity-periodicity) v(c") < p(c)+d — 1.



Homologies of level sets related to only one rational CG ¢

Distribution diagram of dim C;(E,c™). (8 = i(c"))

Raon

,{,1 k “ e “ e o e .« . >k

mine® Ty - Coy Tp - Comp - Coy Copt T




New Identity Theorem. (M, F) is a Finsler mfd with H*(M;Q) = Typi(z) =
Q[z]/ (2" = 0) and a generator x of degree d > 2 and hight h+1 > 2 and #*CG(M, F) =
1. The only prime CG ¢ is rational with n = n(c) being the analytical period.

Suppose that there exists an integer u > —1 (u = p(c) + dh — 3 in appl.)satisfying:
i(d™) =4(") + (™) + p(e), Vm>1,
i(d™) +v(™) <i(c") + u, V1<m<n,
Hj(N~U{c"}, N )V =0, Vj>i(c")+p+2,

Hy(A,K™) =0, Vj=i(c")+pu+1.

—> Jan integer k > 0 such that

B(d, h)(i(c") + p(c)) + (=)= (=1)Yb,

Jj=p—p(c)+1

where B(d,h) = —% if de€2N, B(dh) =4 if de2N—1.



Idea of the proof of the new identity:
(1) Rademacher identity, 1992, special case (M, F) is a Finsler mfd with H*(M; Q) =

Tyne1(z). There exists only one CG ¢ with n = n(c) and i(c;) > 0. Then

ni(e)B(d,h) = Y (=) )

1<m<n(c)
0<1<2d—2

= > (=1 dim Hy(Ngw U {™}, N )%

1<m<n(c)
0<i<2d—-2

i(c)+p(c)+d—3

= > (=Du,

7=0

where e(c™) = (—1)"(")=1) gnd Hj(KK",KO) — Qw.



(2) For j € Z, denote by

0= (—l)j(uj — bj + Cj).

j:

o

Go through the long exact sequences for all the triples (K”’”,K”m‘l,Ko

)

with m =n,n —1,...,2 in the diagram for the distributions of dim C,(E, c™) .

Thus we obtain
) +u

i
ni(e)B(d, h) = (=1)"“"Funy , — (=1) (b — ;).
0

j:

Claim: cj = bj_z'(cn)_p(c) Vel
= B(d, h)(i(¢") + ple)) + (=) g = S (_1)ip.

J=u—p(c)+1



Proof of (%)

Isomorphism Theorem. M = (M, F) is a Finsler manifold with #CG(M,F) = 1,
the prime CG c is rational, with n = n(c) being the analytical period of c.

Then for any non-negative integers b > a and h € Z,

d a chain map f on singular chains which induces an isomorphism

for Ho(A™ A™) — Hpy iy ipio (A" R,

Difficulty: Ky < Kop1 < -+ < kp1 < Ky for b—a>1!



Idea of the proof of the Isomorphism Theorem. For any h € Z let

Ay = Hy(A™, A", By = Hy(A™' A™),

;L — Hh (K“ner? K:‘inerfl) B;l _ Hh (Kﬁn%il K’injta) .

) )

For any h € Z, letting h = h +i(c") + p(c), we consider the following diagram:

a * '* 2Ry JRa .* 8*
Ay 28 B, 2= m,(A", A" IS oA, 25 B,

b,b—1 b—1,a b,a b,b—1 b—1,a
i h+1x lfh* lfh* lfh* lfh—l*
-/ /

o i _ _ it o
AL h+1 Bl hx H}_L ([\"fn-i-b7 Afin-i-a) hx A%/ hx B]g_l .

h+1 h

Caseof b—a=1

+ 5-lemma (Comm. at far squares) —> Middle iso. => Comm. at mid. squares !

+ Induction arguments



Homologies of level sets related to only one rational CG ¢
Corollary. (M, F) is a Finsler mfd with #CG(M,F) =1,
c is the unique rational prime CG with n = n(c) being the analytical period.

Then for all j € Z there holds

Cj = dim Hj (K, Kﬁjn) = dim Hj (K, KO) = bj—z'(c")—p(c)- (>I<)



On cpt simply conn. irr/re Finsler mfd (M, F) with with H*(M;Q) = Typ41(x) and
#CG(M, F) = 1. Denote this CG by c.
Let i = p(c) + dim M — 3, Identity Theorem —>

(™) +p
B(d, h)(i(c") + plc)) + (1) = " (=1)b;. (Identity)
j=dim M -2
~ ()
o 1 &
i(c) + ple) < Wj:d%_Q(—1) b; < i(c") + p(c).

—> Contradiction ! 1.6.7 ¢ can not be rational!
Theorem Cpt simply conn. irr/re Finsler mfd (M, F), #CG(M, F) = 1

—> ¢ can be neither rational nor complete non-degenerate !



For every integer k > d — 14 (h — 1)d = hd — 1, letting D = d(h + 1) — 2, we have

k
> by = W(k— (d—1)) - fth = 1)d +eqn(k),

q=0 4
where
cnlh) = (D= Dy 2 Aoy hm
—h{g{%}} ]

and there hold €45 (k) € (—(h +2),1) and €;1(k) € (—2,0] for all integer k > d — 1.



Understanding irrational CGs, Quasi-monotonicity of index growth.

Rademacher identity #CG(M, F) = 1 and ¢ is irrational =—> ¢ has at least 2 rotation
matrices R(6))oR(62) in its basic normal form decomposition with 6;/7 € R\ Q for
j=12

Theorem. Let ¢ be a closed geodesic with mean index i(c) > 0 on a Finsler manifold
(M, F) of dimension d > 2. Then for any integer A € [0, k|, there exist infinitely many

integers T' € N such that

~
o
=
I
SN
o
=
Vv

Ki=X+ (g0 +q0) +2(r —k)+2(r. — ko) +24, Vm>T+1,

i(ch) —i(c™) > Ky=A—(qo+qy) +2k—2(r, —k,) =24, V1<m<T—1,

where X =i(c) +p_ +po—r.



Definition. For a prime closed geodesic ¢ with mean index %(c) > 0 on a Finsler manifold

(M, F) of dimension d > 2. Using x.(m) =m(i(c)+p_+po—1)+ 22:1[@—?], we define
mo(c) = max{m € N | x.(m) <0}, Iy(c)={m e N | x.(m) < 0},
oo(c) = max{0, —x.(m) |1 <m < my(c)}.

Theorem. Let ¢ be a closed geodesic with mean index i(c) > 0 on a Finsler manifold

(M, F) of dimension d > 2. Then for every integer A € [0, k|, there exist infinitely many

integers T > my(c) such that

=
@)
Z
|
.
—~
@)
=
V

> K3 =2A— o¢(c), Vm>T+1,

<
o
_Z
I
[SSIN
o
=
Vv

Ky =2(k—A—(r. — k), Vi<m<T—-1, mé¢Ic),

~
o
_
I
[SSIN
o
=
'V

Ks=2(k—A—(r. — ki) — oo(c), Vm € Iy(c).



Exclusive Theorem. Finsler manifold (M, F) with H*(M;Q) = Typ+1(x) with h > 1
and d > 2. ¢ is a prime CG with i(c) > 0. Suppose that there exists an even T € n(c)N

and an integer A € [0, k] such that

i) >d-1,
i(c™) > (<) + () + 1+ 753D + v(c)), Vm>T+1,
i(c™) <i(ch), V1<m<T-—1,

s(c) > v(e") + 7 (i) + v(e) + 20k — A) = d — & + 2B (1+ eqp(p) — LY,

where d is even, u = i(ch) +v(c") + 7 (i(ch) + v(c")) — 1;
or s(c) > v(c") +7H(i(c") +v(e) +2(k — A) = § —d+2 - 7,

where d is odd. Here s(c) =1+ p_ +po+ qr + qo + 2(rs — ky).

Then ¢ can not be the only prime closed geodesic on (M, F).



RT42

RT+1

KT

Rr-1

Kr—2

K1

+1 CR+V(C”)+2
CRJrV(c



Definition. (M, F'), c—a prime closed geodesic on (M, F'). For integers T and k € N,

define the compensated sum of ¢ respective to T' and k by

AT k)= > (=g em), (1)
1§7n2§(?m(;§—;2§z(cm)

Compensated Exclusive Theorem. (M, F) cpt. simply conn. mfd. c is a prime
closed geodesic with i(c) > 0. H*(M; Q) = Typ1(x) with h > 1 and d > 2. Suppose for
some A € [0, k] and an even T € n(c)N the following hold:

2AZJC(O)+V(C”)+1+Ti('( ) +v(c") and k — A>r, — k,;

s(c) > v(e) 47 (i(D)+v (") —d+ (1 +ean(p) — M A (T, R))+2(k—A),
where d is even, R = i(cl) + v(c") + 77 (i(ch) + v(c )) and p =R —1;
or s(¢) > v(c") + 7 (i(cT) + v(c") —d — 745 +2 = 2DA (T, R) + 2(k — A),

where d is odd, R =i(cT) +v(c") + 77 (i(ch) + v(c)).

Then ¢ can not be the only prime closed geodesic on (M, F).



RT42

KRT+1 *
RT x *
RT_-1 x * *
K12
K1 * *
UO UR €R+V(C") €R+V(c”)+1 UR+V(C”)+2




Proof of the existence of at least two distinct closed geodesics
on every cpt. simply conn. 4-dim M withd=4and h=1,ord=h = 2.
Case 1, i(c) > dim M — 2.
— i) <i(e™)  Ym>1.
+ the above Exclusive Theorem —> #CG(M, F) > 2.
Case 2, i(c) = 1.
+ the above Exclusive Theorem —> #CG(M, F) > 2.
Case 3, i(c) =0.



Case 3, i(c) =0.

1 -1
Basic Normal form decomp. = P, ~ R(6;)oR(6;)o ( & i(c™) is even V m.
0 1
Rademacher identity = — )‘(kzo( ¢)—ki(c) =i(c)=—-2+ alﬂﬂ > 0
= k(™) =k (c) =1, ko(cm) =0, VYm>1, = d=h=2, (by Morse ineq.)

A

0:4+60> 1 8 . o 1 2
= it =24 Bn 2 3 i(¢) = B = 5
— L e ().

Compensated Exclusive Theorem —>

R R
Ti(c)B(d,h) — A(T, R) =Y (—=1)"M, > (—1)%b,

q q=0

where —A(T, R) <2, B(2,2) = -3/2, R=i(c!) + v(c!) + * € 2N.

Il
=



—> (2 = number of irr. rotations)

1 R

i(ch)+2—¢ = T%(c)gm(

< i(ch) +v(ch) + 7 (i(c") + v(ch)) —d+

2 4
< i(cT)-|—1+1—2—|—§-2:i(cT)+§.

¢ > 0 small enough —> Contradiction !

—> #CG(M,F)>2.

> (1), = AT, R))




Open problems
Understand irrational closed geodesics.
Conjecture 1: #CG(S%, F)=2 or +oo, VF € F(5?%).

Conjecture 2: Vn > 2, 42 < p, < q, such that p, — +00 and
{7CG(S", F)|F € F(S")} = {k € N|p, <k < gu} U {+00}.

[Long-Duan], [Duan-Long] = p3 > 2, py > 2.
It is very likely that ¢, < 2[(n + 1)/2] holds.
Conjecture 3: #CG(M, g) = +oo, V Riemannian metric g on M" with n > 3.

#CG(M,g) > 2, V Riemannian metric g on cpt. simply conn. M.



Conjecture 4: 3 > 1 elliptic closed geodesic on (S™, F'), V F' € F(S™).
Conjecture 5: #CG(S", F) < +00 = all closed geodesics are irrational elliptic.
Hyperbolic => #CG(S", F) = +oo.
More identity 7
Problem: How are closed geodesics distributed on (5™, F)) and (S™, g), in terms of

minimal period, or geographical location 7 What factors determine the situation 7



Thank You !





