一种任意二位置陀螺寻北模型及其数据处理技术

薛海建,郭晓松,周召发

(第二炮兵工程大学 兵器发射理论与技术国家重点学科实验室,陕西 西安 710025)

摘要:为提高寻北系统的寻北效率,提出了一种任意二位置陀螺寻北模型,可以在相差较小的 2个位置进行信号采集,减少转台转动时间,在一定程度上节省了整个寻北过程的时间。为进一步 提高寻北精度,引入小波阈值消噪方法,提出了一种新的双参数可调阈值函数,表达式简单,无需分 段取值易于计算。研制原理样机进行了任意二位置寻北试验,结果表明:160 s 内的寻北精度优于 0.02°,在一定程度上节省了寻北时间,新阈值函数消噪大大提高了寻北精度。

关键词:控制科学与技术;寻北仪;任意二位置;陀螺漂移;小波阈值消噪;阈值函数 中图分类号:U666.1 文献标志码:A 文章编号:1000-1093(2014)04-0559-08 DOI: 10.3969/j.issn.1000-1093.2014.04.019

Model and Data Processing of Arbitrary Two-position North Finder

XUE Hai-jian, GUO Xiao-song, ZHOU Zhao-fa

(State Key Discipline Laboratory of Armament Launch Theory and Technology, the Second Artillery Engineering University, Xi'an 710025, Shaanxi, China)

Abstract: In order to improve the efficiency of north finder, a gyro north finder model for arbitrary twoposition north finding is presented. It can collect the signals in two places which are less different, reduce the rotation time of turntable, and save the whole north finding time to some extent. In order to further improve the north finding accuracy, a wavelet threshold de-noising method is introduced, and a new double- parameter adjustable threshold function is proposed. The function is simple and easy to calculate without segmental values. The north-seeking experiment in arbitrary two-position is conducted on the developed principle prototype. The results show that the north finding accuracy within 160 s is higher than 0.02° , the north-finding time is saved, and the new de-noising threshold function greatly improves the north finding accuracy.

Key words: control science and technology; north finder; arbitrary two-position; gyro drift; wavelet denoising threshold; threshold function

0 引言

陀螺寻北仪是一种能在静态下全天候自动指示

方位的高精度惯性仪表,在军事和民用部门都有广 阔的应用前景。目前,寻北仪普遍采用二位置寻北 法^[1-3]、四位置寻北法^[4]和多位置寻北法^[5],连续

收稿日期: 2013-06-18

基金项目:国家自然科学基金项目(41174162)

作者简介: 薛海建(1986—),男,博士研究生。E-mail: xhaijian2012@126.com;

郭晓松(1957—),男,教授,博士生导师。E-mail:gxs202@126.com

旋转法也有一定的研究^[6-7],但仍处于探索阶段。 这些传统寻北方法有的要求陀螺仪数据采集位置过 多,如四位置寻北法、多位置寻北法等;有的要求陀 螺仪必须在相差固定的位置上进行数据测量,如二 位置寻北法的180°、四位置寻北法的90°;有的对电 机恒速控制有着很高要求(连续旋转法)。测量位 置过多、相差过大及电机的恒速稳定控制不仅操作 过程繁琐,而且耗时较长,大大增加了寻北系统的定 向时间。

为此,提出了一种更为实用且简单的任意二位 置陀螺寻北方法,通过在任意 2 个位置上对陀螺仪 和加速度计的输出信号进行采集,在有效补偿陀螺 常值漂移和加速度计零偏对寻北精度影响的前提 下,可在相差较小(小于 180°)的 2 个位置上进行信 号采集,从而减少转台转动时间,在一定程度上节省 了整个寻北过程的时间。此外,为有效地消除陀螺 输出数据中的漂移,提高寻北精度,针对陀螺漂移非 平稳、非线性的特点,引入小波阈值方法进行消噪处 理,提出了一种新的双参数可调阈值函数,可有效克 服软硬阈值函数的缺点,且表达式简单,无需分段取 值易于计算。试验表明,新方法有助于提高陀螺的 寻北精度,试验样机在 160 s 内的寻北精度优于 0.02°(1σ).

1 任意二位置寻北模型

任意二位置寻北方法指在相差任意角度的2个 点位上对陀螺进行信号采集,进而解算方位角。寻 北开始时,陀螺处于第1个位置,待系统在这个位置 完成信号采集后,通过力矩电机由转位机构带动寻 北仪测量组件旋转任意角度,并停止在此位置,完成 信号在第2个位置的信号采集。

设 n 系(地理坐标系)为北西天坐标系, Ox_n轴 方向指北, Oy_n轴方向指西, Oz_n轴方向指天; b 系为 载体坐标系, 地理坐标系与载体坐标系之间的方位 关系如图 1 所示。

初始时与地理坐标系重合,载体的姿态角 α 、 θ 、 γ 分别为方位角、俯仰角和横滚角,表示 n 系先以角 速度 $\dot{\alpha}$ 绕 z_n 轴旋转 α 角到坐标系 $Ox_1y_1z_n$,然后再分 别以角速度 $\dot{\theta}$ 和 $\dot{\gamma}$ 绕 y_1 和 x_1 轴旋转 θ 和 γ 角得到 b 系。其转动关系为

 $Ox_{n}y_{n}z_{n} \xrightarrow{Oz_{n}(\alpha)} Ox_{1}y_{1}z_{n} \xrightarrow{Oy_{1}(\theta)} Ox_{b}y_{1}z_{1} \xrightarrow{Ox_{b}(\gamma)}$

Fig. 1 The relative relationship between geographical and carrier coordinate systems

 $Ox_{\rm b}y_{\rm b}z_{\rm b}$.

由图1及转动关系可得地理坐标系到载体坐标 系的转换矩阵为

 $C_{n}^{b} = \begin{bmatrix} \cos \alpha \cos \theta & \sin \alpha \cos \theta & -\sin \theta \\ \cos \alpha \sin \theta \sin \gamma - \sin \alpha \cos \gamma & \sin \alpha \sin \theta \sin \gamma + \cos \alpha \cos \gamma & \cos \theta \sin \gamma \\ \cos \alpha \sin \theta \cos \gamma + \sin \alpha \sin \gamma & \sin \alpha \sin \theta \cos \gamma - \cos \alpha \sin \gamma & \cos \theta \cos \gamma \end{bmatrix}.$ $\frac{8}{5} \& \text{Reverse}^{c} \text{Reverse}^{c}$

螺在初始位置的输出为

$$\boldsymbol{\omega}^{\mathrm{b}} = \begin{bmatrix} \boldsymbol{\omega}_{x} \\ \boldsymbol{\omega}_{y} \\ \boldsymbol{\omega}_{z} \end{bmatrix} = \boldsymbol{C}_{\mathrm{n}}^{\mathrm{b}} \boldsymbol{\omega}_{\mathrm{ie}}^{\mathrm{n}} + \boldsymbol{\varepsilon}_{0} + \boldsymbol{\varepsilon} =$$
$$\boldsymbol{C}_{\mathrm{n}}^{\mathrm{b}} \begin{bmatrix} \boldsymbol{\omega}_{\mathrm{nor}} \\ \boldsymbol{0} \\ \boldsymbol{\omega}_{\mathrm{u}} \end{bmatrix} + \begin{bmatrix} \boldsymbol{\varepsilon}_{0}^{x} \\ \boldsymbol{\varepsilon}_{0}^{y} \\ \boldsymbol{\varepsilon}_{0}^{z} \end{bmatrix} + \begin{bmatrix} \boldsymbol{\varepsilon}_{x}^{x} \\ \boldsymbol{\varepsilon}_{y}^{y} \\ \boldsymbol{\varepsilon}_{z}^{z} \end{bmatrix},$$

即

$$\omega_{x}(0^{\circ}) = \omega_{nor} \cos \alpha \cos \theta - \omega_{u} \sin \theta + \varepsilon_{x0} + \varepsilon_{x}(0^{\circ}),$$
(1)

$$\omega_{y}(0^{\circ}) = \omega_{nor}(\cos \alpha \sin \theta \sin \gamma - \sin \alpha \cos \gamma) + \omega_{y}\cos \theta \sin \gamma + \varepsilon_{y0} + \varepsilon_{y}(0^{\circ}).$$
(2)

考虑加速度计零偏 *ξ*₀ 和随机漂移项 *ξ*,同理可得加速度计在初始位置的输出为

$$a_x(0^\circ) = g\sin\theta + \xi_{x0} + \xi_x(0^\circ), \qquad (3)$$

$$a_{y}(0^{\circ}) = -g\cos\theta \sin\gamma + \xi_{y0} + \xi_{y}(0^{\circ}), \quad (4)$$

式中: ω_{nor} 和 ω_{u} 分别为地球自转角速度在 n 系中的 北向分量和天顶分量: $\omega_{nor} = \omega_{ie}\cos\varphi_{\lambda}\omega_{u} = \omega_{ie}\sin\varphi$, ω_{ie} 为地球自转角速度, φ 为当地纬度,g为重力加速度。 待系统在初始位置完成信号采集后,通过力矩 电机控制转台绕 z_b轴转动任意角度 μ,设在初始状 态下机械转动系为 m 系,与载体坐标系 b 系重合, 转动后的机械转动系为 m¹系,如图 2 所示。

Fig. 2 The position relation between the machinery rotation $m \mbox{ and } m^1$

 $\boldsymbol{C}_{\mathrm{m}}^{\mathrm{m}^{1}} = \begin{bmatrix} \cos \mu & \sin \mu & 0 \\ -\sin \mu & \cos \mu & 0 \\ 0 & 0 & 1 \end{bmatrix},$

则陀螺在 m¹系(位置2)的输出为

$$\boldsymbol{\omega}_{\mathrm{m}^{1}} = \boldsymbol{C}_{\mathrm{m}}^{\mathrm{m}^{1}} \boldsymbol{C}_{\mathrm{n}}^{\mathrm{b}} \boldsymbol{\omega}_{\mathrm{ie}}^{\mathrm{n}} =$$

$$\boldsymbol{C}_{\mathrm{m}}^{\mathrm{m}^{1}} \boldsymbol{C}_{\mathrm{n}}^{\mathrm{b}} \begin{bmatrix} \boldsymbol{\omega}_{\mathrm{nor}} \\ \boldsymbol{0} \\ \boldsymbol{\omega}_{\mathrm{u}} \end{bmatrix} + \begin{bmatrix} \boldsymbol{\varepsilon}_{x0} \\ \boldsymbol{\varepsilon}_{y0} \\ \boldsymbol{\varepsilon}_{z0} \end{bmatrix} + \begin{bmatrix} \boldsymbol{\varepsilon}_{x}(\boldsymbol{\mu}) \\ \boldsymbol{\varepsilon}_{y}(\boldsymbol{\mu}) \\ \boldsymbol{\varepsilon}_{z}(\boldsymbol{\mu}) \end{bmatrix}. \tag{5}$$

故陀螺在位置2测得的角速度为

$$\omega_{x}(\mu) = \cos \mu(\omega_{nor} \cos \alpha \cos \theta - \omega_{u} \sin \theta) +$$

$$\sin \mu \big[\omega_{nor} (\cos \alpha \sin \theta \sin \gamma - \sin \alpha \cos \gamma) +$$

$$\omega_{u} \cos \theta \sin \gamma] + \varepsilon_{x0} + \varepsilon_{x}(\mu) , \qquad (6)$$

同理把(3)式、(4)式与(8)式、(9)式分别对应 相减并忽略随机漂移可得

$$\alpha_{x} = \alpha_{x}(0^{\circ}) - \alpha_{x}(\mu) =$$

$$g \sin \theta - (g \sin \theta \cos \mu - g \cos \theta \sin \gamma \sin \mu), (12)$$

$$\alpha_{y} = \alpha_{y}(0^{\circ}) - \alpha_{y}(\mu) = -g \cos \theta \sin \gamma -$$

$$(-g \sin \theta \sin \mu - g \cos \theta \sin \gamma \cos \mu). \quad (13)$$

这说明任意二位置寻北方法能够有效消除陀螺 常值漂移和加速度计零偏对寻北精度的影响,联立 (10)式、(11)式可解得方位角

$$= \arctan \frac{\overline{\omega}_{x}(\sin \theta \sin \gamma + \sin \mu \cos \theta - \cos \mu \sin \theta \sin \gamma) - \overline{\omega}_{y}(\cos \theta - \cos \mu \cos \theta - \sin \mu \sin \theta \sin \gamma) + 2\omega_{u} \sin \gamma(1 - \cos \mu)}{-\left[\overline{\omega}_{x}(\cos \mu - 1) - \overline{\omega}_{y} \sin \mu + 2\omega_{u} \sin \theta(\cos \mu - 1)\right] \cos \gamma}$$

式中: $\overline{\omega}_x, \overline{\omega}_y$ 分别为陀螺 x, y敏感轴在前后任意二 位置上的测量数据之差; θ, γ 分别为俯仰角和横滚 角,可由(12)式、(13)式计算得到。

下面讨论3种特殊情况:

α

1) $\theta = 0^{\circ}, \gamma = 0^{\circ}($ 水平状态下):

$$\alpha = \arctan \frac{\overline{\omega}_x \sin \mu - \overline{\omega}_y (1 - \cos \mu)}{\overline{\omega}_x (1 - \cos \mu) + \overline{\omega}_y \sin \mu}.$$
 (15)

2)μ=180°(对径 180°二位置测量,即传统二位 置法): $\alpha = \arctan \frac{\overline{\omega}_x \sin \theta \sin \gamma - \overline{\omega}_y \cos \theta + 2\omega_u \sin \gamma}{(\overline{\omega}_x + 2\omega_u \sin \theta) \cos \gamma}.$

(14)

3) $\theta = 0^{\circ}, \gamma = 0^{\circ} \pm \mu = 180^{\circ}(水平状态下的传统 二位置法):$

$$\alpha = \arctan\left(-\frac{\omega_{y}}{\overline{\omega}_{x}}\right). \tag{17}$$

通过上述3种特殊情况可以看出,传统二位置 寻北方法只是本文任意二位置寻北方法的一个特 例,任意二位置寻北方法有着更加宽广的应用范围。 在实际工作中,可灵活选择2个测量位置间的相位 差,在消除陀螺常值漂移和加速度计零偏的同时缩 短寻北时间。

2 小波阈值消噪方法

陀螺作为捷联式寻北系统的核心器件,影响其 工作精度的一个重要指标就是陀螺随机漂移,一般 认为,陀螺漂移是一弱非线性、非平稳、慢时变随机 过程^[8],且易受到外部环境等多种不确定因素的影 响,无法建立其准确的数学模型,故需对陀螺信号进 行有效地消噪处理以提高寻北精度。目前,对陀螺 信号的消噪主要采用小波阈值消噪法^[9-11]。

2.1 小波阈值消噪的基本原理

对一个迭加了高斯白噪声的信号可表述为f(t)=s(t) + n(t),式中:s(t)为真实信号;n(t)为方差 σ^2 的高斯白噪声,服从 $N(0,\sigma^2)$ 分布。对一维信号 f(t)做离散小波变换后,由小波变换的线性性质可 知,分解得到的小波系数 $\omega_{j,k}$ 仍然由 2 个部分组成: 1)s(t)对应的小波系数。幅值较大,但其数目较少; 2)噪声(t)对应的小波系数。仍呈高斯分布,噪声 的能量比较均匀地分布在所有的小波系数上,幅值 较小。因此在不同尺度上,可选取合适的阈值 λ 对 小波系数进行阈值量化处理。当 $\omega_{j,k} < \lambda$ 时,认为此 时的 $\omega_{j,k}$ 主要由噪声引起的;当 $\omega_{j,k} > \lambda$ 时,认为此 时的 $\omega_{j,k}$ 主要由信号产生,最终实现信噪分离。因 此,小波阈值去噪的过程可分为 3 个步骤:

 信号的小波分解:选择一个小波并确定小波 分解层数 N,对信号进行 N 层小波分解,得到一组小 波系数 ω_{i,k}.

2) 对高频系数进行阈值量化: 对于从 1 ~ N 的 每一层,选择一个阈值,并对每一层的高频系数根据 阈值函数进行阈值量化处理。

3)信号小波重构:根据小波分解的第 N 层的低 频系数和经过阈值量化处理后的第1~N 层的高频 系数,进行信号的小波重构。

由此可见,阈值函数是影响离散小波阈值去噪效果重要的因素之一,它的性能直接关系到信号去 噪的质量。由此,设计性能优良的阈值函数显得尤 为重要。

2.2 改进阈值函数模型

实际使用中,传统的硬、软阈值函数得到了较为

广泛的应用,也取得了不错的效果,然而它们都存在 着一些缺陷。硬阈值函数的不连续性使得去噪后的 信号较之原信号偏差较大且仍然含有明显的噪声; 软阈值函数虽然连续性好,但估计小波系数与含噪 信号的小波系数之间存在恒定的偏差,使得去噪后 的信号方差过大,当噪声信号很不规则时显得过于 光滑。基于此,本文提出了一种新的双参数可调阈 值函数

$$\hat{\omega}_{i,k} = \omega_{i,k} \alpha^{\left(\frac{\lambda}{|\omega_{i,k}|}\right)^{\beta}}, \qquad (18)$$

式中: α 为收缩系数, 且 $0 < \alpha < 1$; β 为调节因子, 且 为正整数。

新的阈值函数的连续性及高阶可导是显而易见 的,且在 $|\omega_{i,k}| = \lambda$ 附近存在一个比较平滑的过渡 带。重点讨论新阈值函数如何解决软阈值函数所存 在的恒定偏差问题。当 $|\omega_{i,k}| \rightarrow \infty$ 时, $\alpha^{\left(\frac{\lambda}{|\omega_{i,k}|}\right)^{\beta}} \rightarrow 1$ 、 $\hat{\omega}_{i,k} \rightarrow \omega_{i,k}$;因此新阈值函数以直线 $\hat{\omega}_{i,k} = \omega_{i,k}$ 为渐近 线,克服了软阈值函数中 $\hat{\omega}_{ik}$ 与 ω_{ik} 之间总是存在着 恒定的偏差的缺点。此外,新阈值函数表达式简单, 无需分段取值。该阈值函数与其他阈值函数的不同 主要体现在对低于给定阈值的小波系数的处理上。 传统的阈值函数是将绝对值小于阈值的小波系数全 部置0,而改进阈值函数对这些系数做收缩处理,使 它们远远小于其他系数,在一定程度上保留了真实 信号。在新的阈值函数中,随着收缩系数α减小, $\hat{\omega}_{i,k}$ 由趋于0收缩变为趋于 $\omega_{i,k}$ 的转折段越来越靠近 阈值点,当 $\alpha = 0.1$ 时转折段在阈值附近;随着调节 因子 β 的增大,新阈值函数越逼近于硬阈值函数,计 算量也相应增大。如图3所示给出了硬软阈值函数 与改进阈值函数的比较曲线示意图,改进阈值函数 中参数取 $\alpha = 0.1$ $\beta = 6.$

由图 3 可看出:在阈值附近,可使得阈值消噪以 较为平滑的方式实现,较好地克服了软硬阈值函数 本身所存在的固有缺陷。

3 寻北实验结果分析

用激光陀螺、高精度二自由度转台、稳压电源、 美国 NI 公司生产的 PXI-6259 多功能数据采集模 块、主控计算机和外围电路等构成寻北原理样机,结 构组成框图如图 4 所示。其中激光陀螺选用的是国 防科技大学自主研制的 90 型二频机械抖动激光陀 螺,陀螺的零偏稳定性和重复性均优于 0.005°/h,

Fig. 3 Curves of improved threshold function and soft and hard threshold functions

随机游走系数小于等于 0.001 5°/√h, 测量范围 -200~200°/s.

3.1 任意二位置寻北方法的实验验证

实验时,将激光陀螺安装于高精度转台的正上 方,确保陀螺敏感轴与台面平行,通过转台的水平、 倾斜传感器使陀螺敏感轴严格调平,并严格按照操 作规程完成陀螺的启动、稳定和数据采集等工序。

寻北开始时,待系统通电2 min 陀螺输出基本 稳定后开始采集数据,采样频率200 Hz,陀螺在位

置1(初始位置)采集10 s数据后控制转台旋转 30°,静置10 s后采集10 s陀螺在位置2的输出数 据;而后再控制转台旋转30°,采集10 s陀螺在位置3 的输出数据;如此转台每次旋转30°共采集陀螺 8个位置的输出数据,因此相对于初始位置(位置 1)通过任意二位置方法可以解算出初始位置的 7个方位角值。

对上述步骤进行 7 次重复性寻北实验,寻北重 复性是指在同一位置多次进行寻北计算其结果的近 似程度,如果系统的重复性好,则表明系统稳定性和 抗干扰能力强。7 次实验激光陀螺敏感轴的输出数 值结果(每次取均值)如表 1 所示。

表1 激光陀螺重复性实验输出数据

T 1 1	m	1.	c	1		. • . •	• .
Lab. L	The output	data	ot	laser	ovro	repetitive	experiments
100011	ine output	cicicic	· · ·	10001	57+0	rependice	onportinonto

次序		陀螺敏感轴在各个位置的输出/mV										
	坐你捆	$\mu = 0^{\circ}$	$\mu = 30^{\circ}$	μ = 60 °	$\mu = 90^{\circ}$	$\mu = 120^{\circ}$	$\mu = 150^{\circ}$	μ = 180 °	$\mu = 210^{\circ}$			
kk a vla	x	-0.12864	-0.12866	-0.09406	-0.03438	0. 034 65	0.09449	0. 128 94	0. 128 64			
第1次	у	0.034 40	-0.034 54	-0.09400	-0.12848	-0.128 20	- 0. 093 85	-0.033 89	0.03476			
the a ver	x	-0.12862	-0.12858	-0.09401	-0.034 32	0. 034 85	0. 093 75	0. 128 74	0. 128 61			
弗 2 伏	У	0. 034 51	-0.034 24	-0.093 82	-0.128 60	-0.12838	-0.09371	-0.034 23	0.034 60			
第3次	x	-0.12865	-0.128 60	-0.09408	-0.034 22	0. 034 56	0.09416	0. 128 93	0. 128 78			
	У	0.03448	-0.034 53	-0.09396	-0.12861	- 0. 128 59	- 0. 093 73	-0.034 08	0. 034 57			
the a store	x	-0.128 60	-0. 128 53	-0.09407	-0.034 12	0. 034 60	0.09415	0. 128 86	0. 128 35			
弗4 伏	у	0.03446	-0.03434	-0.09407	-0.128 52	-0.128 00	-0.094 13	-0.034 17	0.034 80			
	x	-0.12861	-0.12879	-0.09399	-0.03400	0. 034 73	0.094 21	0. 128 72	0. 128 31			
弗 5 伏	У	0. 034 47	-0.03434	- 0. 093 99	-0.12837	-0.128 40	- 0. 093 53	-0.034 08	0. 034 85			
the contract of the	x	-0.12865	-0. 128 71	-0.09396	-0.033 86	0. 034 83	0. 094 01	0. 128 73	0. 128 39			
第6次	у	0.034 52	-0.03433	-0.09404	-0.12816	-0.12844	- 0. 093 76	-0.033 98	0. 034 94			
第7次	x	-0.12870	-0. 128 59	-0.09398	-0.03464	0. 034 54	0. 093 90	0. 129 18	0. 128 79			
	у	0.034 50	-0.034 41	-0.09411	-0.12831	- 0. 128 51	- 0. 093 82	-0.034 08	0. 034 85			

将表1中的实测实验数据和相应的旋转角度μ 代入(15)式,计算出7次寻北实验结果,并用德国 的 GYROMAX-2000 测得的北向值作为真实方位角, 实验测得激光陀螺的真实方位角为 75.086 32°. 计 算出各相差下的均方根误差(含系统误差)用以评 价寻北精度,结果如表 2 所示。

表2 激光陀螺任意二位置寻北结果

Tab. 2 The north finding results of laser gyro in arbitrary two positions

次序、均方根			$\theta = \gamma = 0^{\circ}$ 时不同	相差的任意二位	置寻北结果/(°)		
误差与寻北时间	$\mu = 30^{\circ}$	μ = 60 °	μ = 90 °	$\mu = 120^{\circ}$	$\mu = 150^{\circ}$	$\mu = 180^{\circ}$	$\mu = 210^{\circ}$
第1次	74. 978 21	75.07297	75.05570	75. 120 45	75.11006	75. 150 45	75.07904
第2次	75.02843	75. 094 93	75.03340	75. 103 75	75. 032 31	75.045 83	75.02010
第3次	75.03570	75.063 57	75.06927	75.02267	75.08199	75. 095 41	75.01991
第4次	75.05442	75.03634	75. 100 18	75. 130 38	75.004 24	75.074 84	75.07762
第5次	74. 852 61	75.08572	75. 155 88	75.08270	75. 124 90	75.08265	75.085 50
第6次	74. 952 28	75.10076	75. 228 83	75.09189	75.05347	75.097 31	75.09461
第7次	75.09044	75. 107 76	75.01406	75.03872	75.037 28	75. 106 76	75.07656
均方根误差/(°)	0. 114 16	0. 023 71	0.07030	0.037 36	0. 046 61	0.030 52	0. 036 03
寻北时间/s	155	160	165	170	175	180	185

为更加直观地对比不同相差下的任意二位置寻 北结果,给出了不同相差下的7次寻北结果均方根 误差分布曲线,如图5所示。

从表2和图5可以看出,激光陀螺的初始方位 角约为75°;相对于初始位置,在不同转角下的任意 二位置寻北结果的寻北精度均较高,全部都在 0.12°以下,特别是相差60°下的均方根误差值还要 优于180°对径的情况;随着转角的增大,转台转动 时间加大,进而寻北时间增长。

3.2 小波阈值消噪的实验验证

前面进行了任意二位置寻北方法的实验验证, 从实验结果可以看出本次实验在相差 60°下的寻北 结果最好且仅需 160 s 的寻北时间,下面针对相差 60°下的7次寻北实验数据,分别采取小波硬阈值、 软阈值和改进阈值函数对陀螺输出信号进行消噪处 理后再进行方位角解算。在进行小波分解时,选取 db4 小波基,分解层数取4,阈值取固定阈值 $\lambda = \sigma \sqrt{2 \ln N}$,其中 σ 为噪声标准方差,N为信号的尺 寸或长度,改进阈值函数消噪时取 $\alpha = 0.05$ 、 $\beta = 4$, $\alpha = 0.1$, $\beta = 6$ 和 $\alpha = 0.2$, $\beta = 5$ 三种模式。图6所示 为截取陀螺 10 s 输出数据应用不同阈值函数消噪 后的比较曲线。

由图6可看出,硬阈值函数去噪后波形存在较 多的振荡点,这是由于其不连续造成的;软阈值函 数去噪后波形虽然较为光滑,但由于恒定偏差的 影响,信号重构的精度较差;改进阈值函数能同时 克服软硬阈值函数存在的缺陷,去噪后信号波形 较为光滑,通过调整双参数 α、β 可以得到很好的 去噪效果,具有较高的实用价值。如表 3 所示为 应用不同阈值函数对陀螺输出数据进行消噪后解 算得到的寻北结果。

分析结果可知:基于 3 种阈值函数的小波阈值 消噪方法均具有削弱陀螺漂移、减小寻北误差的能 力;3 种参数选取模式下的改进阈值函数的寻北结 果均优于传统软硬阈值函数的寻北结果,这是由于 硬阈值函数的不连续和软阈值函数存在恒定偏差引 起的;改进阈值函数中参数 α、β 的选取将直接影响

陀螺信号的消噪效果,针对不同数据如何获取最优的参数值是一个值得研究的方向;去噪后寻北仪样

机的均方根误差值达到了优于 0.02°(160 s)的寻北 精度。

表 3	不同	阈值区	数消	噪后	的寻	·北结果
-----	----	-----	----	----	----	------

Tab. 3	The	results	of north	finding	by	different	denoising	threshold	functions
				0	~		0		

	—————————————————————————————————————									
次序与均方根误差	医丛类相	西 闾佶	协调 传 函 粉	改进阈值函数						
	原如奴据	硬國值函数	状阈值函数	$\alpha = 0.05, \beta = 4$	$\alpha = 0.1, \beta = 6$	$\alpha = 0.2, \beta = 5$				
第1次	75. 072 97	75. 118 59	75.07269	75.08311	75. 092 59	75. 079 31				
第2次	75.09493	75. 107 71	75. 128 13	75.09724	75. 108 68	75. 113 24				
第3次	75.063 57	75. 117 17	75. 118 78	75.067 59	75. 084 47	75. 074 53				
第4次	75.03634	75.07931	75.09749	75.05947	75. 071 42	75. 060 41				
第5次	75.08572	75. 113 03	75.080 30	75.08012	75. 100 71	75. 086 43				
第6次	75.10076	75.078 90	75.09128	75. 111 43	75. 121 25	75. 112 85				
第7次	75. 107 76	75. 101 24	75. 106 78	75. 107 53	75. 106 74	75. 097 39				
均方根误差/(°)	0.023710	0. 022 331	0. 022 652	0. 019 661	0. 019 300	0. 019 807				

4 结论

1)文中任意二位置陀螺寻北方法可在任意2个位置上对陀螺信号进行采集解算方位角,在消除陀螺常值漂移和加速度计零偏的同时在一定程度上缩短寻北时间,传统二位置寻北方法是其特例。

2)改进阈值函数具有双参可调性,表达式简 单,无需分段取值易于计算,可同时克服软硬阈值函 数的不足,且具有优越的数学特性,能够有效去除陀 螺输出信号的噪声,显著提高寻北精度。

3)样机测试数据表明,采用任意二位置方法研制的寻北仪去噪后在 160 s 内的寻北精度优于 0.02°.

参考文献(References)

[1] LI Xu-you, ZHENG Qiu-li, YANG Han-rui, et al. The improvement of FOG north-seeker two-position north determining scheme [C] // IEEE International Conference on Information and Automation. Harbin: IEEE, 2010:2248 - 2251.

- [2] 蒋庆仙,马小辉,陈晓璧,等. 光纤陀螺寻北仪的二位置寻北方案[J].中国惯性技术学报,2006,14(3):1-5.
 JIANG Qing-xian, MA Xiao-hui, CHEN Xiao-bi, et al. North determining scheme by two-position for a FOG north seeker[J].
 Journal of Chinese Inertial Technology,2006,14(3):1-5.(in Chinese)
- [3] 龙文强,秦继荣.二位置数字捷联寻北仪的设计与实现[J].火 力与指挥控制,2007,32(4):97-111.

LONG Wen-qiang, QIN Ji-rong. Design and realization of twoposition digitized strapdown north seeker [J]. Fire Control and Command Control, 2007, 32(4): 97 - 111. (in Chinese)

- [4] ZHANG Yan, CAO Ju-liang, WU Wen-qi, et al. The analysis of turntable error and arithmetic design for north-finder based on rate biased RLG[J]. Advanced Materials Research, 2012, 383: 6313 - 6318.
- [5] 李敏,王志乾,黄波.基于动调陀螺的多位置捷联寻北仪研制[J].
 仪表技术与传感器,2010(5):19-21.

LI Min, WANG Zhi-qian, HUANG Bo. Design and realization of multi-position strap-down north-seeking instrument based on dynamically tuned gyro [J]. Instrument Technique and Sensor, 2010(5):19-21. (in Chinese)

[6] 徐海刚,郭宗本. 一种实用旋转调制式陀螺寻北仪的设计[J].
 兵工学报,2010,31(5):616-619.

XU Hai-gang, GUO Zong-ben. Design of a practical rotation modulated gyro north-finder[J]. Acta Armamentarii,2010,31(5): 616-619. (in Chinese)

[7] 白云超,李学琴,马小辉,等.采用旋转调制技术的高精度陀螺

寻北方案[J]. 中国惯性技术学报,2010,18(4):421-424. BAI Yun-chao, LI Xue-qin, MA Xiao-hui, et al. High-precision north determining scheme based on rotation-modulation technology [J]. Journal of Chinese Inertial Technology,2010,18(4):421-424. (in Chinese)

 [8] 李家齐,王红卫,刘爱东.基于改进型经验模分解的陀螺漂移 趋势提取[J].系统工程与电子技术,2005,27(6):1080-1082.

Ll Jia-qi, WANG Hong-wei, LIU Ai-dong. Trend extraction of gyro's drift based on modified empirical mode decomposition [J]. Systems Engineering and Electronics, 2005, 27 (6): 1080 – 1082. (in Chinese)

- [9] 张通,张骏,张怡. 基于改进小波阈值的激光陀螺漂移信号降 噪[J]. 仪器仪表学报,2011,32(2):258-263.
 ZHANG Tong, ZHANG Jun, ZHANG Yi. Ring laser gyro drift signal denoising based on improved wavelet threshold[J]. Chinese Journal of Scientific Instrument, 2011, 32(2): 258-263. (in Chinese)
- [10] 霍炬,王石静,杨明,等. 基于小波变换阈值法处理光纤陀螺 信号噪声[J]. 中国惯性技术学报,2008,16(3): 343-347.
 HUO Ju, WANG Shi-jing, YANG Ming, et al. Noise processing of FOG signal based on wavelet threshold-value [J]. Journal of Chinese Inertial Technology, 2008, 16(3): 343 - 347. (in Chinese)
- [11] 万彦辉,秦永元.小波分析在陀螺信号滤波中的研究[J]. 压 电与声光,2005,27(4):455-457.
 WAN Yan-hui,QIN Yong-yuan. Application of wavelet analysis in gyro signal filtering[J]. Piezoelectrics and Acoustooptics,2005, 27(4):455-457. (in Chinese)