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Abstract: A structure of non-adaptive decision-aided maximum likelihood is demonstrated by 
introducing a forgetting factor via both analysis and experiments, which achieves the same 
performance as the adaptive phase estimation while reducing the algorithm complexity. 
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1. Introduction 

Coherent detection with advanced modulation formats has been well established as the technology for the next-
generation optical networks to support 100 G Ethernet or even higher bit rates [1]. One of the major impairments in 
coherent receiver is the carrier phase perturbation originating from laser phase noise and/or fiber nonlinear phase 
noise. Various data-aided and non-data-aided phase estimators have been proposed for coherent detection [2–5]. 
Among these algorithms, decision-aided (DA) maximum likelihood (ML) is well investigated in both wireless and 
coherent optical communications due to its excellent characteristics [6, 7]. However, no experimental study has been 
carried out to investigate its performance in the presence of fiber nonlinearity. In this paper, we will first introduce a 
forgetting factor into the conventional DA ML estimator and examine its performance via both analysis and 
experiments, focusing on self-phase modulation (SPM).  

2.  Principles of DA ML with a forgetting factor 
The recovered signal after digital equalization can be represented by ( ) ( ) exp[ ( )] ( )r k m k j k n kθ= +  [4], where 

 is the kth data symbol, and M, a power of 2, is the total number of signal points in the constellation. ( )m k ( )kθ  is 
the Wiener phase noise given by ( )= ( -1)+ ( )k k kθ θ ν  and the increment ( )kν  is a Gaussian variable with mean zero 

and variance 2

pσ , and  is assumed to be the dominant additive white Gaussian noise with mean zero and 

variance 

( )n k
2
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. The conditional probability 
density function p(r(k)|θ(k), m(k)) is Gaussian[7]. By taking the derivative of the likelihood function given L 
received signals with respect to θ(k), the DA ML phase estimate is represented by [6] 

, where the superscript * denotes complex conjugate, is the receiver's decision 

on the lth received symbol, and is the normalization factor. Here, L is called the memory 

length. The phase error of the DA ML estimator has a variance derived in [4] as 
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where 2 1/n sσ γ′ = . The phase error derived in Eq. (1) is still valid even in M-quadtraure amplitude modulation (M-
QAM) format due to the average over L symbols [8].  

The conventional DA ML estimator shows the individual phase estimates ˆ( )lθ for symbols k−L to k−1 are all 
weighted equally. Due to the fact that phase noise is a Wiener process, which de-correlates over time, the DA ML 
phase estimator would be suboptimal. It is straightforward to conjecture that the phase estimate ( 1)kθ −  at symbol 

k−1 ought to be a better estimate of  than the phase estimate ˆ( )kθ (k )Lθ − . In view of the aforementioned 
characteristics of the phase noise, a forgetting factor α (0 < α ≤ 1) is introduced into the conventional DA ML 
estimator, yielding  
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The variance of its phase error θΔ  is easily derived as (α≠1) 
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Note that the conventional DA ML corresponds to the form of Eq. (2) with α=1.  
Fig. 1 demonstrates that the analytical standard deviation (STD) in Eq. (3) for the phase error variance is accurate 

whichever value for the forgetting factor is selected. As can be observed, a small forgetting factor is optimal at high 
SNR region while a large forgetting factor is preferred at low SNRs. Moreover, we plot the optimal forgetting factor 
as a function of phase noise in Fig. 2. The dotted line indicates the transition of the optimal forgetting factor: the 
faster the carrier phase varies, the smaller the forgetting factor α is. The explanation for the observations in both 
Figs. 1 and Fig. 2 is that a smaller forgetting factor is able to make the first phase estimate ( 1)kθ −

)

dominant over the 

previous phase estimates, which are less correlated with the current phase estimate . The STD of the adaptive 
phase estimator is also plotted in Fig. 1, where the adaptive DA algorithm is no longer optimum in 16-QAM due to 
the constellation penalty [4]. By carefully adjusting either the memory length L [4] or forgetting factor α, the DA 
ML can outperform the adaptive phase estimation. 
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Fig. 1. The comparison of STD between DA ML with different 
forgetting factor α in 16-QAM format obtained from analysis 
(line) and MC simulations (marker ‘+’). 2

pσ =10-3 and L=10. 
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Fig. 2.  The STD of the DA ML with different forgetting factor α 
and phase noise at γs=20 dB in 16-QAM format. The dot line 
highlights the optimal forgetting factor at different phase noise 
levels. L=10.

4.  Experiments and Results  
A long-haul transmission was carried out to investigate the proposed DA ML with the forgetting factor. As 
displayed in Fig. 3, a typical polarization-multiplexing (PolMux) RZ-QPSK transmitter [9], centering at wavelength 
1550.0 nm modulated by 44 Gbits/s bit rate, was coupled into the transmission loop. The other channels were 
occupied by continuous-wave (CW) lasers for noise suppression in erbium-doped fiber amplifiers (EDFA). The fiber 
loop consisted of 6-span ~80km dispersion managed fiber (DMF), resulting in a total ~800ps/nm  residual chromatic 
dispersion after each loop. The measured signal was transmitted over 5 loops, resulting in a total transmission length 
of 2, 400 km. The spectra after 5-loop transmission are depicted in Fig. 4. The received signal was filtered through a 
1nm optical tunable filter, and was then fed into a coherent receiver. The received signal power was kept at –5 dBm 
throughout all the measurements.  

A series of typical digital signal processing (DSP) algorithms were conducted for channel equalization and 
correlation was then computed to search for the beginning of the training data that are designed for low-density 
parity check codes. To address the phase ambiguity in the system, the training data was differentially encoded first 
and then uploaded into two pulse pattern generators (PPGs), which were synchronized with the aid of a colleague 
from the University of Arizona. In the offline processing, the cross correlation between the recovered bits and 
training data was calculated, as illustrated in Fig. 5, where the peak indicates the beginning of the training data. It is 
worthy to point out that the correlation for two tributaries (in-phase and quadrature) is helpful to monitor the 
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synchronization of two PPGs. The use of training data can resolve the phase ambiguity and facilitate various data-
aided DSP algorithms. In this paper, we will utilize those training data for the adaptive DA phase estimation. 
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Fig. 3. Experimental setup for the 2,400 km transmission of 44 Gbits/s PolMux RZ-QPSK. ADC: analog-to-digital converters; AWG: arrayed 
waveguide grating; BPF: band-pass filter; GEQ: gain equalizer; OTF: optical tunable filter; PC: polarization controller; SW: switch; WSS: 
wavelength selected switch; VOA: variable optical attenuator;  

Fig. 6 shows the measured Q-factor for the DA ML with different forgetting factors (α=1 and 0.5) as a function 
of the launched signal power. It demonstrates that the DA ML with a proper forgetting factor (α=0.5) can actually 
outperform the conventional DA ML (α=1) by 0.33 dB at the optimal launch power. The adaptive DA algorithm is 
also plotted in Fig. 6 for reference. It is seen that the forgetting factor drives the DA ML to approach the adaptive 
DA algorithm, which is proven to have the optimal performance in constant-amplitude M-PSK systems [4]. Thus, 
the DA ML with the forgetting factor can achieve optimum performance without the need for training as in the 
adaptive DA, or dynamically changing the memory length, thus reducing the algorithm complexity. 
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5.  Conclusions  

We propose a novel scheme for implementing DA ML phase estimation by introducing a forgetting factor. The 
phase error variance of the proposed DA ML structure is firstly demonstrated and analytically verified. In addition, a 
long-haul transmission experiment is carried out to study the proposed DA ML structure. It is experimentally shown 
that the proposed DA ML with a forgetting factor can gain a 0.33 dB Q-factor improvement over the conventional 
DA ML. It achieves the same performance as the adaptive phase estimator while reducing the algorithm complexity.  

The authors with National Univ. of Singapore would like to thank the funding support by A*STAR SERC PSF 
092 101 0054. 
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Fig. 6. The measured Q-factor (X-pol) as a function of input power. 

Fig. 4. Received optical spectra after 5 loops. Res. 0.2 nm.  
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