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Abstract: High Q-factor localized conical modes are discovered theoretically and demonstrated 
experimentally in an optical fiber. The theory of these modes provides a means for exceptionally 
accurate local characterization of the optical fiber nonuniformity. 
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1. Introduction 
This paper describes a new type of high Q-factor optical mode, a conical mode, which is found to be commonly 
met in conventional optical fibers. Usually, a high Q-factor of a whispering gallery mode (WGM) in dielectric 
microresonators  (e.g., in microspheres and microtoroids [1]) is a result of strong WGM localization due to the total 
internal reflection from the resonator surface and/or classical conservation laws, which confine the mode between 
two caustics separating the classically allowed and classically forbidden regions. It is commonly accepted that the 
absence of caustics or strongly reflecting material interfaces, 
which confine the classical rays, or periodic structures, which 
perform multiple wave reflection, makes the corresponding 
wave motion unbounded and leads to the disappearance of the 
high Q-factor resonances. For this reason, it could be expected 
that all the WGMs in a lossless dielectric cone illustrated in 
Fig. 1 are delocalized. In fact, the classical motion at the 
conical surface is bounded on the narrower side of the cone and 
is unbounded on its wider side, so that any geodesic (classical 
ray) propagating at the conical surface eventually moves off to 
infinity (Fig. 1(a)). In contrast, it is shown below that, for a 
cone with a small half-angle γ , a wave beam launched 
normally to the cone axis (using, e.g., an optical microfiber [2]) 
can be completely localized (Fig. 1(b)).  
     The discovered localized conical modes are common for 
conventional optical fibers which usually have 5~ 10γ −  or less. 
It is found that the transmission resonance shape of a conical 
WGM exhibits asymmetric Airy-type oscillations, which allow one to determine the local slope γ of a slightly 
nonuniform microcylinder (e.g., of an optical fiber) from a single measurement. As cone half-angle γ decreases, the 
size of the localized mode grows very slowly, as 1/3γ − . The developed theory, applied to the investigation of the 
local slope of an optical fiber, is in excellent agreement with the experimental data. 

2. Theory  
Following the experimental situation considered below, it is assumed that a light beam propagating close to the 
conical surface is launched by a microfiber waveguide which touches the cone surface normally to its axis (Fig. 
1(b)). Similar to [3], in the developed theory, the value of a circulating and self-interfering WGM at a point ( , )zϕ  
of the cone surface (here ϕ  is the azimuthal angle and z  is the cone axial coordinate) is shown to be determined 
by the following superposition of fundamental Gaussian beams which are launched at point  0zϕ = =  and make 
m  turns before approaching point ( , )zϕ : 

 [ ]1/ 2( , ) ~ (0,0) exp ( ) ( , )m m
m

z S i i S zϕ β α ϕ−Ψ +∑     (1) 

Here ( , )mS zϕ  is the distance between the launch point (0,0)  and point ( , )zϕ  calculated along the geodesic which 
connects these points after completing m turns.  For 2 1mπ γ << , we have 0 2 0( , ) / (2 )m m mS z S r m z z Sϕ ϕ π γ≈ + − +  

 
 
Fig. 1 (a) – Illustration of a geodesic propagating along the 
conical surface. (b) – Illustration of a localized WGM 
launched by a microfiber. 
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where r  is the local cone radius of the circumference ( ,0)ϕ  and  0
mS  is the length of the geodesic crossing itself at 

the original point after m  turns: 
3

0 2 32
3mS rm rmππ γ≈ −             (2)  

The resonance propagation constant qβ  is defined by the quantization condition along the circumference ( ,0)ϕ : 
/q q rβ = , where q  is a large integer. If the deviation of the propagation constant, qβ β βΔ = − , attenuation, α ,  

and the cone slope,  γ , are small, i.e., if 1, (2 )rβ α π −Δ << , and 3/ 2 1/ 2( )rγ π β− −<<  then the sum in Eq. (1) can be 
replaced by an integral. Using Eq. (2) we get 

3 2
2 3

1/ 2
0

( , ) ~ exp( ) exp 2 ( )
3 4

q qi i zdmz iq i rm rm m z
rmm

π β β
ϕ ϕ π β α γ π γ

π

∞ ⎡ ⎤
Ψ Δ − − − +⎢ ⎥

⎢ ⎥⎣ ⎦
∫   (3)   

The resonant transmission power is found from Eq. (3) as 2|1 (0,0) |P D C= − − Ψ  where parameters C  and D  are 
constants in a vicinity of the resonance. For weak coupling, | |,| (0,0) | 1D CΨ << : 

 
3
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1/ 2
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1 2Re( ) 2Re exp 2 ( )
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qidmP D C r i m rm
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π β
π β α γ

∞⎧ ⎫⎡ ⎤⎪ ⎪≈ − − Δ − −⎢ ⎥⎨ ⎬
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∫ .   (4) 

The integral in Eq. (4) determines the generalized Airy function of iβ αΔ + . For 0α = , similar to the ordinary 
Airy function, this function has asymmetric oscillations vanishing away from the principal peak along the real axis 

0α = .  
      Numerical and asymptotic analysis of the integrals in Eqs. (3) and (4) lead to the following results. At the 
narrower side of the cone, for large positive z, vanishing of the WGMs is explained by reflection from a turning 
point, similar to the conventional ray picture (Fig. 1(a)). Crucially, at the wider side of the cone, for large negative 
z, the asymptotic calculation of the integral in Eq. (3) shows that for the discrete sequence of propagation constant 
determined by the formula  ( )2/32 2 1/3/ ( ) 9 / 4 3 / 2qn q r r nβ βγ π π−= + + , ( 0,1,2,...n = , q>>1, integer), the circulating 
WGMs experience the complete destructive wave self-interference which leads to the full mode localization. The 
characteristic size of the discovered localized conical mode is  2/3 1/3 1/3

res qz rβ γ− −= . The 1/3γ − dependence of resz  is 
very slow so that a conical resonator with an extremely small slope γ can support strongly localized states. In fact, 
at wavelength ~ 1.5 mλ μ , for a silica optical fiber with radius ~ 50 mr μ  and  slope 5~ 10γ − , we have 

50 mresz μ≈ . 

3. Experiment    
Experimentally, a 50 mm segment of an uncoated silica optical fiber with radius 76r ≈ mμ  was investigated. 
First, the radius variation of this fiber was accurately measured (Fig. 2). To this end, a biconical adiabatic fiber 
taper having the microfiber waist of a 1.3 mμ  diameter and 3 mm length was fabricated. The ends of the taper 
were connected to the JDS Uniphase tunable laser source and detector. The wavelength resolution of this system 
was 3 pm. The microfiber was attached normally to the tested fiber where the WGMs were excited as illustrated in 
Fig. 1(b). The resonant transmission spectra were measured at points spaced by 2 mm along the tested fiber in the 
wavelength interval between 1535 nm and 1545nm. The coupling between the microfiber and the tested fiber was 
tuned to small values by shifting the microfiber/tested fiber contact point to a thicker part of the microfiber (see, 
e.g., samples of the measured spectra in Fig. 3(a) and (b)). To arrive at the plot of Fig. 2, the radius variation, rΔ , 
was calculated from the shift of resonance positions, λΔ , as /r rλ λΔ = Δ  [5].  
     In order to experimentally verify the described theory, the transmission spectra at two positions of the tested 
fiber segment were examined. At the first position (point a  in Fig. 2) the fiber slope was negligible and the 
corresponding transmission resonant spectrum shown in Fig. 3(a) was primarily determined by the WGM 
attenuation α . At this position, the characteristic resonance width was smaller than the measurement resolution 
(see e.g., the magnified resonance sample in Fig. 5(c)) that allowed to estimate the attenuation constant as 

610α −< . Alternatively, at point b  and the next 2 mm spaced measurement point in Fig. 2, the fiber slope was 
51.07 10γ −≈ ⋅  and 51.63 10γ −≈ ⋅ , respectively. These values, together with the estimate 610α −< , suggests that the 

attenuation constant in Eqs. (3) and (4) can be ignored. The magnified structure of a separate resonance, which is 
outlined by a rectangle in Fig. 3(b), is shown in Fig. 3(d). The experimental data in this figure was fitted with the 
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generalized Airy function defined by Eq. (4) assuming the fiber radius 76 mr μ≈ , refractive index 1.46rn = , and 
radiation wavelength 1.54 mλ μ= , which resulted in 51.413 10γ −≈ ⋅  with better than 0.1% accuracy. This value is 
in reasonable agreement with the directly-measured slope values. Thus, the excellent agreement between the 
experimentally-obtained and theoretically-predicted shapes of resonances shown in Fig. 3(d) strongly support the 
developed theory of localized conical modes. In addition, variation of the position of the principal spectral peak in 
Fig. 3(d) found from Eq. (4) allows to find corrections to the previously developed method of measurement of the 
fiber radius variation [5]. 
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Fig. 2. Radius variation of a 50 
mm optical fiber segment 
obtained experimentally with 2 
mm measurement steps. 

 

 
Fig. 3. (a) and (b) – resonant transmission spectra of the 
optical fiber at positions a and b, respectively, shown in Fig. 
4; (c) – plot (a) magnified near a single resonance; (d) – plot 
(b) magnified near a single resonance and its theoretical fit.  

4. Summary and discussion 
Thus, a linear variation of an optical fiber radius leads to the appearance of strongly localized WGMs. The 
developed theory of these modes predicts asymmetric oscillatory behavior of transmission spectrum which allows 
to determine the local change of fiber radius with a single measurement. Generally, an optical fiber with radius 
variation ( )r zΔ  can host different types of localized WGMs. The considered case ( )r z zγΔ =  is related to the 
situation when the classical motion at the fiber surface is unbounded and, in particular, the circumference ( ,0)ϕ  is 
not a geodesic. Alternatively, for characteristic quadratic dependencies of 2

0( ) ( / )r z z zΔ = − , this circumference is 
a stable geodesic which supports WGMs that are bounded along the axial direction by two caustics. These WGMs 
correspond to the conventional Lorentzian spectral resonances [1]. For other fiber profiles, more complex localized 
structures (e.g., WGM bottles [4]) can be present. It should be noted that the type of a resonance mode described in 
this paper is not limited to the special case of a constant conical slope. Deformation of the conical shape will result 
in appearance of other oscillatory spectral dependencies (then, the term 3~ m  in Eqs. (2), (3), and (4) should be 
replaced by a more general function of m  determined by the equations of classical motion on the deformed 
surface). These more complex cases will be considered elsewhere. 
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