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ABSTRACT 
 

Abdullah Nasser Ben-awadh 

CONTRIBUTION OF RANKL REGULATION TO BONE RESORPTION INDUCED BY PTH 

RECEPTOR ACTIVATION IN OSTEOCYTES 

PTH increases osteoclasts by upregulating RANKL in cells of the osteoblastic 

lineage, but the precise differentiation stage of the PTH target cell remains undefined. 

Recent findings demonstrate that PTH regulates gene expression in osteocytes and that 

these cells are an important source of RANKL. We therefore investigated whether direct 

regulation of the RANKL gene by PTH in osteocytes is required to stimulate osteoclastic 

bone resorption. To address this question, we examined bone resorption and RANKL 

expression in transgenic mice in which PTH receptor signaling is activated only in 

osteocytes (DMP1-caPTHR1) crossed with mice lacking the distal control region 

regulated by PTH in the RANKL gene (DCR-/-). Longitudinal analysis of circulating C-

terminal telopeptide (CTX) in male mice showed elevated resorption in growing mice 

that progressively decreased to plateau at 3-5 month of age. Resorption was 

significantly higher (~100%) in DMP1-caPTHR1 mice and non-significantly lower (15-

30%) in DCR-/- mice, versus wild type littermates (WT) across all ages. CTX in compound 

DMP1-caPTHR1; DCR-/- mice was similar to DMP1-caPTHR1 mice at 1 and 2 months of 

age, but by 3 months of age, was significantly lower compared to DMP1-caPTHR1 mice 

(50% higher than WT), and by 5 months, it was undistinguishable from WT mice. Micro-

CT analysis revealed lower tissue material density in the distal femur of DMP1-caPTHR1 

mice, indicative of high remodeling, and this effect was partially corrected in compound 
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mice. The increased resorption exhibited by DMP1-caPTHR1 mice was accompanied by 

elevated RANKL mRNA in bone at 1 and 5 months of age. RANKL expression levels 

displayed similar patterns to CTX levels in DMP1-caPTHR1; DCR-/- compound mice at 1 

and 5 month of age. The same pattern of expression was observed for M-CSF. We 

conclude that resorption induced by PTH receptor signaling requires direct regulation of 

the RANKL gene in osteocytes, but this dependence is age specific. Whereas DCR-

independent mechanisms involving gp130 cytokines or vitamin D3 might operate in the 

growing skeleton, DCR-dependent, cAMP/PKA/CREB-activated mechanisms mediate 

resorption induced by PTH receptor signaling in the adult skeleton.   

       
 
 
 

Teresita M. Bellido, PhD, Chair 
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CHAPTER 1 

Introduction 

 Bone and bone cells   

The human skeleton is one of the amazing organs of the human body. The 

skeleton contributes up to 15 to 20 percent of the total human weight. The skeleton is 

made of different types of bone: cancellous (trabecular) bone and cortical bone. The 

skeleton plays an important role in the 

human body. It provides support and 

protection to the vital organs like the heart, 

the lung and the brain. It also contains the 

bone marrow, where the blood cells are 

formed (1). Bones are also “a reservoir of 

calcium, phosphate and other ions that can 

be released or stored in controlled fashion 

to maintain constant concentration of these 

important ions in body fluids” (1). Moreover, 

the bones contribute in the body movement 

by increasing the force that is generated by 

contraction of the skeletal muscle.  

 

 

Figure 1: Bone cells. The bone has 
three cell types. Osteoclasts are the 
bone resorbing cells; osteoblasts are 
the bone forming cells and Osteocytes 
are responsible to maintenance bone 
integrity. Osteoclasts and osteoblasts 
are located on the bone surface, 
where osteocytes are embedded 
within the bone in spaces called 
lacunae. Osteocytes are the most 
abundant bone cells (~90-95%). 

osteoblasts
4-6 %

osteocytes
> 90-95 %

osteoclasts
1-2 %
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Bone is a special connective tissue made of three cell types: 1- Osteoblasts, 2- 

Osteoclasts, and 3- Osteocytes (Figure 1). Each one of these cells has an important 

function for maintenance of a healthy skeleton.  

Osteoclasts are the bone resorbing cells. These cells are important in changing 

the bone shape, remove old or damaged bone, and resorb unwanted portions of the 

skeleton to maintain overall bone strength (2). Osteoclasts originate from 

hematopoietic stem cells (1). Receptor activator of nuclear factor-kB ligand (RANKL) and 

macrophage-colony stimulating factor (M-CSF) are the two essential factors required for 

osteoclasts differentiation and growth (2). An increase in RANKL or M-CSF will lead to 

increased osteoclast differentiation. Osteoclasts are multinucleated cells composed of 

4-20 nuclei that attach to the bone surface. These cells are characterized by having a 

ruffled border and an actin ring that connects them tightly to the bone surface. 

Secretion of acid by the osteoclast dissolves the bone mineral and secretion of enzymes 

degrades the protein matrix of the bone. Tartrate-resistant alkaline phosphatase (TRAP) 

and cathepsin K, produced by osteoclasts, are important enzymes for resorption and 

their levels in the circulation are indicative of osteoclasts number. After completing their 

resorption activity, osteoclasts disappear from the bone surface and die by apoptosis 

(2). 

 Osteoblasts are the bone forming cells. Osteoblasts are responsible for forming 

the new bone matrix to replace the old bone. Osteoblasts differentiate from precursors 

of the mesenchymal lineage. RUNX2 and osterix are transcription factors essential for 

osteoblast differentiation and without them, there is no mature osteoblasts thus leading 
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to non-mineralized skeleton (2). Osteoblasts are found on the surface of bone side by 

side usually in one layer. During bone formation, osteoblasts secrete high amounts of 

type I collagen and other proteins to form the osteoid. Osteoid is new bone that has not 

mineralized yet. Then, osteoblasts produce noncollagen proteins such as osteocalcin 

and alkaline phosphatase to initiate the process of osteoid mineralization (1). Both 

osteocalcin and alkaline phosphatase can be measured in circulation to determine the 

activity and the number of osteoblasts in bone. At the end of bone formation, 

osteoblasts undergo apoptosis, become lining cells or become osteocytes.   

 Osteocytes are responsible for maintenance of bone integrity. These cells are 

embedded within the bone in spaces called lacunae. Osteocytes are the most abundant 

bone cells accounting for up to 90-95% of the total bone cells. Each osteocyte has 

cytoplasmic dendritic processes that run within canaliculi, thin canals excavated in the 

mineralized bone. Osteocytes communicate with neighboring cells, cells on the surface, 

and cells of the bone marrow, via gap junctions and membrane channels that when 

open allow the passage of chemical messengers (2). In response to both mechanical and 

hormonal stimuli, osteocytes signal to osteoclasts and osteoblasts to induce changes in 

bone resorption and formation. Osteocytes are long-lived cells, but they can die 

prematurely by apoptosis. Local changes in osteocyte apoptosis leads to recruitment of 

osteoclasts to the vicinity and to initiate resorption that replaces damaged bone, 

constituting the basis of targeted bone remodeling (2). Recent information has 

demonstrated that osteocytes also detect changes in the level of hormones, such as 

estrogen, androgen, glucocorticoids and parathyroid hormone (PTH). Reduction in the 
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Wnt antagonist sost/sclerostin, expressed by osteocytes, by both loading and activation 

of the receptor for parathyroid hormone (PTHR), leads to increase Wnt signaling. This 

increases osteoblast number resulting in enhanced bone formation. PTHR activation in 

osteocytes also increases expression of osteoclastogenic cytokines and elevated 

osteoclasts and bone resorption. In the PTHR1 model, the enhanced bone remodeling 

(resorption and formation) is clearly driven by osteocytes (3-4).  

Bone and parathyroid hormone (PTH) 

          PTH is secreted by the chief cells of the parathyroid gland. The main function of 

PTH is to maintain calcium homeostasis. When calcium levels in blood are low, PTH is 

secreted to elevate calcium and bring it to normal. In bone, PTH increases osteoclast 

activity to liberate the calcium stored in the bones. In the kidney, PTH increases calcium 

reabsorption in the proximal tubule and reduces calcium excreted by the urine. PTH also 

stimulates the synthesis of 1,25(OH)₂D₃, which is the active form of Vitamin D₃, in the 

kidney. In turn, 1,25(OH)₂D₃ increases intestinal absorption of calcium. As a result of PTH 

function calcium levels are maintained within the normal range.  

PTH has dual effects on bone. The hormone induces bone resorption (catabolic) 

and also increase bone formation (anabolic) (5).  Bone resorption happens when PTH is 

elevated in a continuous manner, such as in primary hyperparathyroidism due to benign 

tumors of the parathyroid gland. By this increase in PTH, osteoclast number increases, 

leading to exaggerated resorption and bone loss. The increase in PTH increases the 

expression of RANKL on osteoblastic cells, resulting in more osteoclasts. Furthermore, 

the increase in PTH stimulates the synthesis of M-CSF and inhibits the expression of 
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osteoprotegerin (OPG) by osteoblastic cells. On the other hand, if PTH is given 

intermittently, this leads to more bone formation (5). In this case, PTH works to reduce 

the amount of osteoblast apoptosis, to increase the osteoprogenitors to be osteoblasts, 

and to reactivate the lining cells to be osteoblasts (5). All these steps increase the 

number of osteoblasts and their activity to 

increase the rate of bone  

formation.  

 PTH binds to PTH receptors that are 

expressed in bone only in cells of the  

osteoblastic lineage. The PTH receptor is 

coupled to G-proteins resulting in activation 

of several downstream signals pathways. In 

bone, the major effects of PTH can be 

attributed to cyclic-AMP dependent 

responses (Figure 2). The activation of the 

PTHR1 affects bone remodeling and bone 

formation.  

 

 

 

 

Figure 2: PTH receptor signaling. The 
hormone PTH (red circle) binds to the 
PTH receptor, which is coupled to G 
proteins (GPCR), and activates diverse 
downstream signaling pathways. (6) 

PTH
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Work by Dr. Bellido’s laboratory has 

demonstrated that “transgenic mice 

expressing a constitutively active PTH 

receptor exclusively in osteyocytes exhibit 

increase bone mass and bone remodeling”, 

which is a result of increasing the number of 

osteoblasts and osteoclasts (Figure 3) (3). The 

increase in osteoblasts is due to reduced 

sclerostin, increased Wnt signaling and 

decreased osteoblast apoptosis (3). The 

increase in osteoclasts results from PTHR1 

mediated increase in the production of RANKL 

and M-CSF. Earlier studies demonstrated that 

PTH increases the expression of RANKL by 

acting on a region in the gene called Distant transcriptional Enhancer Region or Distal 

Control Region (DCR) (Figure 4). The DCR is located at 76kb upstream from the 

transcriptional start site of the gene (7). Genetically modified mice lacking the DCR do 

not exhibit an overt skeletal phenotype at birth, but display mild reduction in RANKL in 

bone, reduced osteoclasts and decreased resorption by 5 months of age.  

 

 

 

 

Figure 3: Activation of PTHR1 in 
osteocytes has dual effects. 
The activation of PTHR1 in osteocytes 
has two effects: First, increasing 
bone formation through suppression 
of SOST and increase LRP5 singling 
which lead to more osteoblasts. 
Second, increase bone remodeling 
through increasing the expression of 
RANKL and M-CSF which increases 
osteoclast numbers. (3) 
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Figure 4: PTH increases the expression of RANKL by acting on the Distal Control 
Region (DCR). The image shows all the factors that act to control RANKL expression. 
We focused on PTH, which activates PTHR1, acts on the DCR region through the 
activation of protein kinase A (PKA)-cAMP pathway to stimulate RANKL expression 
(blue rectangle) (8). 
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Goals of this study 

In this study, we hypothesize that increased bone resorption in transgenic mice 

expressing a constitutively active PTH receptor exclusively in osteocytes (DMP1-

caPTHR1) (3) results from direct up regulation of RANKL expression in osteocytes 

induced by PTH receptor signaling. To test this hypothesis, we crossed the DMP1-

caPTHR1 mice with mice in which the promoter of the RANKL gene lacks the DCR, and 

examined RANKL expression and bone resorption. We found that removal of the DCR of 

the RANKL gene gradually corrects the increased resorption exhibited by DMP1-

caPTHR1, and blunts the high RANKL levels in bone. These findings indicate that 

osteoclast elevation is due to direct effect of PTH receptor signaling in osteocytes on the 

RANKL gene.  
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CHAPTER 2 

Materials and Methods 

Generating the experimental mice 

Experimental animals were generated by crossing transgenic mice expressing a 

constitutively active PTHR1 in osteocytes (DMP1-caPTHR1) (3)  with mice lacking the 

Distant Transcriptional Enhancer region in the RANKL gen (7) called DCR-/WT. Generation 

of experimental mice was accomplished in two steps. The purpose of step one was to 

generate DMP1-caPTHR1; DCR-/WT which is a double heterozygous and DCR-/WT which is a 

heterozygous. So we bred DMP1-caPTHR1 with DCR-/WT and we got these four 

genotypes and their ratios: 1-DMP1-caPTHR1 (25%), 2-DCR-/WT (25%), 3-DMP1-caPTHR1; 

DCR-/WT (25%) and 4-WT (25%). In the second step we crossed DMP1-caPTHR1; DCR-/WT 

with DCR-/WT to obtain experimental animals of four genotypes: 

1- DMP1-caPTHR1; DCR-/- (12.5%), 2- DMP1-caPTHR1 (12.5%), 3- DCR-/-  (12.5%) and  

4- WT (12.5%). 

All mice were born with a normal size and weight and at the expected Mendelian 

ratio. After 21 days, these mice were weaned in separate cages for males and females. 

Experimental mice were fed a regular diet (Harlan/Teklad, Indianapolis, IN, USA) (9) and 

water (H2O reverse osmosis) ad libitum and maintained on a twelve hours of light and 

dark cycle (9). Institutional Animal Care and Use Committee at Indiana University 

School of Medicine approved all the animal protocols for this project. In this project, we 

used one cohort of male and one cohort of females and each cohort contain 9-16 mice 

per genotype.  
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Genotyping  

At 8 days of age, pups were tattooed with permanent ink and a 0.5cm piece of 

tail was obtained to extract DNA. Tissue was dissolved in 75 microliter of alkaline-lysis at  

95°C for thirty minutes, and subsequent addition of 75 microliter of neutralizing buffer. 

DNA lysate was then mixed with appropriate primers (Table 1). The mixture was used 

for the Polymerase Chain Reaction (PCR), which is a technique used to amplify specific 

pieces of DNA (10). PCR products were separated by Agarose gel electrophoresis (10). 

The gel electrophoresis was set for one hours and after that a picture was taken to see 

the bands and to determine the genotype for each sample by PCR product band size, for 

example WT= 174bp, DCR= 99bp.  

GENE Primer Sequence 

DCR 

dCNS-geno-forward   GGGCTAAAATGAAGGGAGGT 

dCNS-geno-reverse CCCTCCTCACTGTCTCCTTG 

dCNS-geno-reverse-2 CCTGTGATTTAGGCAGTCCAA 

DMP1-caPTHR1 JANSEN - forward CTTTCATTACAGGTAGAGGAAC 

    (JANSEN) JANSEN - reverse GCGGTCCCCATCGCCAC 

 
Table 1: Sequence of Primers used for genotyping experimental mice. 
 

Bone mineral density (BMD) 

Bone mineral density was measured using a PIXImus densitometer (GE Medical 

System, Madison, WI, USA), which is a DXA imaging using two x-ray beams with different 

energy levels (11). Experimental mice from 1 month to 5 months were anesthetized by 

inhalation of 2.5% isoflurane (VEDCO, INC, St. Joseph, MO, USA) mixed with oxygen (1.5 

litter/minute) (9) to immobilize them during the scan. BMD, BMC and bone area for the 
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whole body (excluding the head and tail), the femur and the lumbar spine were 

quantified. 

Micro-computed tomography (Micro-CT) 

Another method we used to study the bone phenotype was Micro-CT. We 

analyzed left femurs of males at 5 months of age (n=5) from each of the genotypes 

outlined above. All bones were cleaned and muscles and the soft tissues were removed. 

Bones were stored in 70% ethanol at 4°C until the day of the scan. Before the scan, the 

bones were wrapped in para-film to keep them moist and then scanned by Micro-CT 

(Skyscan 1172, Skyscan, Kontich, Belgium), at 6-micron resolution. Data were 

reconstructed after the scan to be in 3D representation, and reconstructed images of 

the mid-shaft and the distal femur were analyzed.  

Quantification of circulating resorption and bone formation markers 

Plasma was collected from the experimental mice at one, two, three, four and 

five months of age to measure C-telopeptide of collagen type 1a (CTX) (9). CTX was 

measured by using a enzyme-linked immunosorbent assay to quantify and   determine 

the bone related degradation products resulting from the resorption activity of 

osteoclasts (RatlapsTM EIA, Immunodiagnostic Systems, Fountain Hills, AZ, USA). Alkaline 

Phosphatase, which is a bone formation marker, was measured using the AMP Buffer 

(Randox # AP 3802) method on a Randox Daytona analyzer (Randox Laboratories 

Limited, Crumlin, Country Antrim, United Kingdom). 
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Gene expression analysis by Quantitative PCR 

 Calvaria bones from 5 month old DMP1-caP+/WT; DCR-/-, DMP1-caPTHR1+/WT, WT 

and DCR-/- mice were snap frozen at sacrifice. Total RNA was purified from bone using 

Ultraspec reagent (Biotecx Laboratories, Houston, TX, USA) according to the 

manufacturer’s instructions. Gene expression data was analyzed by quantitative PCR as 

previously described (3) using primer probe sets from Applied Biosystems (Foster City, 

CA, USA) or from Roche Applied Science (Indianapolis, IN, USA) (Table 2). “Relative 

mRNA expression levels were normalized to the housekeeping gene ribosomal protein 

S2 using the ΔCt method.” (9)  

GENE Primer Sequence  

RANKL 
(Roche) 

Forward- primer AGCCATTTGCACACCTCAC 

Reverse- Primer  CGTGGTACCAAGAGGACAGAGT 

Probe# 89 

GAPDH 
(ABI) 

Forward- primer GGACTTGCACGACTAA 

Reverse- Primer  CCGTACGTCAATTGAC 

Probe TTCGAACTGATCAT 

M-CSF 
(Roche) 

Forward- primer CAGCTGCTTCACCAAGGACT 

Reverse- Primer  TCATGGAAAGTTCGGACACA 

Probe# 68 

 
Table 2: Primers that were used for gene expression and their sequence.  
 

Statistical analysis 

 Data from our study were analyzed using SigmaStat (SPSS Science, Chicago, IL, 

USA). All data are presented as the mean ± standard deviation (SD). The statistical 

differences between groups were evaluated using student’s t-test. P value less than 0.05 

was accepted as significant.  
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Chapter 3 

Results 

To determine whether bone resorption induced by activation of PTH receptor 

signaling in osteocytes is due to regulation of the RANKL gene, we generated mice 

expressing a constitutively active of PTHR1 especially in osteocytes lacking the DCR 

(DMP1-caPTHR1; DCR-/-). Longitudinal bone mineral density (BMD) measurements were 

taken at 1, 2, 3, 4 and 5 months of age for separate cohorts of female and male mice. 

Plasma samples were collected from all mice at every time point to measure CTX and 

alkaline phosphatase. Cohorts of male and female mice were sacrificed at 1 month and 

5 month of age to collect bones for gene expression, Micro-CT and histomorphometric 

analysis. 

DCR removal gradually corrects the high resorption exhibited by DMP1-caPTHR1 mice 

 Longitudinal analysis of CTX for male mice showed elevated resorption in all 

genotypes at the first two months of age and started to decrease at 3-5 months (Figure 

5A). Resorption was significantly elevated about 100% in DMP1-caPTHR1 mice 

compared to WT mice at all ages. The analysis showed a non-significant decrease in 

resorption (15-30%) in DCR-/- compared with WT mice also at all ages. CTX levels in 

compound DMP1-caPTHR1; DCR-/- mice were not significantly different from DMP1-

caPTHR1 mice at 1 and 2 months of age. However, the high resorption exhibited by 

DMP1-caPTHR1 mice was gradually corrected in the DMP1-caPTHR1; DCR-/- mice. Thus, 

at 3 months resorption in DMP1-caPTHR1; DCR-/- mice was significantly lower compared 

to DMP1-caPTHR1 mice (50% over WT). This significant decrease continued until CTX 



14 
 

levels in DMP1-caPTHR1; DCR-/- mice became comparable to WT levels at 5 months of 

age (Figure 5). 

 

  

 

  

 

 

 

 

age (months)

1 2 3 4 5

ng
/m

l

0

20

40

60

80

100

*
* *

WT 

DMP1-caPTHR1

DCR 

DMP1-caPTHR1; DCR

Plasma CTX (Males)

A

 

Figure 5: The increased resorption exhibited by DMP1-caPTHR1 mice 
was corrected in DMP1-caPTHR1; DCR-/- male mice.

 CTX measured in 
plasma from 1 month to 5 month for DMP1-caPTHR1, with and without 
DCR. A)  Longitudinal analysis of CTX for the male cohort from 1 to 5 
month. Symbols represent the means ± SD. B) CTX levels at 1 month and 
5 month. Bars represent means ± SD. N=7-16 mice per group. *p <0.05 
DMP1-caPTHR1 versus DMP1-caPTHR1; DCR-/-, #p <0.05. 
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Similar results were found in the longitudinal analysis of CTX for females. 

Resorption was elevated at the first two months for all genotypes (Figure 6A). Similar to 

males, resorption was about 70-100% higher over WT littermates in DMP1-caPTHR1 at 

all ages and it showed a non-significant decrease (7-13%) in DCR-/-  mice compared to 

WT at all ages. DMP1-caPTHR1; DCR-/-   female mice had similar CTX levels to DMP1-

caPTHR mice for the first two months. But at 3 months DMP1-caPTHR1; DCR-/- female 

mice showed a significant decrease in CTX compared to DMP1-caPTHR1 mice. This 

decrease was maintained at 4 and 5 months of age but, in contrast to male mice, it 

never reached WT levels (Figure 6).  Thus, in female mice, the absence of DCR didn’t 

correct completely the high resorption induced by the DMP1-caPTHR1 transgene.  
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RANKL and M-CSF expression is reduced in bone of DMP1-caPTHR1; DCR-/- mice  

 We next determined whether the DCR deletion in the DMP1-caPTHR mice 

altered RANKL mRNA expression in bone. RANKL mRNA levels were increased in bones 

from DMP1-caPTHR1 mice at 1 and 5 months, consistent with high resorption (Figure 7). 

Moreover, RANKL closely matched resorption in DMP1-caPTHR1; DCR-/- mice as its levels 

were similar to DMP1-caPTHR1 mice at 1 month and reduced to WT levels at 5 month of 

age. M-CSF levels were also high in DMP1-caPTHR1 mice at 1 and 5 months compared 

with WT. M-CSF elevation in DMP1-caPTHR1 mice was significantly decreased in DMP1-

caPTHR1; DCR-/- mice at 5 months (Figure 8).    

 

Figure 6: The increased resorption exhibited by DMP1-caPTHR1 mice 
was reduced in DMP1-caPTHR1; DCR-/- female mice.

 CTX measured in 
plasma from 1 month to 5 month for DMP1-caPTHR1, with and without 
DCR. A)  Longitudinal analysis of CTX for the female cohort from 1 to 5 
month, Symbols represent means ± SD. B) CTX levels at 1 month and 5 
month for male cohort. Bars represent the means ± SD.  N=6-18 mice per 
group. *p <0.05 DMP1-caPTHR1 versus DMP1-caPTHR1; DCR-/-, #p <0.05. 
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Figure 7: RANKL expression is reduced in bone of adult DMP1-caPTHR1; 
DCR-/- male mice. qPCR analysis of RANKL mRNA in calvaria from 1 month 
and 5 month old male mice for all genotypes. Bars represent means ± SD of 
3-5 mice per group. #p <0.05 WT versus DMP1-caPTHR1 mice. 

 

 

Figure 8: M-CSF Expression is significantly reduced in adult DMP1-
caPTHR1; DCR-/- male mice. qPCR analysis of M-CSF mRNA in calvaria from 
1 month and 5 month old male mice for all genotypes. Bars represent 
means ± SD of 3-5 mice per group . #p <0.05 WT versus DMP1-caPTHR1; *p 
<.05 DMP1-caPTHR1 versus DMP1-caPTHR1; DCR-/- mice. 
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High bone remodeling in DMP1-caPTHR1 mice was partially corrected in DMP1-

caPTHR1; DCR-/- mice 

Micro-CT analysis of the distal femur of 5 

month old mice showed significant decrease in 

material density in DMP1-caPTHR1 mice compared 

with WT littermates, which indicates high bone 

remodeling resulting in less mineralized bone 

(Figure 9). Reduction in material density was 

partially corrected in DMP1-caPTHR1; DCR-/- mice, 

consistent with decreased rate of bone remodeling  

leading  to better mineralized bone.   

  Alkaline phosphatase measured in serum of 

5 months old male mice was elevated in DMP1-

caPTHR1 mice compared to WT mice (Figure 10). 

However, this increase was markedly reduced in DMP1-caPTHR1; DCR-/- mice. 

 

Figure 9: The increased bone 
remodeling in DMP1-caPTHR1 
is partially corrected by the 
removal of DCR. Bone material 
density was determined by 
micro-CT analysis of distal 
femur from 5 month old male 
in all groups. Bars represent 
the means ± SD of 5-7 mice per 
group.  
#p <0.05. 

 

Figure 10: The high bone 
formation exhibited by DMP1-
caPTHR1; DCR-/- mice was 
reduced by removing the DCR 
from the RANKL gene. Alkaline 
phosphatase was measured in 
serum from 5 month old male 
mice for all groups.  Bars 
represent means ± SD of 7-11 
mice per group. #p <0.05. 
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Longitudinal analysis of Bone Mineral Density (BMD) showed no effect of removal the 

DCR 

Longitudinal BMD analysis revealed no significant changes in total, femoral, and 

spinal BMD in DMP1-caPTHR1; DCR-/- compared to DMP1-caPTHR1 littermates male or 

female (Figure 11). However, spinal BMD showed a trend to increase not significant in 

DMP1-caPTHR1; DCR-/- mice compared to DMP1-caPTHR1 mice  at 3 and 4 months of age 

for males and at 2 and 3 months of age for females (Figure 11). This finding is consistent 

with previous evidence demonstrating that the main effect of absence of the DCR is to 

inhibit resorption in cancellous bone. The lack of significant effect of DCR deletion on 

BMD might be due to the combined overall decreased resorption and decreased 

formation, as evidenced by decreased alkaline phosphatase (Figure 10). 
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Figure 11: BMD analysis shows no effect of removal of the DCR for both male and 
female cohorts. Longitudinal analysis of Femoral, Total and Spinal BMD in both males 
and females at 1 month intervals up to 5 months of age. Symbols are means of 7-19 
mice/group ± SD. A)  Longitudinal BMD analysis for male littermates for all groups. B) 
Longitudinal BMD analysis for female littermates for all groups. The lines in the spine 
BMD indicates a trend of increase not significant in DMP1-caPTHR1; DCR-/- compared to 
DMP1-caPTHR1 mice.    

SPINAL BMD Males

age (months)

TOTAL BMD Males

1 2 3 4 5
0.02

0.03

0.04

0.05

0.06

0.07

0.08

age (months)

g/
cm

2

FEMORAL BMD Males

1 2 3 4 5
0.02

0.04

0.06

0.08

0.10

0.12

0.14

age (months)

g/
cm

2

A

g/
cm

2

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1 2 3 4 5

SPINAL BMD Females

1 2 3 4 5
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

age (months)

g/
cm

2

TOTAL BMD Females

1 2 3 4 5
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

age (months)

g/
cm

2
FEMORAL BMD Females

age (months)

1 2 3 4 5

g/
cm

2

0.02

0.04

0.06

0.08

0.10

0.12

0.14

B

WT 

DMP1-caPTHR1

DCR 

DMP1-caPTHR1; DCR



21 
 

Chapter 4 

Discussion 

It has been long recognized that PTH increases osteoclasts by upregulating 

RANKL in osteoblastic cells, but the precise differentiation stage of the PTH target cell 

remains undefined. Recent findings demonstrate that PTH regulates gene expression in 

osteocytes and that these cells 

are an important source of 

RANKL. The objective of this 

work was to establish whether 

direct regulation of the RANKL 

gene by PTH in osteocytes is 

required to stimulate bone 

resorption. The data 

demonstrate that resorption 

induced by PTH receptor 

signaling requires direct 

regulation of the RANKL gene 

in osteocytes in skeletally mature mice (Figure 12). Thus, whereas DCR-independent 

mechanisms involving gp130 cytokines or vitamin D3 might operate in the growing 

skeleton, DCR-dependent, cAMP/PKA/CREB-activated mechanisms mediate resorption 

induced by PTH receptor signaling in the adult skeleton. CTX measurement for both 

male and female cohorts showed no significant changes between DMP1-caPTHR1 and 

 

Figure 12: Resorption controlled by DCR in mature 
skeleton. PTHR1 signaling through c-AMP acts 
directly on the DCR to control RANKL expression 
and resorption in mature skeleton. The question 
mark indicates uncertainty of the source of RANKL 
that increases the resorption in young skeleton. The 
increased resorption in the young skeleton could 
come from gp130 cytokines through STAT3, from 
1,25(OH)2D3 through VDR, or from both.  
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DMP1-caPTHR1; DCR-/- mice in the first two months. Moreover, RANKL expression was 

increased in DMP1-caPTHR1; DCR-/- 1 month old mice. This may indicate that there are 

other factors different from the DCR that affect RANKL expression in the growing 

skeleton. Osteocyte- derived cytokines of the gp130 family, such as interleukin (IL)-6, IL-

11 or oncostain M (OSM) could be involved in the stimulation of RANKL, since PTH 

increases gp130 in bone marrow cells (8).  

However, at 5 months, CTX showed a significant reduction in DMP1-caPTHR1; 

DCR-/- compared with DMP1-caPTHR1 mice. This reduction proves that the DCR (cAMP) 

dependent mechanisms have a direct effect on RANKL expression when stimulated by 

the active PTH receptor in osteocytes. Gene expression showed a reduced level of basal 

RANKL mRNA in DMP1-caPTHR1; DCR-/- adult mice (5 month old), which is comparable to 

WT. This evidence further supports that DCR has a major role in controlling the 

expression of RANKL, therefore control resorption, in skeletally mature animals.  

RANKL and M-CSF are two major factors that contribute to osteoclast 

differentiation and maturation. In the present study, we found that M-CSF mRNA levels   

exhibited similar pattern to RANKL mRNA levels at both 1 and 5 month of age. Thus, at 1 

month of age RANKL and M-CSF were increased and at 5 month of age RANKL and       

M-CSF expression was reduced in DMP1-caPTHR1; DCR-/- mice. Deletion of the DCR 

removes the ability of PTHR/cAMP pathway to increase only RANKL expression. Thus, 

our results demonstrate that M-CSF regulation is secondary to RANKL regulation. Our 

findings are the first to demonstrate this regulation in vivo and are consistent with an 

earlier study in vitro showing that RANKL augmented the production of M-CSF (12). 
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Therefore, when RANKL is elevated, M-CSF expression will be elevated resulting in more 

osteoclasts, more bone resorption and higher bone remodeling rate.  

 DMP1-caPTHR1; DCR-/- mice showed reduced levels of the bone formation 

marker alkaline phosphatase in the circulation compared to DMP1-caPTHR1 mice. 

Because the primary effect of the DCR removal is to decrease RANKL expression and 

resorption, the decrease in alkaline phosphatase is likely due to coupling, that is “normal 

coordination between bone resorption and bone formation” (13). This means that when 

bone resorption is reduced, there will be a reduction in bone formation and vice versa. 

Many mechanisms could contribute to coupling between bone resorption and bone 

formation. It has been proposed that the release of some factors from the bone matrix 

as a result of osteoclast activity, such as TGFβ, could lead to recruitment of osteoblast 

progenitors and stimulation of their differentiation (13). Therefore, osteoblast 

maturation depends on osteoclast activity in the bone matrix, so when osteoclast 

number is reduced that leads to reduction in osteoblast number and bone formation 

rate. Additionally, mature osteoclasts might produce factors that increase recruitment 

of osteoblast precursors, promote their survival and increase their differentiation, such 

as sphingosine 1-phosphate (S1P) and BMP6 (14). 

DMP1-caPTHR1 mice exhibit elevated bone remodeling as well as bone 

formation (3). The increase in bone formation is due suppression of osteocyte specific 

product sclerostin/sost and increase Wnt signaling. Wnt signaling works to increase 

osteoblast differentiation and reduce osteoblast apoptosis. All these factors lead to 

increase bone formation. The increased bone remodeling can be explained by increasing 
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RANKL and M-CSF which promote osteoclastogenesis. We then had expected that by 

inhibiting resorption in combination DMP1-caPTHR1; DCR-/- mice , bone mass will 

increase even more due to the combination of increasing bone formation dependent on 

Wnt signaling and decreasing resorption dependent on the DCR. However, we found no 

significant effect of removing the DCR over the DMP1-caPTHR1 alone. We think that this 

is due to simultaneous reduction in bone formation, as indicated by lower alkaline 

phosphatase in the compound mice. Further studies will address directly this hypothesis 

by measuring bone formation rate and osteoblast number by histomorphometry in 

DMP1-caPTHR1; DCR-/- mice and their cohort littermates.  

In conclusion, the present study demonstrates that the constitutively active 

PTHR1 expressed exclusively in osteocytes acts directly on the DCR region to promote 

RANKL expression. The control of RANKL expression has a major impact on 

differentiation and survival of osteoclasts, which determine the rate of remodeling. 

Understanding the pathways that control RANKL expression will help design better 

therapeutic approaches to inhibit bone loss.  
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