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Latha Ramalingam 

REGULATION OF GLUCOSE HOMEOSTASIS BY DOC2B AND MUNC18 

PROTEINS 

Glucose homeostasis is maintained through the coordinated actions of insulin secretion 

from pancreatic beta cells and insulin action in peripheral tissues. Dysfunction of insulin 

action yields insulin resistance, and when coupled with altered insulin secretion, results in 

type 2 diabetes (T2D). Exocytosis of intracellular vesicles, such as insulin granules and 

glucose transporter (GLUT4) vesicles is carried out by similar SNARE (soluble NSF 

attachment receptor) protein isoforms and Munc18 proteins. An additional regulatory 

protein, Doc2b, was implicated in the regulation of these particular exocytosis events in 

clonal cell lines, but relevance of Doc2b in the maintenance of whole body glucose 

homeostasis in vivo remained unknown. The objective of my doctoral work was to 

delineate the mechanisms underlying regulation of insulin secretion and glucose uptake 

by Doc2b in effort to identify new therapeutic targets within these processes for the 

prevention and/or treatment of T2D. Towards this, mice deficient in Doc2b (Doc2b-/- 

knockout mice) were assessed for in vivo alterations in glucose homeostasis. Doc2b 

knockout mice were highly susceptible to preclinical T2D, exhibiting significant whole-

body glucose intolerance related to insulin secretion insufficiency as well as peripheral 

insulin resistance. These phenotypic defects were accounted for by defects in assembly of 

SNARE complexes. Having determined that Doc2b was required in the control over 

whole body glycemia in vivo, whether Doc2b is also limiting for these mechanisms in 

vivo was examined. To study this, novel Doc2b transgenic (Tg) mice were engineered to 

express ~3 fold more Doc2b exclusively in pancreas, skeletal muscle and fat tissues. 
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Compared to normal littermate mice, Doc2b Tg mice had improved glucose tolerance, 

related to concurrent enhancements in insulin secretion from beta cells and insulin-

stimulated glucose uptake in the skeletal muscle. At the molecular level, Doc2b 

overexpression promoted SNARE complex assembly, increasing exocytotic capacities in 

both cellular processes. These results unveiled the concept that intentional elevation of 

Doc2b could provide a means of mitigating two primary aberrations underlying T2D 

development. 

        

Debbie C. Thurmond, PhD, Chair 
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1.1 SUMMARY  

This introductory chapter presents an overview of insulin secretion and insulin 

action at the physiological level, and then progresses to an explain them at the cellular 

level within the pancreatic beta cells and insulin responsive cells. The SNARE and their 

accessory proteins involved in the exocytotic processes are discussed in detail. Towards 

the end of the chapter, Doc2b is emphasized, along with the context for the rationale of 

my dissertation work. Chapter 2 provides a detailed description of the materials and 

methods. Chapter 3 discusses the data generated from the Doc2b knockout mouse model. 

Chapter 4 addresses the role of Doc2b as a limiting factor in glucose homeostasis using 

Doc2b over-expressing transgenic model. Finally, chapter 5 summarizes these studies and 

suggests ideas for the future course of research. The overall goal of this dissertation is to 

improve our understanding of the molecular mechanisms by which Doc2b facilitate 

regulated exocytosis in insulin-secreting and insulin-responsive cell types to control 

glucose homeostasis. 

 

1.2 OVERVIEW OF DIABETES 

Diabetes is a worldwide epidemic, with prevalence of diabetes mellitus growing 

at an exponential rate. The American Diabetes Association (ADA) estimates around 25 

million Americans to be afflicted with diabetes currently, with type 2 diabetes (T2D) 

accounting for 85-90% of the cases; an additional 56 million have pre-type 2 diabetes. 

The remaining 15% of diabetes cases is split into type 1 diabetes (5-10%), gestational (1-

2%) and other types of diabetes resulting from specific genetic conditions, such as 

maturity-onset diabetes of young (MODY); pancreatic disease; and other illness (1-5%). 
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The World Health Organization (WHO) estimates that the diabetic population is likely to 

reach 366 million by 2030 (1). The total annual cost of diabetes to the United States of 

America is estimated to be around $245 billion, with 1 out of every 5 dollars spent on 

healthcare being spent on diabetes care (ADA 2012). Data released by the WHO 

indicates diabetes to be most prevalent in India, China, and United States of America, 

highlighting that diabetes is a worldwide health crisis. 

 

Diabetes is classified into three types: type 1, type 2 and gestational diabetes. 

Type 1 diabetes, also known as insulin-dependent or juvenile diabetes, is an autoimmune 

disorder where pancreatic beta cells are destroyed, and therefore the affected individual is 

unable to produce insulin. T2D is a complex polygenic disease that occurs when a 

combination of defects in insulin secretion and insulin action occur. T2D is one of the 

leading causes of cardiovascular disease, renal failure, blindness, and peripheral nerve 

damage. When left untreated or poorly controlled, T2D eventually leads to life-

threatening complications (UKPDS 2003). Pre-type 2 diabetes (hereafter referred to as 

‘prediabetes’) is characterized by impaired glucose tolerance, which is a metabolic 

condition in which an individual’s blood glucose values are elevated above normal levels, 

but are less than that of the established levels for diagnosing T2D. This is the 

intermediate state in the transition of glucose tolerance between normal glucose 

homeostasis and overt T2D. Prediabetes is associated with insulin resistance and 

progressive failure in beta cell secretory function, which over time results in the 

development of T2D. Prediabetic patients are at a high risk of progressing to T2D, with 

11% of people with prediabetes progressing to T2D every year. About 50% people with 
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prediabetes develop T2D within 10 years if no lifestyle changes or pharmaceutical 

interventions are incorporated (HHS 2003). The third major form of diabetes mellitus, 

gestational diabetes, occurs during pregnancy. The precise mechanism is unknown; it is 

believed that the hormones produced during pregnancy interfere with the action of insulin 

as it binds the insulin receptor (IR). The interference probably occurs at the level of the 

cell signaling downstream of the IR. Mothers who are diagnosed with gestational 

diabetes have a 35 to 60% chance of developing T2D later in life (CDC 2011). Several 

other forms of diabetes are associated with specific genetic defects in beta cell function; 

MODY is characterized by impaired insulin secretion with minimal or no defects in 

insulin action. Unusual cases of diabetes result from genetically determined abnormalities 

of insulin action. Leprechaunism and Rabson-Mendenhall syndrome are two pediatric 

syndromes that have mutations in the insulin receptor gene with subsequent alterations in 

insulin receptor function. Excess glucagon causes glucagonoma, excess norepinephrine 

causes pheochromocytoma can cause diabetes. Any process that diffusely injures the 

pancreas can cause diabetes. Acquired processes include pancreatitis, trauma, infection 

and pancreatic carcinoma.  

 

1.2.1 The Physiology of Glucose Homeostasis 

The regulation of blood glucose is achieved predominantly by the counter 

regulation of two hormones, insulin and glucagon. Insulin and glucagon are secreted by 

the beta and alpha cells, respectively, of the pancreatic islets which respond to glucose 

either through release or inhibition of the respective hormones. In the fasting state, when 

blood glucose levels are low, the insulin to glucagon ratio is low. The low glucose and 
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insulin levels cause glucagon release, which in turn promotes gluconeogenesis and 

glycogenolysis in the liver, leading to glucose release from the liver. The liver produces 

glucose by utilizing amino acids and this maintains endogenous blood glucose levels to 

prevent hypoglycemia during fasting. In the fed state, when the blood glucose levels are 

high, the insulin to glucagon ratio is high, because elevated glucose stimulates insulin 

secretion from the beta cells, and also inhibits glucagon secretion from the alpha cells. 

Insulin secreted from the pancreas travels first to the liver through the hepatic portal vein, 

thereby impeding hepatic glucose production/output (HGO) by inhibiting 

gluconeogenesis and glycogenolysis (2). During this process, the liver takes up or 

degrades nearly half of the secreted insulin (3). Insulin also inhibits HGO indirectly by 

inhibiting lipolysis in adipose tissue and amino acid release from muscle. The secreted 

insulin that survives degradation in the liver promotes glucose uptake in the peripheral 

tissues, including muscle and adipose. Glucose disappearance from the blood following 

glucose challenge or meal is the result of the combination of glucose uptake into the 

peripheral tissues and suppression of HGO in the liver.  

 

The underlying cause of T2D is still under debate; it is not clear whether deficits 

in insulin secretion and increased insulin resistance occur in parallel or if one is the 

primary cause of the other. The general assumption in the field for many years has been 

that insulin resistance develops first, preceding the manifestation of T2D, given that the 

majority of the individuals are obese and highly insulin resistant. This rise in insulin 

resistance requires the beta cells to compensate by increasing their mass and insulin 

secretion to maintain normoglycemia. Eventually, the beta cells fail, leading to deceased 
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insulin secretion and loss of beta cell mass, thereby resulting in T2D. In T2D, the 

response of alpha cells to glucose (inhibition of glucagon secretion) is blunted, which 

likely contributes to elevated blood glucose levels in the disease (4). A dominant theory 

in the field has specified that the ability of the beta cells to mount a compensatory 

response determines if an individual will progress to T2D (5). However, only ~one-third 

of obese and insulin resistant individuals develop diabetes (6). In addition, approximately 

12% of individuals developing T2D are lean, not obese, having no prior history of insulin 

resistance (7). Even individuals with genetic risk factors that are linked to beta cell 

dysfunction can avoid developing diabetes as long as they remain metabolically healthy 

(5). Thus, while it is clear that beta cell dysfunction is both necessary and sufficient to 

cause T2D, even in the absence of insulin resistance (8), there is evidence that insulin 

resistance is necessary but not sufficient to cause diabetes. 

 

Substantial beta cell failure occurs at an early stage in disease progression, even 

before the disease is diagnosed (9). Both beta cell mass and function start to decline 

before the onset of hyperglycemia, and decrease by 40-65% by the time patients are 

diagnosed with T2D (10). Beta cell dysfunction occurs in genetically predisposed 

individuals with normal glucose tolerance well before the emergence of T2D (11). For 

example, glucose-stimulated insulin release was reduced among first degree relatives of 

Caucasian diabetic patients when compared to control individuals matched for age, sex, 

weight and insulin sensitivity (12). Some of these individuals are reportedly 

hyperinsulinemic prior to presenting with insulin resistance (12-13). Such hypersecretion 

of insulin in the absence of stimulatory fuel prompts hypoglycemia, and is counteracted 
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by increased food consumption. The increased food intake promotes increased fat storage 

and insulin resistance. Alternatively, systemic hyperinsulinemia reportedly reduces the 

number and sensitivity of IR present in liver and adipocytes, leading to insulin resistance 

(14). Moreover, transgenic mice over-expressing the insulin gene developed insulin 

resistance secondary to hyperinsulinemia. Also supporting the argument that beta cell 

dysfunction may precede insulin resistance, gene expression analyses of T2D islets 

identified changes in expression of genes that are important for beta cell function (15). 

Importantly, subsequent genome wide association studies linked a majority of the genes 

associated with T2D to beta cell function (16). As such, accumulating evidence suggests 

beta cell hyperinsulinemia to be a likely initiating event in the development of T2D, and 

that efforts to determining the cause(s) and mechanism of basal hyperinsulinemia could 

help identify a possible cure (8).  

 

1.3 INSULIN GRANULE EXOCYTOSIS 

1.3.1 Pancreatic Islets 

The pancreas is composed of an exocrine component, which releases digestive 

enzymes, and an endocrine component, representing 1-5% of the total pancreatic mass 

and consisting of highly structured clusters of cells, named the Islets of Langerhans (17). 

Islets contain different groups of cells of which the beta cells, which secrete insulin, 

comprise the majority, ~70-80%, of the total islet mass. Islets are composed of 15-20% of 

alpha cells that secrete glucagon to oppose the actions of insulin (18). Delta, epsilon, and 

PP cells make up the remaining 5-15%, secreting somatostatin, ghrelin, and pancreatic 



8 

 

polypeptide, respectively (19). The majority of this dissertation will focus on the insulin 

secreting beta cells. 

 

1.3.2 Biphasic Insulin Secretion 

Under experimental in vivo conditions with administration of glucose 

intravenously, a biphasic insulin release profile is observed with a rapid acute phase 

followed by a slow sustained phase similar to the in vitro profile (20-21). Physiologically, 

first-phase insulin release inhibits gluconeogenesis and glycogenolysis, thereby 

suppressing hepatic glucose output from the liver (2). The sustained second-phase of 

insulin secretion plays a predominant role in glucose uptake in the peripheral tissues. 

 

The beta cell contains around 10,000 insulin secretory granules, purported to exist 

as two separate pools: the readily releasable pool (RRP), and the reserve pool. These 

distinct pools are suggested to underlie the separable two different phases of biphasic 

insulin secretion, as first described in 1960 (22-24). The RRP accounts for less than 5% 

of the total number of insulin granules and until very recently was assumed to be 

responsible for the first-phase insulin release, given corroborating data suggesting these 

granules to be morphologically docked. However, results obtained using total internal 

reflection fluorescence (TIRF) microscopy in the last few years suggests that granules not 

necessarily predocked can contribute to the insulin release during the first-phase (25). 

First-phase insulin release is elicited by glucose, arginine and non-fuel secretagogues 

such as potassium chloride peaking within 2-5 minutes and completed within 10 minutes 

from the time of initiation. The rate of insulin release is approximated at ~15 granules per 
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minute, accounting for a total of 60–120 granules released during the first-phase (26). 

The reserve pool accounts for 95% of the mass of mature insulin granules, is located 

deeper within the cell (>50-100 microns from the PM), and is responsible for sustaining 

insulin release during the more prolonged second-phase. Only fuel secretagogues such as 

glucose can elicit second-phase insulin release (27), which is less robust than first-phase 

but persists as long as the glucose stimulus is present. The rate of insulin release during 

the second-phase is ~5 granules per minute, such that ~600 granules are utilized from the 

reserve pool when the second-phase persists over 120 minutes (25, 28-29); notably, this 

is still less than 10% of the total 10,000 granules predicted to be in a given beta cell, 

showing that each beta cell has an extensive capacity to secrete insulin. 

 

1.3.3 Stimulus-Secretion Coupling and Insulin Exocytosis in the Beta Cell 

The beta cell is an electrically excitable cell type that has both glucose sensing 

and insulin exocytosis functions, allowing it to sense changes in blood glucose and 

appropriately respond by releasing insulin. As depicted in Fig. 1-1, glucose sensing arises 

from the presence of glucose transporter 2 (GLUT2) receptors present on the PM (30), 

increasing the flux of glucose into the beta cell by passive diffusion through these cell 

surface receptors; recent study suggests that human islet beta cells also use GLUT1 

transporters (31). GLUT2 has a relatively low affinity (Km~ 30 mM) for glucose and is 

constitutively active and the principal isoform in rodents. Glucose transporter 1 (GLUT1) 

is the predominant glucose transporter present in human beta cells (km~ 6 mM), given 

the glucose levels in humans are maintained between 3.6 mM (after a prolonged fast) to 7 

mM (after a meal).  



10 

 

 

 

Figure 1-1. Stimulus-secretion coupling in the beta cell. Steps 1-3) Glucose enters the 

cell through the GLUT2 transporter and is metabolized, which increases the ATP: ADP 

ratio, resulting in closure of the KATP sensitive channels. Steps 4-6) Channel closure 

leads to PM depolarization, voltage dependent calcium channel (VDCC) opening and 

influx of calcium into the cell. Step 7) Through an incompletely understood 

mechanism(s), calcium entry triggers SNARE protein mediated vesicle fusion to facilitate 

insulin release. [Adapted from (32)]. 
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Upon entry into the cell, glucose is rapidly phosphorylated by the enzyme glucokinase, 

yielding glucose-6-phosphate (G6P); this phosphorylation is a rate limiting step in 

glycolysis (33). The production of G6P drives energy into glycolysis and the 

tricarboxylic acid cycle leading to an increase in the ATP to ADP ratio (34). This 

increase in the ATP:ADP ratio causes closure of ATP-dependent (KATP) potassium 

channels that results in an increase of the resting membrane potential, leading to PM 

depolarization (35). PM depolarization causes opening of L-type voltage dependent 

calcium channels (VDCC), thereby increasing the intracellular cytosolic calcium 

concentration [Ca2+]i (36). The elevated intracellular calcium causes immediate release of 

insulin granules already primed at the PM, particularly those adjacent to the VDCC (37). 

Granules are coordinately mobilized to the PM from the reserve pool, although the 

signals required for this remains under investigation. Once insulin granules arrive at the 

PM they undergo ‘exocytosis’, involving the docking and fusion of granules with the PM. 

The exocytosis of the insulin granules is mediated by Soluble N- ethylmaleimide-

sensitive attachment receptor factor attachment protein receptor (SNARE) proteins, a 

complicated process requiring multiple types of complexes operating within the distinct 

phases, as will be discussed in Section 1.4. 

 

1.4 GLUT4 VESICLE EXOCYTOSIS 

1.4.1 The Insulin Receptor 

The peripheral insulin responsive tissues, namely skeletal muscle and adipose 

strive to clear the excess glucose, thereby restoring glucose homeostasis. Approximately 

~80% of the glucose is cleared by the skeletal muscle, with the remainder being utilized 
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by brain (25%) and rest cleared by liver and fat. These tissues are insulin responsive 

because their cells harbor insulin receptors (IR) on their surface membranes. IR is 

comprised of an extracellular α subunit and a transmembrane-spanning β subunit linked 

by disulfide bonds (38). Upon insulin binding, a conformational change to the 

intracellular portion of the IR protein occurs, resulting in activation of the β subunit’s 

tyrosine kinase activity and autophosphorylation of the kinase regulatory domain, leading 

to phosphorylation of the juxtamembrane tyrosine residues that function as docking sites 

for a wide range of substrates (39-40). These events are followed by an additional 

conformational change within the β subunit, unmasking important substrate binding sites 

and thus, stabilizing the receptor in an active conformation.  

 

1.4.2 Insulin Receptor Substrates and Signalling in Fat and Skeletal Muscle 

As depicted in Fig. 1-2, extracellular insulin binding to the IR triggers a cascade 

of intracellular signals to multiple substrates in skeletal muscle and fat cells: IRS 

proteins, APS/Cbl/CAP complexes, and most recently, Munc18c, a non-classical 

signaling component of the SNARE machinery (41). IR signaling through these 

substrates is coordinated in multiple cascades to evoke the main event required for 

glucose uptake by these cell types: the mobilization of insulin-responsive GLUT4-laden 

vesicles from intracellular storage pools to the cell surface (42-44). Once at the surface, 

GLUT4 proteins are incorporated into the PM to facilitate entry of glucose into the cells 

and out of circulation. The IRS proteins signal downstream to elicit a PI3 kinase-

dependent signaling cascade, whilst APS/CAP/Cbl-signaling is purportedly an IRS and 

PI3 kinase-independent signaling cascade (45). Use of PI3K inhibitors has implicated an  
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Figure 1-2. Schematic representation of the major features of IR. IR is a heteromeric 

structure comprised of two extracellular α subunits that bind insulin, and two intracellular 

transmembrane β subunits. The intracellular domains contain the tyrosine kinase (TK) 

activity. Insulin binding to the extracellular domain of IR induces a conformational 

change to the intracellular domain, such that the receptor undergoes autophosphorylation. 
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IR-dependent but PI3K-independent signaling pathway. One well described PI3K 

independent pathway involves the APS/Cbl/CAP complex (46), which provides a second 

signal cascade that functions in parallel with PI3K to evoke GLUT4 translocation and 

glucose uptake in response to the insulin-IR signal. As depicted in Fig. 1-3, this pathway 

is initiated by recruiting Cbl (a proto-onco protein) to the activated IR via adapter 

proteins CAP (c-Cbl associated protein) and APS (Adapter protein with PH and SH2 

domain) (47-48). APS is phosphorylated by IR, which in turn phosphorylates Cbl, 

leading to Cbl association with CAP and CrkII (49). This complex then translocates to 

the caveolar rich region of the PM with the help of flotillin, a lipid raft protein (50-52), 

and along with guanine nucleotide exchange factor C3G, activates TC10 in lipid rafts 

(53-54). TC10 binds to a number of downstream effectors such as CIP4, Exocyst, N-

Wasp and Arp-2/3, which have roles in actin dynamics (55). Actin cytoskeleton re-

organization is vital in insulin sensitive tissues to form a mesh which is critical for 

GLUT4 vesicle tracking and translocation to the PM. Actin depolymerization with 

latrunculin prevents GLUT4 translocation, suggesting a requirement for intact F-actin 

structure in insulin-stimulated GLUT4 translocation (56-57). Studies using 

jasplakinolide, an F-actin nucleating and stabilizing agent, inhibits GLUT4 translocation, 

further substantiating the role for actin re-organization in glucose transport (58-59).  

 

In 2011 IR was found to utilize Munc18c, a regulatory protein of the SNARE 

machinery required to dock and fuse GLUT4 vesicles at the PM, as a substrate. As IRS-1 

failed to bind Munc18c and no binding differences were seen in the presence of a PI3K 

inhibitor, it was concluded that IR signaling to Munc18c was independent of GLUT4 
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Figure 1-3. GLUT4 translocation in muscle/adipose. Three signaling pathways are 

required for the GLUT4 vesicle translocation in muscle and fat: 1) Phosphorylated IR 

binds and phosphorylates IRS-1 which activates P13K. This further leads to PDK1 

activation and subsequently Akt1/2 phosphorylation. AKT activates AS160, and AS160 

which through, as of yet, undefined steps results in GLUT4 translocation, facilitates 

glucose uptake. 2) IR also phosphorylates APS which in turn phosphorylates Cbl. Cbl 

constitutively interacts with CAP, which associates with flotillin to stabilize the 

recruitment of this complex in caveolae. Phosphorylated Cbl in the caveolar lipid raft 

recruits CrkII, and CrkII constitutively binds to the nucleotide exchange factor C3G. C3G 

catalyzes the exchange of GTP for GDP on the lipid raft-associated protein TC10, a 

downstream effector important in GLUT4 translocation. 3) IR phosphorylates Munc18c. 
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which relays signal to the SNARE machinery to coordinate SNARE complex formation 

and vesicle fusion. 

 

 IR/IRS/PI3K signaling and that IR signaling to Munc18c occurred in parallel to 

that of the PI3K pathway in the mechanism of insulin-stimulated glucose uptake (41). IR 

required Munc18c residue Tyr 521 for binding and phosphorylation, although a second 

residue, Tyr 219, was also found to be essential in insulin-stimulated Munc18c 

phosphorylation and GLUT4 vesicle translocation in 3T3-L1 adipocytes, perhaps as a 

sequential phosphorylation event following Tyr 521 modification (41). By orchestrating 

these three substrate activation events, IR can propagate the insulin signal within minutes 

to coordinate both the mobilization and docking/fusion of GLUT4 vesicles with the help 

of SNARE proteins to achieve a 3 to 5-fold increase in cellular glucose uptake (41, 60-

62). 

 

1.5 SNARE PROTEINS INVOLVED IN EXOCYTOSIS  

SNAREs belong to a superfamily of proteins with more than 35 members that 

mediate fusion between vesicle and target membrane in various secretory pathways, 

including insulin granule exocytosis, neurotransmitter release, and insulin-stimulated 

GLUT4 vesicle exocytosis. To date, 6 vesicle SNARE (v-SNAREs) isoforms and 11 

target-membrane SNARE proteins (called ‘t-SNAREs’) have been identified that are 

involved in insulin granule and GLUT4 vesicle exocytosis events (63-67). The 

characterization of mammalian SNARE proteins began in the late 1980’s, when the first 

synaptic vesicle protein Synaptophysin was cloned. Within a decade, key elements of 
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membrane fusion were identified (68-69). The first SNARE complexes, characterized in 

neuroendocrine cells, consisted of Syntaxin 1 (70), SNAP25 (71) and VAMP2 (72). They 

are classified based on the central amino acid residue in the zero layer of a helical bundle 

present in each protein. R SNAREs contribute arginine at this residue and are usually 

vesicle associated. Q SNAREs are target membrane associated (t-SNAREs) and contain 

glutamine at the central position. Q SNAREs are further classified into Qa, representing 

the syntaxin subfamily, and Qb or Qc, representing the SNAP family. The helical domain 

in each of these SNAREs, referred to as the ‘SNARE’ motif, contains a conserved stretch 

of 60–70 amino acids containing heptad repeats (73). Most SNARE proteins contain one 

SNARE motif, although SNAP23/25 consists of two SNARE motifs (74). Isolated 

SNARE motifs are unstructured, only gaining structure as they interact during the 

formation of the four alpha-helical bundle; this bundle is called the ‘SNARE core 

complex’. SNARE proteins confer specificity and directionality for the vesicle to dock 

and fuse with the PM. Different SNARE proteins play a role in each phase of biphasic 

insulin release. Of the exocytotic SNARES, Syntaxin 1 is required for first-phase, while 

Syntaxin 4 has a role in biphasic insulin secretion. Recently, Syntaxin 3 was found to 

regulate biphasic insulin release by mediating new comer granules to the PM. Both the 

phases require SNAP25 or SNAP23 to bind with v-SNARE VAMP2. Syntaxin 2/3 was 

also identified to bind VAMP8 to regulate biphasic insulin secretion (28, 75-77). GLUT4 

mediated glucose uptake occurs in one phase and involves a smaller subset of SNARE 

components including t-SNAREs Syntaxin 4 and SNAP23, and v-SNARE VAMP2 (78-

79). Accessory proteins like Munc18c and others (Doc2b and Munc13) further regulate 

the SNARE proteins during complex formation. 
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1.5.1 SNARE Protein Abundances and Diabetes 

Down-regulation of proteins involved in exocytosis is correlated with impaired 

beta cell function in T2D patients and rodent models (80-82). Islets of obese Zucker and 

diabetic GK rats show decreased levels of Syntaxin 1, Syntaxin 4, VAMP2 and SNAP25 

(83). Similarly, islets from T2D patients have decreased Syntaxin 1, with a concomitant 

reduction in its Munc18 regulatory factor, Munc18-1 (80). Syntaxin 4 and its regulatory 

factor Munc18c are also reduced in T2D human and diabetic mouse skeletal muscle (80, 

84). Attenuated expression of SNARE proteins has been proposed to impair insulin 

secretion, since restoration of Syntaxin 1 and SNAP25 protein levels in islets from the 

diabetic GK rat was sufficient to restore first-phase insulin release and normoglycemia 

(83). 

 

1.5.2 SNARE Core Complex Assembly 

The SNARE hypothesis initially postulated that preassembled SNARE complexes 

formed at the site of vesicle docking were acted upon by N-ethylmaleimide sensitive 

factor (NSF) and alpha-SNAP to drive membrane fusion. Later, it was discovered that 

NSF and alpha-SNAP play a role in the disassembly of SNARE complexes (85), and the 

hypothesis was altered to its current state, which establishes that the SNARE proteins are 

the key elements for membrane fusion and SNARE core complex assembly involves the 

exquisite rearrangement of lipid bilayers to cause fusion (69). The vast majority of 

detailed structural assembly information described below involves the isoforms syntaxin 

1A, SNAP25 and VAMP2, as these are the primary isoforms involved in presynaptic 

exocytosis (86). In beta cells, these isoforms of syntaxin and SNAP are operative in the 
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first phase of insulin secretion whereas, Syntaxin 4 and SNAP23 are involved in GLUT4 

vesicle exocytosis and the second phase insulin secretion with VAMP2 playing a role in 

both the processes. 

 

SNARE assembly begins by the formation of a binary cognate receptor complex 

at the target membrane composed of SNAP25 and syntaxins in a stoichiometric ratio of 

either 1: 1 or 2: 1 (74). It is believed that 50–70 clusters composed of Syntaxin 1 and 

SNAP25 together are associated with one docked granule at the PM (87-88). VAMP2 

joins the binary complex to form a heterotrimeric complex in a 1:1:1 stoichiometric ratio 

(76, 89-91). These three SNARE proteins form a stable four helical bundle by the 

contribution of four α-helices: one from VAMP, one from Syntaxin, and the remaining 

two from SNAP25 (92-95). The SNARE cycle starts with the amino- to carboxyl- 

terminal zippering to form a tight complex through hydrophobic interactions (96). 

SNARE core complexes are highly stable and resistant to extreme conditions like 

exposure to SDS, urea, and high temperatures (97). The assembly of SNARE proteins 

releases free energy, and this energy is used to overcome the repulsive forces of the 

opposing barriers to initiate fusion between the vesicle and the PM (95). The luminal 

pore is formed during the fusion by interactions between the transmembrane domains of 

Syntaxin 1 and VAMP2, which initiate the vesicle exocytosis. However, recent data 

suggest that the transmembrane domain is not required for the pore formation (98). The 

trans-SNARE complexes, present in the opposing membranes during fusion, merge to 

form cis-SNARE complexes, which are dissociated by the subsequent binding of NSF 

and SNAP proteins. SNAP recruits NSF, which, owing to its ATPase activity, dissembles 
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the SNARE core complex, making SNAREs available for another round of fusion. The t-

SNAREs are redistributed along the PM, while the v-SNARE is endocytosed for future 

incorporation into cargo-loaded vesicles.  

 

Based on fluorescence resonance energy transfer (FRET) and TIRF studies, it was 

shown that the assembly of SNARE complexes is locally regulated and varies from 

region to region in beta cells Regions with preassembled SNAREs show faster exocytosis 

in response to calcium compared to regions without preassembled SNAREs (37). A few 

studies have demonstrated that around 3–15 SNARE complexes participate in the 

exocytosis event; controlled FRET experiments have elucidated that one SNARE 

complex is sufficient for fusion in vitro (99-100). However, it is difficult to rely on the 

above mentioned data as energy formed from one SNARE complex is insufficient for full 

fusion pore formation, and additional radiant force may be necessary to prevent the pore 

from resealing during release (101).  

 

1.5.3 Syntaxins 

Syntaxins are t-SNAREs that are localized to the PM, the cytosolic face of 

endosomal, golgi, and endoplasmic reticulum membranes. Each isoform is specific in 

terms of its cellular localization, and some isoforms are further specified to apical versus 

basement membrane localizations within polarized cell types. Syntaxins are attached to 

the membrane through a characteristic hydrophobic C-terminal transmembrane domain, 

while the N-terminus remains in the cytosol. Syntaxins are characterized by a highly 

conserved SNARE motif present in the short carboxyl terminus, which is connected by a 
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short linker to three additional alpha helical domains (termed Ha, Hb, and Hc, or 

cumulatively as Habc) present in N terminus. Syntaxin isoforms 1, 2, 3 and 4 are localized 

to the PM and each reportedly functions in insulin secretion (28, 76, 102-103). GLUT4 

vesicle exocytosis uses only the PM-localized Syntaxin 4 isoform, although Syntaxin 

isoforms 2, 3, 5, 6, 7, 8, and 12 are reportedly present in adipocytes (32, 89, 91) 

 

1.5.4 Syntaxin 1  

Syntaxin 1 is a ~35 kDa polypeptide discovered in bovine brain extracts and later 

identified in pancreatic islets (70, 103-104). Deletion of Syntaxin 1 impairs docking of 

synaptic vesicles in chromaffin cells. Similarly, Syntaxin 1 -/- knockout mouse islets have 

reduced first-phase secretion (105), showing it is essential for docking and fusion of RRP 

granules (28). Syntaxin 1 binds to other proteins, which can facilitate exocytosis under 

normal circumstances, but can be detrimental when Syntaxin 1 levels are too high. For 

example, when present in excess (106), Syntaxin 1 blocks the SUR subunit of KATP 

channels and inhibits PM depolarization to attenuate insulin secretion (107). Syntaxin 1 

also decreases the surface expression of these channels (108-109). While Syntaxin 1 

binding to calcium channels presumably fosters fast exocytosis by localizing docked 

granules in the vicinity of initial calcium influx, Syntaxin 1 surfeit inhibits calcium influx 

(110). Indeed, over-expression of Syntaxin 1 in insulinoma cells and normal healthy islets 

reduces insulin secretion (111). Transgenic mice engineered to over-express Syntaxin 1 

had impaired glucose and insulin tolerance and fasting hyperglycemia (104, 112). 

Moreover, a hemizygous mutation of Syntaxin 1 in humans, linked with Williams-Beuren 
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syndrome, leads to abnormal glucose homeostasis (109). Several SNPs for Syntaxin 1 

have been identified, and associated with diabetes (113). 

 

1.5.5 Syntaxins 2 and 3  

Syntaxins 2 and 3 are expressed in beta cells, and very recent work has implicated 

Syntaxin 3 in unusual forms of insulin granule exocytosis. Syntaxin 3 plays a role in 

secretory granule fusion to other secretory granules (SG-SG fusion) in beta cells leading 

to biphasic insulin release (76, 102). However, it is difficult to rely on the data, since 

insulin secretion under Syntaxin 3 depleted conditions was performed in clonal beta cells 

and not in primary islets. Also, TIRF microscopy was used to delineate that Syntaxin 3 is 

required for the recruitment of new comer granules. Given the discrepancies in TIRF 

microscopy methodologies, due to the differences in the distance measured from the PM, 

further analyses are required to discern Syntaxin 3 participation in SNARE mediated 

exocytosis.  

 

1.5.6 Syntaxin 4  

Syntaxin 4 is a ~35 kDa, ubiquitously expressed protein known to have a function 

in pancreatic beta cells, muscle, adipose, kidney, postsynaptic density and mast cells 

(114-115). Syntaxin 4 plays a major role in the regulation of insulin secretion in 

pancreatic beta cells and glucose uptake in peripheral tissues to coordinately maintain 

glucose homeostasis. Islets from heterozygous Syntaxin 4 knockout mice had reduced 

biphasic insulin secretion, while islets isolated from transgenic mice with Syntaxin 4 

over-expression had ~35% increased insulin release in both phases (76), indicating 
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Syntaxin 4’s positive role in insulin secretion. Correspondingly, serum insulin content 

peaked within 5 minutes after glucose injection in Syntaxin 4 Tg mice compared to Wt 

mice, in which serum insulin levels peaked after 15-30 minutes (Oh, Stull, Mirmira and 

Thurmond, unpublished).  

 

Syntaxin 4 is the only syntaxin isoform shown to have a role in GLUT4 vesicle 

exocytosis (116). While early studies suggested that Syntaxin 2 was expressed in 3T3-L1 

adipocytes (116), Syntaxin 2 has yet to be implicated in GLUT4 vesicle exocytosis. 

Syntaxin 4 regulates the docking and fusion of GLUT4 vesicles. Syntaxin 4 heterozygous 

mice displayed significant insulin resistance owing to impaired GLUT4 accumulation in 

sarcolemmal and t-tubule membranes, consistent with reduced skeletal muscle and 

whole-body glucose uptake in these mice (76, 91). Similarly, Syntaxin 4 transgenic mice, 

over-expressing Syntaxin 4 by 3-5 fold exclusively in muscle and adipose had enhanced 

glucose uptake mediated by increased GLUT4 translocation in muscle (89); these mice 

were also protected against diet-induced insulin resistance (Oh and Thurmond, 

unpublished). In Syntaxin 4 heterozygous mice, Munc18c protein levels were also 

decreased even though levels of other SNARE proteins remained unchanged. In a 

consistent fashion, Munc18c levels were similarly increased in Syntaxin 4 over-

expressing mice. These findings are consistent with other reports suggesting a chaperone-

type relationship between Munc18-Syntaxin proteins (117).  
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1.5.7 SNAP 

SNAPs are 23–29 kDa proteins consisting of three isoforms SNAP23, SNAP25, 

and SNAP29. All three have similar sequence and structure. Each contains two alpha 

helical SNARE motifs, but no transmembrane domain, and therefore are not membrane-

integrated like the syntaxins and VAMPs. The two SNARE motifs of the SNAPs are 

connected by a loop region, which contains palmitolyated cysteine residues that help 

anchor SNAPs to the PM (118). SNAP23 and SNAP25 proteins bind with the other 

SNARES to regulate the docking and fusion of insulin granules and GLUT4 vesicles. 

SNAP25 is exclusively found in beta cells and neuronal cells (119), and is absent from 

muscle or adipose (120). In contrast, SNAP23 is ubiquitously expressed and detected in 

adipose, muscle, and beta cells (121). SNAP23 can compensate for the loss of SNAP25 

in beta cells, and vice versa (122). Studies of SNAP25 or SNAP23 knockout must await 

the generation of inducible tissue-specific knockout mice, since classic knockout mice of 

the genes is embryonic lethal (123).  

 

1.5.8 VAMP2 

VAMP2 is a ~18 kDa vesicle-associated SNARE protein from a family of seven 

isoforms. Each isoform contains a single C-terminal SNARE motif. While multiple 

VAMP isoforms have been investigated in regards to GLUT4 vesicle exocytosis, 

VAMP2 is the primary isoform involved in this process (63, 124-125). At the time of 

their discovery in adipocytes and muscle, VAMP2 and VAMP3 were both considered 

pertinent to this process. However subsequent studies with VAMP3 knockout mice 

indicated no defects in GLUT4 vesicle exocytosis or glucose homeostasis (126), thereby 
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arguing against a role for VAMP3. VAMP8 has recently gained attention in this role, 

although conflicting data regarding the relative importance of VAMP8 versus VAMP2 

preclude a clear picture at this time (127). VAMP2, 3 and 8 are also expressed in beta 

cells where VAMP2 plays a predominant role in insulin exocytosis similar to the process 

in adipocytes and muscle (63). 

 

1.6 SNARE ACCESSORY PROTEINS 

1.6.1 Munc18 proteins 

Sec1/Munc18 (SM) proteins are the most widely studied family of proteins that 

regulate membrane fusion by controlling SNARE complex formation. Homologues to the 

SM proteins include Sec-1 in S. cerevisiae, unc18 in C. elegans, and Rop in D. 

melanogaster (128-129). Three mammalian SM isoforms, Munc18-1, Munc18b, and 

Munc18c, having a high degree of sequence similarity have been identified. These 

isoforms are 66-68 kDa cytosolic proteins that have no transmembrane domain but are 

localized to the PM when complexed with their cognate syntaxin. A high degree of 

structural similarity exists between Munc18 isoforms; SM proteins form an arch-shaped 

clasp that holds specific syntaxins in multiple binding modes. Vps45 has recently been 

demonstrated to have a role in the delivery of GLUT4 into the specialized, insulin-

regulated compartment (130) Additional SM proteins that are operative in intracellular 

fusion events exist (Vps33 and vps16) but will not be discussed as they are not thought to 

be required for insulin exocytosis or GLUT4 vesicle exocytosis events (131-132). Two 

isoforms, Munc18-1 and Munc18c, are associated with impaired insulin exocytosis and 

GLUT4 vesicle exocytosis and correlated with the T2D phenotype (80, 84, 133).  
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1.6.2 Munc18-1  

Munc18-1 was originally cloned in neuronal tissues as a Syntaxin 1 binding 

partner and later identified in islet beta cells (134). Munc18-1 is expressed only in 

neuroendocrine cell types, and therefore is detectable in beta cells but not in fat or muscle 

cells. Munc18-1 (also known as Munc18a, N-Sec1, STXBP1 and Syntaxin binding 

protein) is known to bind plasma membrane syntaxin isoforms 1, 2, and 3 (134). Reduced 

levels of Munc18-1 are known to impair neurotransmitter release (135) and its depletion 

from beta cells results in defective docking of insulin granules and reduced insulin 

secretion (136). Over-expression of Munc18-1 in human islets selectively enhanced first-

phase insulin secretion (136), demonstrating that Munc18-1 is an important protein for 

first-phase insulin release. Surprisingly, Munc18-1 over-expression drove the assembly 

of Syntaxin 4-based SNARE core complexes, rather than of Syntaxin 1-based complexes 

as would have been predicted based upon the specificity of SM-syntaxin pairing. The 

enhancement effect of Munc18-1 was shown to require Syntaxin 4, indicating that a 

novel cross-talk must exist between these protein complexes in the beta cell. 

 

Two models have been developed to explain the interaction of Munc18-1 with 

Syntaxin 1. In one model, Munc18-1 holds its cognate syntaxin isoform, Syntaxin 1, in a 

‘closed’ conformation (118, 137), which blocks Syntaxin 1 from ‘opening’ and 

interacting with the tertiary SNARE complex. It is proposed that domain 3A of Munc18-

1 facilitates conversion of Syntaxin 1 from a closed to an open conformation (138). In the 

open conformation, the Habc domain unfolds, exposing Syntaxin 1’s SNARE motif and 

allowing it to participate in SNARE core complex formation (139). The binding of 
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Munc18-1 to the linker region of Syntaxin 1 has been shown to stabilize this closed 

conformation of Syntaxin 1 (140). Further, more point mutations that keep Syntaxin 1 

open abolish its interactions with Munc18-1 (141). In particular, Munc18-1 

phosphorylation at Thr 574 by cyclin-dependent kinase 5 (CDK5) or at Ser 306 and Ser 

313 by protein kinase C, reduces its affinity for Syntaxin 1 (142). In contrast, Munc18-1 

phosphorylation at Thr 479 by Dryk-1 stimulates its binding to Syntaxin 1 (133, 143). 

While these events have yet to be investigated in beta cells, they do suggest post-

translational modifications as an additional layer of complexity by which Munc18-1 may 

regulate insulin exocytosis. In the second model, Munc18-1 interacts with Syntaxin 1 in 

the open conformation. Munc18-1 would bind to a short region at the amino terminal of 

Syntaxin 1 allowing it to be compatible for SNARE complex formation under Munc18-1 

bound conditions (144). It may be necessary for Munc18-1 to wrap around Syntaxin 1 to 

provide spatial organization of SNARE complex (145). Indeed, Munc18-1 can bind to the 

SNARE complex in beta cells, whereas Munc18c cannot, as detailed in the next section 

below. 

 

1.6.3 Munc18c  

Munc18c is ubiquitously expressed, detected in beta cells, fat and skeletal muscle, 

and is the exclusive SM binding partner of Syntaxin 4 (146-147). Munc18c is an essential 

regulator in SNARE mediated exocytosis, by virtue of its role and requirement as a 

binding partner for Syntaxin 4. In adipocytes, beta cells, and muscle, Munc18c has been 

shown to bind Syntaxin 4 in a manner that is mutually exclusive of Syntaxin 4’s 

interactions with SNAP23 and VAMP2 (148-149). In these cell types, Munc18c has been 
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shown to impact the ability of Syntaxin 4 to form SNARE core complexes similar to that 

of the Munc18-1-Syntaxin 1 complex. However, recent crystallographic evidence 

suggested that Syntaxin 4 was perpetually in an open conformation (150), distinct from 

the dual conformations detected for Munc18-1. Thus, while there is clear evidence of 

conservation of function with Syntaxin 4/Munc18c/SNARE complex formation and 

Syntaxin 1/Munc18-1/SNARE complexes, there appear to be significant departures that 

may ultimately impact how each set promotes insulin exocytosis. 

 

Although Munc18c is now regarded as a required and positive factor for GLUT4 

vesicle exocytosis and insulin exocytosis, based upon reduced function of each in 

Munc18c heterozygous knockout mice (151), Munc18c was initially labeled as an 

inhibitor of these processes based upon over-expression studies in clonal cells and in vivo 

(152). These data suggest that while Munc18c is required for these exocytosis processes, 

it is not limiting. This was confirmed in a study in which impaired GLUT4 translocation, 

seen under Munc18c over-expressed conditions, was reversed with Syntaxin 4 over-

expression (153).  

 

Munc18c specifically facilitates second-phase glucose-stimulated insulin 

secretion (GSIS) wherein Munc18c phosphorylation at Tyr 219 was identified as a crucial 

trigger for SNARE complex formation (154). Concurrent with this finding, Munc18c in 

3T3-L1 adipocytes was found to be tyrosine phosphorylated at residue 521 (149), which 

occurred concomitant with dissociation of Syntaxin 4-Munc18c complex and the 

promotion of GLUT4 vesicle exocytosis. Insulin-stimulated phosphorylation of Munc18c 
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at both sites was found to be required for GLUT4 vesicle exocytosis via a knock-in 

approach (41). Further, this mechanism was shown to be conserved in primary mouse 

skeletal muscle. Very recently, the PTPIB phosphatase was shown to dephosphorylate 

Munc18c and reverse these actions (155). The ‘switch hypothesis’, whereby Munc18c 

undergoes stimulus-dependent tyrosine phosphorylation to release Syntaxin 4, promoting 

Syntaxin 4 incorporation into SNARE complexes, is illustrated in Fig. 1-4. 

 

It had been presumed for years, based upon analogy to yeast orthologs of Munc18 

and Syntaxin association/dissociation dynamic mechanisms, that downstream of AS160, 

a Rab-type protein would serve to dissociate Munc18c from Syntaxin 4 at the PM. This 

was predicted to facilitate the opening and accessibility of Syntaxin 4 to incoming 

VAMP2-laden GLUT4 vesicles. However, no such Rab protein has ever been definitively 

identified. Emerging evidence regarding a putative role for Munc18c phosphorylation in 

this mechanism led to investigations of protein kinase(s) that might circumvent the need 

for the unidentified Rab-like protein, and indeed, IR was found to carry out this role (41). 

Given this observation, it is conceivable that the function of a Rab-like protein 

downstream of AS160 to facilitate SNARE pairing may not be required in the process of 

GLUT4 vesicle translocation.  

 

1.6.4 Munc13 

Munc13 proteins are large, ranging from 100-200 kDa; there are four known 

isoforms (Munc13-1, -2,-3,-4, also referred to as Munc13 A-D). Except Munc13-4, other  
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Figure 1-4. The switch hypothesis model. Doc2b functions as a switch to bind 

phosphorylated Munc18c facilitating the opening of Syntaxin 4. Once opened, Syntaxin 4 

participates in SNARE complex formation, ultimately leading to exocytosis. 
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Munc13 isoforms contain three calcium/phospholipid binding domains, with one C1 

domain and two C2 domains (156). Munc13 isoforms are not yet described to exist in 

muscle or fat cells (157). Of the numerous Munc13 isoforms implicated in synaptic 

exocytosis, only Munc13-1 is well characterized and defined in insulin secretion. The C2 

domains of Munc13-1 mediate the binding of phorbol ester and diacylglycerol binding 

(158). Munc13-1 was originally identified in beta cells and islets as a RIM binding 

protein (157), and found to be limiting for insulin exocytosis, as evidenced by over-

expression studies showing increased insulin secretion (157). Consistent with this, 

Munc13-1 heterozygous mice had impaired glucose tolerance and reduced insulin 

secretion (159). In addition, Munc13-1 binds to a novel domain present in Doc2 proteins, 

referred to as the Munc13-interacting domain (MID). Another isoform of Munc13, 

Munc13-4 was recently identified to bind Syntaxin 4 using in vitro liposome assays 

(160). Munc13-4 is also identified as a limiting factor in platelet exocytosis (161), 

suggesting it may carry importance in insulin exocytosis.  

 

1.6.5 Doc2 proteins 

Doc2 proteins, so named for their inclusion of double C2 domains called C2A and 

C2B, are 45 kDa polypeptides first discovered in 1995 (162-163). They are soluble 

proteins lacking a transmembrane domain. The N-terminal MID region of Doc2 proteins 

is separated from the C2A domain by a short linker, with the C2B domain closest to the 

C-terminus (Fig. 1-5). Three different isoforms of Doc2 are known: Doc2alpha, 

Doc2beta, and Doc2gamma, commonly known as Doc2a, Doc2b and Doc2g. Doc2a is 

predominantly expressed in brain, while Doc2b is ubiquitously expressed in tissues 
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Figure 1-5. Doc2b functions as a scaffold for Munc18-1 and Munc18c. An unrelated 

Munc protein, Munc13-1, a priming factor, binds Doc2b via its MID domain. C2A 

domain binds Munc18-1 while C2B binds Munc18c. 
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including brain, kidney, adipose, muscle, and pancreas (164-165). Doc2g is found only in 

the heart, and its functions are poorly defined (166). Doc2b is 69% identical to Doc2a 

and 43% to Doc2g at the amino acid level (166). Both Doc2a and Doc2b bind to 

phospholipids in response to a calcium stimulus in neuronal cell types, and are known to 

bind to Munc18 proteins through their C2 domains (167). While Doc2a expression and 

function in beta cells, adipocytes or skeletal muscle has yet to be investigated, Doc2b is 

expressed and functional in these cell types, and is therefore the focus of the discussion 

detailed below. 

 

1.6.6 Doc2b 

Doc2b was first shown to bind Munc18-1 protein via its C2A domain in 1997, 

competing for the binding to Munc18-1 with Syntaxin 1 (164). Similarly, Doc2b was 

later identified as a binding partner for Munc18c (165), but via its C2B domain, but did 

compete with Syntaxin 4 for binding to Munc18c. However, these findings contrasted 

with subsequent in vitro studies that concluded Doc2b to be a syntaxin binding protein 

(168). Given the ability of Doc2b to bind these Munc18 isoforms via its different C2 

domains, it will be important to determine if Doc2b serves as a scaffold to capture the 

transiently dissociating Munc18 proteins, as modeled in Fig. 1-5. Indeed, the stimulus-

induced tyrosine phosphorylation of Munc18c diminishes its association with Syntaxin 4 

in beta cells and adipocytes, and temporally correlates with an increase in Doc2b-

Munc18c binding. Whether Doc2b preferentially binds to phosphorylated Munc18c or 

Munc18-1 remains untested.  
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Doc2b was originally identified as a putative calcium sensor in neurons, with the 

C2B domain shown as a requisite for calcium-induced Doc2b translocation to the PM 

(169). In contrast, the C2A domain of Doc2b binds liposomes containing 

phosphatidylcholine and phosphatidylserine in a calcium-dependent manner, which 

facilitates attachment to the PM (163). This binding of the C2A domain to the PM 

reduces the energy barrier by causing membrane curvature, which ultimately enhances 

vesicle fusion with the PM. Strikingly, Doc2b was very recently demonstrated to 

modulate exocytosis by a mechanism independent of calcium in neurons (170). Similarly, 

in clonal beta cell lines conflicting data regarding calcium-stimulated Doc2b 

translocation exist (167) and therefore requires examination in primary islet beta cells to 

gain evidence in a more physiologically relevant system. 

 

Independent over-expression studies showed Doc2b to be a positive factor in 

Syntaxin 4-based insulin exocytosis and GLUT4 exocytosis events in cultured clonal beta 

cells and adipocytes, respectively (165, 168). Further, the RNAi-mediated depletion of 

Doc2b from clonal beta cells (165, 171) and from 3T3-L1 adipocytes in 2009 (168) 

suggested that Doc2b plays required roles in these processes (165, 171). The abundance 

of data implicates Doc2b as a key player in exocytosis events from multiple cell types, 

suggesting a universal function for Doc2 proteins, akin to that of the Munc18 proteins, in 

SNARE-mediated exocytosis events. However, the role of Doc2b to maintain whole body 

glucose homeostasis in vivo is yet to be tested. 
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1.7 RATIONALE 

The rationale for the studies in this dissertation is that understanding the role of 

Doc2b in maintaining whole body glucose homeostasis will further advance our 

knowledge of exocytotic processes involved in maintaining glucose homeostasis, and 

may unveil potential new therapeutic targets for the prevention and/or treatment of T2D. 

The central hypothesis of the proposed research was based upon the following evidence: 

1) Doc2b is a positive regulator of SNARE complex formation in beta cells and 

adipocytes in vitro, 2) Increasing or decreasing Doc2b protein levels increases or 

decreases insulin secretion and GLUT4 vesicle exocytosis in cultured cells, respectively, 

and 3) Doc2b binds two SM proteins, Munc18-1 and Munc18c, both of which regulate 

different phases of insulin secretion. Thus, my central hypothesis is that Doc2b-Munc18 

complexes maintain glucose homeostasis by simultaneously regulating insulin action in 

peripheral tissues and biphasic insulin secretion from pancreatic islet beta cells, and 

perturbations in the function of Doc2b lead to dysregulation of glucose homeostasis. To 

test my hypothesis I pursued two aims: 1) Establish the role of Doc2b-Munc18c 

complexes in the regulation of skeletal muscle insulin action using Doc2b knockout and 

regulatable Doc2b over-expressing transgenic mouse models, and 2) Elucidate how 

Doc2b-Munc18 complexes regulate biphasic insulin secretion using the two Doc2b 

genetic mouse models.  
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CHAPTER 2. MATERIALS AND METHODS 
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2.1 MATERIALS  

The rabbit anti-Munc18c and rabbit anti-Syntaxin 4 antibodies were generated in-

house as described (172-173). The rabbit anti-Syntaxin 4 (for immunoprecipitation), 

rabbit anti-SNAP23/ SNAP25 and mouse anti-Doc2b antibodies were purchased from 

Chemicon (Temecula, CA), Affinity Bioreagents (Golden, CO) and Abcam (Cambridge, 

MA), respectively (Table 2-1). The mouse anti-Munc18-1, mouse anti-VAMP2 and 

mouse anti-Syntaxin 1A antibodies were acquired from Synaptic Systems (Gottingen, 

Germany). Mouse anti-GFP antibody was acquired Clontech Laboratories. The rabbit 

anti-PY20, rabbit-AKT and rabbit-phosphoserine (pSer 473)-specific AKT antibodies were 

purchased from Cell Signaling, Inc. (Beverley, MA). Goat anti-rabbit-HRP and goat anti-

mouse-HRP secondary antibodies were purchased from Bio-Rad (Hercules, CA). Protein 

G+ agarose beads and goat anti-GLUT4 antibody were acquired from Santa Cruz (Santa 

Cruz, CA). The rat sensitive insulin radioimmunoassay kit was acquired from Millipore. 

Enhanced chemiluminescence (ECL) and Supersignal West Femto chemiluminescent 

reagents were purchased from Amersham Biosciences (Pittsburg, PA) and Thermo, 

respectively. The RNeasy mini kit was purchased from Qiagen (Valencia, CA). The 

Superscript First Strand cDNA synthesis kit was obtained from Invitrogen (Carlsbad, 

CA). Humulin R was obtained from Eli Lilly (Indianapolis, IN). 

 

2.2 ANIMALS 

All studies involving mice followed the Guidelines for the use and care of 

laboratory Animals. All knockout Doc2b studies utilized male mice 4-6 months old. 
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Table 2-1 List of antibodies used  

Antibody Name Host Species kDa Company Cat# Dilution 

AKT Anti-rabbit 60 Cell signaling 9272 1:1000 

p ser 473-AKT Anti-rabbit 60 Cell signaling 9271 1:1000 

Anti-

phosphotyrosine 

(Clone 4G10) Anti-mouse n/a 

Upstate cell 

signaling 05-321 1:1000 

Anti-Phospho 

tyrosine (PY-20) anti-rabbit n/a 

BD 

laboratories 00 778 1:1000 

GAPDH Anti-rabbit 37 Abcam ab9485 1:2000 

GFP (Clone JL-8) Anti-mouse n/a Clontech 632380 1:1000 

GFP Anti-rabbit n/a Abcam 6556 For IP 

GST Anti-rabbit n/a ABR PA1-982A 1:5000 

GLUT4 Anti-goat 45 Santa Cruz SC1608 1:500 

Munc18-1 Anti-mouse 66 SySy 116 011 1:1000 

Munc18c Anti-rabbit 66 In-house n/a 1:5000 

Myc Anti-mouse n/a Santa Cruz SC 9e10 1:1000 

PY-20 anti-rabbit n/a 

BD 

laboratories 00 778 1:1000 
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SNAP23 Anti-rabbit 23 

BD 

laboratories pa1-738 1:1000 

SNAP25 Anti-rabbit 25 

BD 

laboratories 610366 1:1000 

Syntaxin-1A Anti-mouse 34 SySy 110 111 1:1000 

Syntaxin 4 Anti-rabbit 34 Chemicon AB5330 for IP 

Syntaxin 4 Anti-rabbit 34 In-House n/a 1:5000 

α-Tubulin Anti-mouse 55 Sigma T9026 1:5000 

VAMP2 Anti-mouse 18 SySy 104 211 1:5000 
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Female mice 4-6 months old were used for Tg studies. Doc2b knockout mice were 

initially characterized for neuronal alterations (174), with breeders obtained from Dr. 

Matthijs Verhage of VU University in Amsterdam to establish a colony at Indiana 

University School of Medicine. The colony stock at VU consisted of mice backcrossed 

for more than 15 generations on the C57BL/6 J background and was carried further 

through an additional 2 generations upon arrival at the Indiana University School of 

Medicine Laboratory Animal Resources Center. Paired littermates from heterozygous 

crossings were used for experimentation, with genotypes determined by PCR on DNA 

from tail-biopsy specimens (primers, 5’ to 3’: RZ-cttgttcaatggccgatccc; mad 206-

cggctacgagtcagacgactg; mav 102-cacacaagccaccaggagag), whereby the PCR product of 

the wild-type (Wt) allele was 650 bp and that of the targeted allele was 800 bp, as 

described (174).  

 

The Puc-Combi-CMV plasmid used for generation of tetracycline-repressible 

Doc2b Tg mice was a gift from Dr. Ulli Certa (Hoffman Roche, Switzerland) (175). The 

full-length cDNA for Doc2b carrying an N-terminal Myc tag was inserted into the 

pCombi-CMV vector at the PmeI site. The construct was linearized by digestion with 

NotI and microinjected into the nucleus of pre-implantation embryos. These embryos 

were then transferred into the oviduct of pseudo-pregnant C57Bl6J female mice by the 

Indiana University, School of Medicine Transgenic Animal Facility. Thirty eight pups 

were screened for the presence of the transgene using PCR of genomic DNA, with four 

founders resulting. Of the four lines, F5170, the line with the highest expression (~ 3  
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Figure 2-1. Linear sequence schematic of Doc2b Myc his and genotyping analysis of 

Doc2b Transgenic mice. (A) Doc2b Myc his cDNA was inserted into the pUC-Combi 

CMV vector. Doc2b insert was under the control of the bidirectional CMV promoter. 

Tetracycline administration sequesters the transactivator which inhibits the tet operon 

from the driving the expression. (B) PCR genotyping of tail DNA with Doc2b primers 

was run on 2% agarose gel to identify Doc2b Tg founders. Four founders were identified 

among 38 pups that were initially screened. Lane 1- founder 5168, lane 3- founder 5170, 

lane 9- founder 5178, and lane 14- founder 5183. 

A) 
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fold) was selected for phenotypic characterization. Genotypes determined by PCR on 

DNA from tail-biopsy specimens (primers for Tg: 5’ to 3’: #3-ggcagaggacaagtccctgg; #9-

agaggattgagcgttggcac; and #10-acgacgaggcttgcaggatcataa. Primers for Wt: 5’ to 3’: O-

ggaaagaaggcgaatggaag and F-tcactccagggttttcatcc), whereby the PCR product of the 

wild-type (Wt) allele was 500 bp and that of the Tg allele was 681 and 277 bp. 

 

2.3 METHODS 

2.3.1 Tissue Homogenization 

 For immunoblot analysis of protein content, tissues (100 mg frozen) were cut on 

dry ice. Tissues were homogenized using a Polytron PTA 10S homogenizer in 2 mL of 

NP40 detergent buffer (25 mM Tris, pH 7.4, 1% NP40, 10% glycerol, 50 mM sodium 

fluoride, 10 mM sodium pyrophosphate, 137 mM sodium chloride, 1 mM sodium 

vanadate, 1 mM phenylmethylsulfonyl fluoride, 10 µg/ml aprotinin, 1 µg/ml pepstatin 

and 5 µg/ml leupeptin). Lysates were centrifuged at 2000 x g for 5 minutes at 4 °C, and 

subsequent supernatants microcentrifuged at 13,500 x g for 20 minutes at 4 °C to clarify. 

Lysates were boiled for five minutes in leammli sample buffer (12% SDS, 37.5 mM Tris 

pH 6.8, 60% glycerol, 60 mM dithiothreitol and 0.02% bromophenol blue. Lysates for 

analysis of GLUT4 were left unboiled. Proteins were resolved on 10-12% SDS-PAGE 

followed by transfer to PVDF or nitrocellulose (for GLUT4) membrane for 

immunoblotting.  
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2.3.2 Islet RNA Isolation and Quantitative-PCR 

 Total RNA from mouse islets was obtained using the RNeasy mini kit (Qiagen). 

RNA (2 μg) was reverse-transcribed with the Superscript First Strand cDNA synthesis kit 

(Invitrogen), and 1% of the product was used for Q-PCR. Doc2b primers used: forward 

5’- ccagcaaggcaaataagctc; reverse 5’- attgggcttcagcttcttca. GAPDH primers used: 

forward 5’-atggtgaaggtcggtgtgaacg and reverse 5’-gttgtcatggatgaccttggcc. Q-PCR 

conditions: 50 °C for 2 minutes hold (UDG incubation), 95 °C for 2 minutes hold, then 

40 cycles of 95 °C for 15 seconds and 60 °C for 30 seconds. The delta delta CT method 

was used for analyzing data and values were normalized to GAPDH for relative gene 

expression. 

 

2.3.3 Intraperitoneal Glucose Tolerance Test and Insulin Tolerance Test  

Male Doc2b+/+, Doc2b+/- and Doc2b-/- mice (4-6 months old) were fasted for either 

6 h (08:00-14:00) or 18 h (18:00-12:00) before IPGTT. Similarly, female Doc2b Tg and 

their littermate Wt mice (4-6 months) were fasted for 6 hours before IPGTT. Following 

sample collection of fasted blood from the tail, animals were given glucose (2 g/kg body 

weight) by intraperitoneal injection and blood glucose readings were taken at 30 minutes 

intervals over 120 minutes period for the IPGTT. Blood was collected from the tail vein 

and diluted in saline for measurement of blood glucose using the Hemocue glucometer 

(Mission Viejo, CA). For the ITT, mice were fasted for 6 h (08:00-14:00 h). Following 

sample collection of fasted blood, animals were injected intraperitoneally with Humulin 

R (0.75 U/kg body weight) and blood glucose readings were taken at 15, 30, 60 and 90 

minutes after injection. Tetracycline (1 mg/ml) was administered in drinking water for a 
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week to Doc2b Tg and their Wt littermate mice to repress the Doc2b transgene levels, 

and IPGTT reported on the same mice.  

 

2.3.4 Skeletal Muscle Subcellular Fractionation 

 Hindlimb skeletal muscle was subfractionated into PM and intracellular 

membrane components as described (89, 176). Doc2b-/- and Wt littermate male mice (4-6 

months old) were used for knockout studies, while female Doc2b Tg and Wt littermate 

mice (4-6 months) were used for Tg studies. Mice were fasted overnight for 16 h, 

injected intraperitoneally with Humulin R (21 U/kg body weight) or vehicle. Mice were 

killed after 40 minutes of injection for dissection of the hindquarter muscles into 

homogenization buffer (20 mM HEPES pH 7.4, 250 mM Sucrose, 1 mM EDTA, 5 mM 

benzamidine, 10 µg/ml aprotinin, 5 µg/ml leupeptin, 1 µg/ml pepstatin, 1 mM 

phenylmethylsulfonyl fluoride) for Polytron homogenization and differential 

centrifugation to yield pellets containing t-tubule and sarcolemmal membrane fractions as 

described (89, 176). Homogenates were centrifuged at 2000 x g for 5 minutes at 4 °C, 

and supernatant then centrifuged at 9000 x g for 20 minutes at 4 °C. That supernatant was 

subsequently centrifuged at 180,000 x g for 90 minutes. Pellets containing t-tubule and 

sarcolemmal membrane fractions (named P1 and P2) were resuspended in 1% NP40 lysis 

buffer and proteins resolved by 10% SDS-PAGE for subsequent immunoblotting for 

GLUT4. 
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2.3.5 In Vitro Skeletal Muscle Glucose Uptake 

 Extensor digitorum longus (EDL) muscles were excised By Dr. Joe Brozinick 

(Eli lilly) and immediately placed into a 25 mL Erlenmeyer flask containing 2 mL of 

Krebs-Henseleit Buffer (KHB; 116 mM NaCl, 2.5 mM NaHCO3, 4.6 mM KCl, 32 mM 

mannitol, 8 mM glucose, 1.2 mM KH2PO4 and 0.01% bovine serum albumin) for one 

hour at 29 oC in a shaking water bath. Each muscle was then transferred into a flask 

containing incubation media (KHB containing 13.3 nM insulin or saline) for 30 minutes. 

Then, muscles were transferred into a flask with label media (116 mM NaCl, 2.5 mM 

NaHCO3, 4.6 mM KCl, 39 mM mannitol, 1 mM 2-deoxy glucose, 1.2 mM KH2PO4, 

0.01% bovine serum albumin, 5 mCi/mMol of 3H-2-deoxyglucose (Perkin Elmer), 8 

µCi/mMol of mannitol containing 13.3 nM insulin or saline) for 20 minutes for glucose 

uptake and freeze clamped as previously described (177). Weighed muscles were then 

homogenized with 1 N hydrochloric acid followed by neutralization with 1 N potassium 

hydroxide. 200 µl of the resulting sample was added to 4 ml of scintillation cocktail and 

disintegrations per minute were measured using a scintillation counter. 

 

2.3.6 Isolation, Culture and Perifusion of Mouse Islets 

 Pancreatic mouse islets were isolated as previously described (178), from 10-14 

weeks old male mice for knockout studies and 10-14 weeks old female mice for Tg mice 

studies. Islets cultured overnight in CMRL media (Gibco) were hand-picked onto cytodex 

bead columns (Fisher), pre-incubated in Krebs-Ringer bicarbonate buffer (10 mM 

HEPES pH 7.4, 134 mM NaCl, 5 mM NaHCO3, 4.8 mM KCl, 1 mM CaCl2, 1.2 mM 

MgSO4, 1.2 mM KH2PO4) containing 2.8 mM glucose and 0.1% BSA for 30 minutes and 
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perifused for at a rate of 0.3 ml/minute. During stimulations, islets were perifused with 20 

mM glucose for knockout studies and 16.7 mM glucose for transgenic studies. Following 

20 minutes return to low glucose, islets were stimulated with 35 mM KCl, with fractions 

collected every 1-3 minutes. Insulin secreted into fractions and the corresponding islet 

lysate insulin content was quantified by sensitive radioimmunoassay (RIA; Millipore) 

and regular RIA kit respectively. 

 

2.3.7 Cell Culture and Transient Transfection 

MIN6 beta cells were cultured in Dulbecco’s modified Eagle’s medium (DEEM 

with 25 mM glucose) supplemented with 15% fetal bovine serum, 100 units/ml penicillin, 

100 µg/mL streptomycin, 292 µg/mL L-glutamine, and 50 µM beta-mercaptoethanol as 

described previously (179). MIN6 beta cells at 50-60% confluence were transfected with 

40 µg of cesium chloride purified plasmid DNA per 10 cm2 dish using Transfectin (Bio-

Rad) to obtain ~40-70% transfection efficiency. After 48 h of incubation, cells were 

incubated for 2 hours in freshly prepared modified Krebs-Ringer bicarbonate buffer 

(MKRBB; 5 mM KCl, 120 mM NaCl, 15 mM Hepes pH 7.4, 24 mM NaHCO3, 1 mM 

MgCl2, 2 mM CaCl2, and 1 mg/ml BSA) and gassed (95% O2/5% CO2) for 30 minutes. 

Cells were harvested in 1% NP40 lysis buffer for use in immunoprecipitation or western 

blotting and in homogenization buffer for subcellular fractionation. 

 

Rat L6 muscle cells stably expressing GLUT4 with an exofacial myc-epitope (gift 

from Amira Klip, Univ of Toronto) were cultured as previously described (180). 

Myoblasts were maintained in α-MEM (Gibco) containing 5.5 mM glucose and 10% fetal 
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bovine serum (Fisher Scientific). Myoblasts were electroporated (0.20 kV and 960 

µFarad) with 150 µg of cesium chloride purified GFP Doc2b DNA per 10 cm2 dish. After 

electroporation, cells were allowed to adhere to plates for 48 hours. Cells were then 

washed with serum free α-MEM and serum starved for 2 hours in the same medium 

followed by stimulation for 5 minutes with 100 nM insulin. Cells were harvested in 1% 

NP40 lysis buffer and detergent lysates used for immunoprecipitation. 

 

2.3.8 Subcellular Fractionation of MIN6 Beta Cells 

MIN6 beta cells at 80-90% confluence were harvested into 1 mL of 

homogenization buffer (20 mM Tris, pH 7.4, 0.5 mM EDTA, 0.5 mM EGTA, 250 mM 

sucrose, 1 mM DTT, 1 mM sodium orthovanadate, 10 µg/mL leupeptin, 4 µg/mL 

aprotinin, 2 µg/mL pepstatin, and 100 µM phenylmethylsulfonyl fluoride). Cells were 

disrupted by 10 strokes of a 27 gauge needle, and homogenates were centrifuged at 900 x 

g for 10 minutes. Postnuclear supernatants were centrifuged at 5,500 x g, for 15 minutes 

and the subsequent supernatant centrifuged at 25,000 x g for 20 minutes to obtain the 

secretory granule fraction in the pellet. The supernatant was further centrifuged at 

100,000 x g for 1 hour to obtain the cytosolic fraction. PM fractions were obtained by 

mixing the postnuclear pellets with 1 mL of Buffer A (0.25 M Sucrose, 1 mM MgCl2, 

and 10 mM Tris, pH 7.4) and 2 mL of Buffer B (2 M sucrose, 1 mM MgCl2, and 10 mM 

Tris, pH 7.4). The mixture was overlaid with Buffer A and centrifuged at 113,000 x g for 

1 hour to obtain an interface containing the PM fraction. This interface was collected and 

diluted to 2 mL with the homogenization buffer for centrifugation at 3,000 x g for 10 
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minutes, and the resulting pellet was collected as the PM fraction. All pellets were 

resuspended in 1% NP40 lysis buffer to solubilize membrane proteins. 

 

2.3.9 Co-immunoprecipitation 

 PM fractions from MIN6 cells (1 mg) or cleared detergent lysates from L6 

myoblasts (2.5 mg) were combined with mouse anti-Syntaxin 1 antibody or rabbit anti-

Syntaxin 4 antibody for 2 hours at 4 oC, followed by a second incubation with protein G 

Plus-agarose beads for 2 hours. The resultant immunoprecipitates were subjected to 10% 

SDS-PAGE followed by transfer to PVDF membranes for immunoblotting.  

 

For immunoprecipitation using skeletal muscle lysates, mice were fasted 4 h 

(08:00-12:00) and injected intraperitoneally with 10 U/kg body weight insulin or saline 

for 5 minutes, after which animals were killed for hindlimb excision and lysate 

preparation. Skeletal muscle lysate protein (4 mg) was used in rabbit anti-Munc18c or 

rabbit anti-Syntaxin 4 immunoprecipitation reactions.  

 

2.3.10 Recombinant Proteins and Interaction Assays 

The GST-VAMP2 protein generated in E. coli BL21 bacteria was purified by 

glutathione-agarose affinity chromatography as described previously (173) for use in the 

Syntaxin accessibility assay. GST-VAMP2 protein linked to Sepharose beads was 

combined with 2 mg of L6 myoblast detergent cell lysate for 2 hours at 4 °C in NP40 

lysis buffer, followed by three stringent washes with lysis buffer. The associated proteins 
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were resolved on 10–12% SDS-PAGE followed by transfer to PVDF membranes for 

immunoblotting of Syntaxin 4 and GST. 

 

2.3.11 Statistical Analysis 

 All data were evaluated for statistical significance using Student’s t test for pair 

wise comparison of two groups (i.e. Doc2b+/- or Doc2b-/-, versus Doc2b+/+ and Doc2b Tg 

versus Wt). Data are expressed as the mean ± S.E. 
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CHAPTER 3. DOC2B IS A KEY EFFECTOR OF INSULIN SECRETION AND 

SKELETAL MUSCLE INSULIN SENSITIVITY 

 

 

 

 

 

 

 

 

 

 

 

 

 

Portion of the text in this chapter is reproduced from: 

Ramalingam L, Oh E, Yoder SM., Brozinick JT, Kalwat MA, Groffen AJ., Verhage M, 

and Thurmond DC. (2012) Doc2b Is a Key Effector of Insulin Secretion and Skeletal 

Muscle Insulin Sensitivity. Diabetes 61, 2424-2432 

 

Author contributions: Yoder SM generated data for Table 3-1. The rest of the data were 

generated by Ramalingam L. 
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3.1 INTRODUCTION 

Insulin secretion and GLUT4 recruitment events are highly regulated, maintained 

at very low levels in the absence of appropriate stimuli, and rapidly and robustly 

activated in response to stimuli. Maintenance and activation of exocytotic processes are 

regulated by the Munc18 proteins, which bind and facilitate the accessibility of Syntaxin 

to interact with its cognate SNARE partners (181-182). In homogenates of beta cells, 

adipocytes and skeletal muscle, Munc18c binds to Syntaxin 4 in the absence of stimuli, 

dissociating in response to stimuli whilst undergoing tyrosine phosphorylation (41, 154, 

183).  

 

Concurrent with its dissociation from Syntaxin 4, phosphorylated Munc18c 

switches its affinity towards binding to the protein Doc2b in MIN6 clonal beta cells 

(148). Elevation of calcium is reported to yield complexation of Doc2b with Syntaxin 4 

as well (168). In vitro, Doc2b selectively binds to Munc18-1 via Doc2b-domain C2A, 

and binds to Munc18c via Doc2b-domain C2B (164-165). In MIN6 beta cell and 3T3-L1 

adipocyte clonal cell studies, the RNAi-mediated reduction of Doc2b attenuates stimulus-

induced insulin exocytosis and GLUT4 exocytosis events, respectively (165, 168, 171). 

By contrast, Doc2b over-expression in these cell types enhances stimulus-induced 

exocytosis but not basal exocytosis (165, 168, 171). Unlike Munc18c and Syntaxin 4, the 

relevance of Doc2b function for whole body glucose homeostasis remains untested. 

Moreover, although Doc2b mRNA abundance in islets of congenic obese mice was 

significantly reduced (184), Doc2b deficiency has yet to be correlated with T2D, such 

that its promise as a novel therapeutic target remains in question. 
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In this study we utilized classic Doc2b knockout mice to investigate the role of 

Doc2b in insulin granule exocytosis and insulin-stimulated GLUT4 vesicle translocation, 

culminating in a new in vivo model of glucose intolerance and insulin resistance. 

Mechanistically, islet perifusion studies revealed Doc2b to function in both phases of 

GSIS, implicating Doc2b to act on both types of Munc18 and Syntaxin-based SNARE 

complexes. Furthermore, skeletal muscle fractionation studies demonstrated a 

requirement for Doc2b in insulin-stimulated GLUT4 accumulation; Munc18-SNARE 

interactions in muscle fractions were found to be altered by Doc2b deletion. Strikingly, 

the disease phenotype of the Doc2b+/- mice was equally severe to that of the Doc2b-/- 

mice, suggesting this to be a haploinsufficiency worthy of future investigation in diabetes 

therapies. 

 

3.2 RESULTS 

3.2.1 Doc2b Knockout Mice are Glucose Intolerant 

While the Doc2b-/- mice have been characterized for alterations in neuronal 

protein expression and synaptic vesicle trafficking function, such studies are lacking for 

evaluation of Doc2b function in tissues relevant to glucose homeostasis. Gene ablation in 

the heterozygous and homozygous knockout mice was confirmed by comparing Doc2b 

mRNA levels with Doc2b+/+ (wild type, Wt) littermates in brain, skeletal muscle (whole 

hind limb), liver and fat (epididymal) by quantitative PCR (Fig. 3-1A).
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Figure 3-1. mRNA expression in glucose homeostatic tissues from Doc2b+/- and 

Doc2b-/- knockout mice. Brain, skeletal muscle (whole hindlimb), liver and fat 

(epididymal) were isolated from Doc2b+/+, Doc2b+/-, and littermate Doc2b-/- mice for use 

in quantitative PCR analysis; quantified relative to GAPDH from three sets of tissues. 
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Protein levels of Doc2b were reduced, in the absence of significant differences in other 

SNARE or Munc18 proteins implicated in insulin exocytosis, in islets isolated from 

Doc2b+/- and Doc2b-/- knockout mice, compared with the Doc2b+/+ islets (Fig. 3-2A-B). 

The Doc2b antibody showed non-specific background, consistent with previous work 

(174). Doc2b levels were reduced in heart, skeletal muscle, liver and fat tissues of 

Doc2b+/- and Doc2b-/- mice, without alterations in abundance of Syntaxin 4, SNAP23, 

VAMP2 or Munc18c (Fig. 3-3A-B). Abundance of the glucose transporter GLUT4 

protein was also unchanged in heart, skeletal muscle and fat from Wt or Doc2b-deficient 

mice (Fig. 3-3A-B).  

 

To determine the effects of Doc2b deficiency upon whole-body glucose tolerance, 

4-6 month old Doc2b+/+, Doc2b+/- and Doc2b-/- mice were subjected to IPGTTs. Glucose 

tolerance after either 18 h or 6 h fasting in Doc2b+/- and Doc2b -/- male mice was 

significantly impaired in comparison to Wt mice (Fig. 3-4A-B and Fig. 3-5). Doc2b-/- and 

Doc2b+/- mice showed similar fasting glucose levels compared with Wt mice (Table 3-1). 

Area under the curve (AUC) analysis confirmed Doc2b+/- and Doc2b-/- mice to be 

significantly less tolerant than Wt (Fig. 3-4B). These data suggest that full or partial 

depletion of Doc2b exerted a negative effect upon glucose tolerance in vivo. We next 

determined whether glucose intolerance was related to alterations in body weight or 

fasted serum metabolites commonly linked to aberrations in glucose metabolism. Table 

3-1 shows serum triglycerides, cholesterol and non-esterified fatty acids (NEFAs) to be 

similar in Wt versus Doc2b+/- and Doc2b-/- mice. Table 3-2 shows body weights of 

Doc2b+/- and Doc2b-/- mice to be equivalent to that of Wt littermate mice. Tissue and 
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Figure 3-2. Protein expression in islets from Doc2b+/- and Doc2b-/- knockout mice. 

(A) Islets were isolated from Doc2b+/+, Doc2b+/-, and Doc2b-/- knockout mice for analysis 

of SNARE protein expression. (B) Optical density scanning was used to quantify band 

intensities to derive the average ± S.E. for each protein in each genotype (normalized to 

Wt=1) present in islets (n>3). 

 

B) 

A) 
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Figure 3-3. Protein expression in glucose homeostatic tissues from Doc2b+/- and 

Doc2b-/- knockout mice. (A) Assessments of GLUT4, SNARE and SNARE accessory 

protein abundances were made by immunoblot for heart, skeletal muscle, liver and 

epididymal fat. (B) Quantification of the SNARE and its accessory proteins. 

B) 
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Figure 3-4. Doc2b+/- and Doc2b-/- knockout mice are glucose intolerant. (A) IPGTT of 

Doc2b+/-, Doc2b-/- and littermate Doc2b+/+ mice was performed by intraperitoneal 

injection of D-glucose (2 g/kg body weight) into 4-6 month old male mice fasted for 18 

h. (B) AUC data shown as the average ± standard error (S.E.) from 7 sets of mice: *P< 

0.05, Wt versus Doc2b-/-; #P< 0.05, Wt versus Doc2b+/-. 

A) 

B) 
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Figure 3-5. Doc2b+/- and Doc2b-/- knockout mice are glucose intolerant after 6 hours 

fast. Male Doc2b+/+, Doc2b+/- and Doc2b-/- mice (4-6 months old) were fasted for 6 h 

(08:00-14:00). Following sample collection of fasted blood, animals were given glucose 

(2 g /kg body weight) by intraperitoneal injection and blood glucose readings were taken 

at 30 minutes intervals over 120 minutes for IPGTT. Data represent the average ± S.E.; 

*P<0.05 (n=4 for Doc2b+/-, n=3 each for Doc2b+/+ and Doc2b-/-). 
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Table 3-1. Fasting serum analytes of Doc2b+/+, Doc2b+/- and Doc2b-/- mice. 

 Doc2b+/+ Doc2b+/- Doc2b-/- 

Glucose (mg/dl) 112 ± 9 121 ± 5 105 ± 2 

Triglycerides (mg/dl) 96.8 ± 15.6 107.2 ± 13.2 89.1 ± 9.3 

Cholesterol (mg/dl) 123.2 ± 6.5 118.2 ± 8.9 128.5 ± 5.1 

NEFA (mmol/L) 1.19 ± 0.11 1.33 ± 0.12 1.32 ± 0.04 

 

Data represent the average ± S.E; no significant differences were detected amongst 

groups. Serum was collected from 18 h fasted Doc2b+/+, Doc2b+/- and Doc2b-/- male 

littermate mice at 4-6 months of age (n=7 for each genotype) for determination of 

parameters shown. 
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Table 3-2. Tissue weights normalized to body weight of Doc2b+/+, Doc2b+/- and Doc2b-/- 

mice. 

 

Data represent the average ± S.E. Weights were collected from Doc2b+/+, Doc2b+/- and 

Doc2b-/- male littermate mice at 4-6 months of age (n=7 for Doc2b+/- and Doc2b-/-, n=5 

for Doc2b+/+) for determination of parameters shown. No statistical differences were 

seen. 

 Doc2b+/+ Doc2b+/- Doc2b-/- 

Body weight (g)  28.3 ± 0.8 30.7 ± 0.9 30.7 ± 0.8 

Tissue (% body weight)    

Liver 3.61 ± 0.23  2.85 ± 0.23  3.92 ± 0.10  

Lung 0.65 ± 0.11  0.82 ± 0.08  0.81 ± 0.09  

Heart 0.62 ± 0.18  0.79 ± 0.20  0.91 ± 0.07  

Fat 2.66 ± 0.53  2.24 ± 0.49  2.20 ± 0.23  

Pancreas 0.77 ± 0.11  0.56 ± 0.05  1.04 ± 0.06  

Kidney 1.32 ± 0.07  1.17 ± 0.05  1.36 ± 0.10  

Muscle 1.52 ± 0.14  1.22 ± 0.12  1.57 ± 0.12  

Spleen 1.0 ± 0.48  0.9 ± 0.42  1.0 ± 0.23  
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organ weights were also equivalent, both when normalized to body weight of the whole 

animal and to absolute tissue weight (3-3). By contrast, serum insulin levels taken 10 

minutes post injection during the IPGTT were significantly reduced in the Doc2b-/- mice, 

but not in the Doc2b+/- or Wt mice (Fig. 3-6). These data indicate an insulin secretory 

defect. 

 

3.2.2 Impaired Biphasic Insulin Secretion in Islets Isolated from Doc2b Knockout 

Mice 

To investigate the potential defect in islet beta cell glucose-stimulated insulin 

release, we isolated islets from male Doc2b+/+, Doc2b+/- and Doc2b-/- mice for perifusion 

analyses. Ex vivo, insulin secretion under basal conditions was similar amongst all three 

islet groups (Fig. 3-6A), similar to our findings of insulin content in fasted serum. 

Glucose stimulation (20 mM) elicited a 12-fold peak increase in insulin release from Wt 

islets during the initial phase, whereas Doc2b+/- and Doc2b-/- islets showed less response. 

During the second-phase, Doc2b+/- and Doc2b-/- islets secreted substantially less insulin 

(Fig. 3-7A-B). Consistent with impaired first-phase GSIS, KCl-stimulated insulin release 

was precipitously decreased as Doc2b expression decreased (Fig. 3-8A). Insulin content 

in Doc2b+/- and Doc2b-/- islets was comparable to that in Wt islets (Fig. 3-8B). These data 

indicated that Doc2b-depleted islets lacked function during both phases of GSIS, 

corroborating the deficient serum insulin content observed during the IPGTT in the 

Doc2b-/- mice. This is the first demonstration of Doc2b requirement in both phases of 

insulin secretion from islets. 
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Figure 3-6. Doc2b+/- and Doc2b-/- knockout mice have reduced serum insulin 

concentration post-glucose injection. 10 minutes post-injection of glucose during the 

IPGTT, serum was collected and measured for insulin by RIA analysis. Data shown as 

the average ± standard error (S.E.) from sets of 4 mice: *P< 0.05, versus pre-injected Wt; 

**P< 0.05, stimulated Doc2b-/- versus Wt. 
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Figure 3-7. Doc2b+/- and Doc2b-/- knockout mouse islets show reduced biphasic 

insulin release. (A) Islets freshly isolated from Doc2b+/-, Doc2b-/- and littermate 

Doc2b+/+ mice were cultured overnight and handpicked under a fluorescence microscope 

into groups of 40 and layered onto cytodex bead columns for perifusion. Islets were first 

pre-incubated for 30 minutes in low glucose (2.8 mM), followed by basal sample 

collection (1-10 min) at low glucose to establish a baseline. Glucose was then elevated to 

B) 

A) 
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20 mM for 35 min, then returned to low glucose for 20 min. Eluted fractions were 

collected at 1-3 min intervals at a flow rate of 0.3 ml/min and insulin secretion 

determined by RIA, as depicted in a representative experiment. (B) Quantitation of the 

AUC for first (11-17 min) and second (18-45 min) phase insulin secretion from islets, 

normalized to baseline; data are presented as average ± S.E. of 4 sets of perifused islets, 

*P<0.05 versus Doc2b+/+. 
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Figure 3-8. Doc2b+/- and Doc2b-/- knockout mouse islets show reduced insulin release 

in response to Kcl stimulation. (A) Perifused islets from Fig. 3-7 following a 25 

minutes rest under basal conditions, then stimulated with 35 mM KCl for 10 minutes, and 

finally returned to 2.8 mM glucose. (B) Average insulin content per 10 islets from 

Doc2b+/+, Doc2b+/- and Doc2b-/- littermate male mice used in perifusion studies above. 

B) 

A) 
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Table 3-3. Tissue weights of Doc2b+/+, Doc2b+/- and Doc2b-/- mice. 

 

Data represent the average ± S.E. Weights were collected from Doc2b+/+, Doc2b+/- and 

Doc2b-/- male littermate mice at 4-6 months of age (n=7 for Doc2b+/- and Doc2b-/-, n=5 

for Doc2b+/+) for determination of parameters shown. No statistical differences were 

seen. 

 Doc2b+/+ Doc2b+/- Doc2b-/- 

Tissue (g)    

Liver 1.24 ± 0.11 1.03 ± 0.07 1.29 ± 0.09 

Lung 0.22 ± 0.03 0.30 ± 0.03 0.23 ± 0.03 

Heart 0.18 ± 0.05 0.29 ± 0.06 0.25 ± 0.02 

Fat 0.78 ± 0.14 0.84 ± 0.18 0.56 ± 0.07 

Pancreas 0.26 ± 0.03 0.21 ± 0.02 0.29 ± 0.02 

Kidney 0.47 ± 0.08 0.43 ± 0.02 0.38 ± 0.03 

Muscle 0.55 ± 0.11 0.45 ± 0.05 0.43 ± 0.03 

Spleen 0.34 ± 0.13 0.32 ± 0.12 0.29 ± 0.07 
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3.2.3 Impaired Insulin Sensitivity, and Skeletal Muscle Glucose Uptake and GLUT4 

Translocation in Doc2b Knockout Mice 

Whole body glucose intolerance could also be attributable to defects in insulin 

sensitivity, causing insulin resistance. To investigate this, 4-6 month old Doc2b+/+, 

Doc2b+/- and Doc2b-/- male mice were subjected to an ITT. As expected of Wt mice of 

this age and strain, insulin injection resulted in a sharp ~45% decline in blood glucose 

within 60 minutes (Fig. 3-9). By contrast, neither Doc2b+/- nor Doc2b-/- mice dropped 

below 70% of starting glucose levels, with levels back on the rise by 60 minutes post-

injection. Analysis of AUC revealed a substantial difference in glucose levels during the 

ITT (in arbitrary units: Wt=5,971 ± 238; Doc2b+/-=7,019 ± 420; Doc2b-/-=7,210 ± 420), 

implicating a defect in the peripheral glucose uptake resulting from Doc2b depletion. 

Skeletal muscle GLUT4-mediated glucose uptake accounts for ~80% of whole body 

glucose clearance, and so largely controls the response in the ITT (see review: (185)). To 

assess insulin-stimulated GLUT4 translocation in skeletal muscle, sarcolemma/transverse 

tubule enriched fractions (referred to as P2 fractions) were prepared from insulin- or 

saline-injected mice as described previously (89, 91, 151, 176). A statistically significant 

nearly two-fold increase in GLUT4 protein accumulation into the P2 membrane fraction 

was detected from insulin-stimulated Wt mouse muscle (Fig. 3-10). Remarkably, no 

insulin-stimulated increase in GLUT4 accumulation was observed in Doc2b-/- mice. P2 

fractions prepared from unstimulated Wt and Doc2b-/- mice showed similarly low levels 

of GLUT4 protein. Consistent with this, EDL muscle from Doc2b-/- mice showed a lack 

of insulin-stimulated 3H-2-deoxyglucose uptake, in contrast to the nearly 2-fold increase 

seen in Wt EDL muscle (Fig. 3-11). Proximal insulin signaling in skeletal muscle and  



68 

 

 

 

Figure 3-9. Impaired insulin sensitivity in Doc2b-deficient mice. Insulin tolerance 

testing (ITT) of Doc2b+/-, Doc2b-/- and littermate Doc2b+/+ male mice (n=7) was 

performed by intraperitoneal injection of insulin (0.75 U/kg of body weight) into 4-6 

month old male mice fasted for 6 h. Blood glucose was monitored before and at 15, 30, 

60 and 90 minutes after injection as described in Methods. Data shown are presented as 

mean percent of basal blood glucose concentration ± standard error (S.E.); *P< 0.05 

versus Wt mice.  
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Figure 3-10. Impaired insulin-stimulated GLUT4 translocation in skeletal muscle of 

Doc2b-deficient mice. Littermate sets of male Wt or Doc2b-/- mice were fasted for 16 h 

and either left untreated or injected with 21 U/kg body weight of insulin as described in 

Methods. Hindquarter muscles were homogenized and centrifuged to partition muscle 

into sarcolemma/transverse tubule membrane and intracellular vesicular fractions. 

Proteins were resolved using SDS-PAGE for immunoblotting for GLUT4 (Ponceau S 

staining shows protein loading). Optical density quantitation of GLUT4 bands in three 

independent translocation assays is shown in the bar graph; *P<0.05 compared to basal 

Wt, **P<0.05 compared to insulin-stimulated Wt. 
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Figure 3-11. Impaired Glucose uptake in Doc2b-deficient mice. In vitro 3H-2-

deoxyglucose uptake assay from EDL muscle of 6 pairs of Wt and Doc2b-/- male mice 

(for each mouse, one muscle was left in the basal state and one was treated with insulin. 

*P<0.05 compared with basal Wt; **P<0.05 compared with insulin-stimulated Wt. 
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and liver was unaffected, as determined by insulin-stimulated pS473-AKT phosphorylation 

and equivalent AKT expression (Fig. 3-12). Taken together these data demonstrate that 

insulin-stimulated GLUT4 externalization and glucose uptake is significantly impaired in 

skeletal muscle tissue of Doc2b-/- mice. 

 

3.2.4 Altered SM and SNARE Complex Formations in Skeletal Muscle of the Doc2b 

Knockout Mice 

To date, all studies regarding the mechanistic role of Doc2b are from in vitro and 

cell culture model systems and results are controversial due to methodological 

differences (165, 168, 171). To resolve these issues we tested previously described 

Doc2b interactions using skeletal muscle of insulin-injected mice as a more 

physiologically relevant model system. Because calcium has been shown to trigger 

Doc2b association with Syntaxin 4 in vitro (17), we examined binding under calcium-

deficient (2 mM EDTA) and calcium-supplemented (1 mM CaCl2) conditions. In Wt 

muscle lysates, Doc2b binding to Munc18c increased by ~60% in response to insulin 

stimulation; calcium addition to the lysis buffer failed to significantly alter either basal or 

insulin-stimulated binding events (Fig. 3-13). Similar results were obtained using basal or 

glucose-stimulated MIN6 cell lysates supplemented with calcium in the lysis buffer (Fig. 

3-14). In skeletal muscle lysates, anti-Munc18c co-precipitated Syntaxin 4 regardless of 

calcium supplementation, while neither VAMP2 nor SNAP23 co-precipitated with 

Munc18c under any conditions (Fig. 3-15). Reciprocal anti-VAMP2 immunoprecipitation 

reactions showed no binding of Munc18c. Calcium supplementation did not impact 

SNARE complex formation: ratios of SNAP23/VAMP2 and Syntaxin 4/VAMP2,
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Figure 3-12. No alterations in proximal insulin signaling in Doc2b deficient mice. 

Skeletal muscle and liver homogenates were prepared from mice stimulated with or 

without insulin and proteins resolved on 10% SDS-PAGE for immunoblot analysis of 

AKT activation assessed by anti-pS473-AKT immunoblotting. Blots were stripped and 

reprobed for total AKT content. Data are representative of three independent sets of 

tissue homogenates. 
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Figure 3-13. Insulin-dependent but calcium-independent Doc2b-Munc18c 

association in mouse skeletal muscle. The impact of insulin stimulation and/or calcium 

addition to lysis buffer upon association of Munc18c with Doc2b was assessed by co-

immunoprecipitation reactions using hindlimb skeletal muscle extracts. Wt mice were 

injected with vehicle (saline) or insulin (10 U/kg body weight) for 5 minutes, 

homogenized in lysis buffers supplemented with either 2 mM EDTA or 1 mM CaCl2. 

Immunoprecipitated proteins were resolved on 10-12% SDS-PAGE for immunodetection 

of Munc18c and Doc2b. Equivalent abundance of proteins in the corresponding starting 

lysates was confirmed by immunoblot of Doc2b (Lysate). 
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Figure 3-14. Glucose-dependent but calcium-independent Doc2b-Munc18c 

association in MIN6 beta cells. MIN6 cells were pre-incubated in glucose-free modified 

Krebs bicarbonate buffer 2 h followed by stimulated with glucose (20 mM) for 5 minutes. 

Cells were then harvested in 1% NP40 lysis buffer supplemented with 2 mM EDTA or 1 

mM CaCl2 and used in anti-Munc18c immunoprecipitation reactions. Precipitated 

proteins were resolved on 10% SDS-PAGE for immunodetection of Munc18c and 

Doc2b. Equivalent abundance of proteins in the corresponding starting lysates was 

confirmed by immunoblot (Lysate).  
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Figure 3-15. Calcium-independent SNARE-Munc18c association in mouse skeletal 

muscle. The impact of insulin stimulation and/or calcium addition to lysis buffer upon 

association of Munc18c with VAMP2, SNAP23 and Syntaxin 4 was assessed by co-

immunoprecipitation reactions using hindlimb skeletal muscle extracts. Hindlimb muscle 

extracts from Wt mice injected with vehicle (saline) or insulin (10 U/kg body weight) for 

5 minutes, homogenized in lysis buffers supplemented with either 2 mM EDTA or 1 mM 

CaCl2. Immunoprecipitated proteins were resolved on 10-12% SDS-PAGE for 

immunodetection of Munc18c, Doc2b, Syntaxin 4, SNAP23 and VAMP2. Equivalent 

abundance of proteins in the corresponding starting lysates was confirmed by 

immunoblot (Lysate). 
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normalized to 1.0 in the absence of calcium (2 mM EDTA) were measured to be 0.8 ± 0.2 

and 0.8 ± 0.2, respectively, in the presence of supplemental calcium (n=3 paired 

experiments, p>0.05). Moreover, Syntaxin 4 failed to co-immunoprecipitate Doc2b, even 

under calcium-containing and insulin-stimulated conditions from skeletal muscle (Fig. 3-

16A). Doc2b-/- muscle served as control for non-specific binding. Syntaxin 4 co 

precipitated SNAP23 equivalently under all conditions, consistent with SNAP23 

participation in binary and ternary SNARE complexes. Like Syntaxin 4, which was 

constitutively present containing and insulin-stimulated conditions from skeletal muscle 

(Fig. 3-16A), Doc2b abundance was unchanged by insulin in P2 fractions prepared 5 

minutes post insulin injection, the time of peak tyrosine-phosphorylation of Munc18c and 

its association with Doc2b; and Doc2b translocation detected within 30 minutes post-

insulin injection (Fig. 3-16B). These data suggest that in skeletal muscle lysate, Doc2b 

binds to Munc18c in an insulin sensitive manner, and fails to bind to Syntaxin 4 in 

response to insulin and/or added calcium. 

 

We next sought to determine why GLUT4 accumulation in the target membranes 

of skeletal muscle was impaired in the Doc2b-/- mice by examining effects upon SM and 

SNARE protein complexation. In Wt extracts, insulin induced phosphorylation of 

Munc18c, as described previously (13), and was fully recapitulated in reactions using 

Doc2b-/- extracts (Fig. 3-17A), suggesting that Doc2b was not required for Munc18c to 

undergo insulin-stimulated tyrosine phosphorylation. Anti-Syntaxin 4 

immunoprecipitation reactions using the same extracts revealed 40-50% more Munc18c 

binding to Syntaxin 4 in Doc2b-/- muscle (Fig. 3-17B), as compared with Wt muscle.
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Figure 3-16. Absence of Syntaxin 4-Doc2b association in mouse skeletal muscle. (A) 

Muscle extracts used in Fig. 3-12 were subjected to anti-Syntaxin 4 immunoprecipitation 

for immunodetection of Doc2b. SNAP23 binding to Syntaxin 4. Control IgG and lysates 

from Doc2-/- mice were used in separate reactions as a control for non-specific banding 

occurring with the Doc2b antibody. (B) Evaluation of Doc2b protein recruitment to the 

PM fraction in response to insulin. P2 fraction extracts prepared from saline or insulin-

stimulated Wt mice were subjected to SDS-PAGE for immunodetection of Doc2b and 

Syntaxin 4. Data are representative of three independent sets of homogenates or fractions. 

B) 

A) 
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Figure 3-17. Munc18c-Syntaxin 4 binding is increased in Doc2b-/- mouse skeletal 

muscle. Male 4-6 month old Doc2b+/+ and Doc2b-/- littermate mice were injected with 

insulin (10 U/kg body weight) for 5 minutes, then hindlimb muscles excised and 

detergent extracts prepared for use in (A) anti-Munc18c or (B) anti-Syntaxin 4 

immunoprecipitation reactions. Immunoprecipitated proteins were resolved on 10% SDS-

PAGE for immunodetection of Doc2b and tyrosine-phosphorylated Munc18c (using 

PY20 antibody), which was stripped and reblotted for total Munc18c, and Syntaxin 4. 

Vertical black lines indicate the splicing of lanes from the same gel. Optical density 

scanning was used to determine the ratio of phosphotyrosine-Munc18c/Munc18c and 

Munc18c/Syntaxin as indicated in the bar graphs. 

A) 

B) 
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 Input lysates validated the absence of Doc2b in Doc2b-/- lysates and the otherwise 

comparable expression of Munc18c. Using sarcolemmal/transverse tubule (P2) 

membrane fractions from hindlimb muscles of insulin-stimulated Wt and Doc2b-/- mice, 

significant reductions of VAMP2 and SNAP23 binding to Syntaxin 4 in Doc2b-/- 

fractions were revealed (Fig. 3-18). Coordinately, Munc18c binding to Syntaxin 4 was 

elevated by 46% in Doc2b-/- fractions. Thus, our cumulative data suggest that ablation of 

insulin-stimulated GLUT4 vesicle translocation in Doc2b-/- muscles is underpinned by 

increased abundance of Munc18c-Syntaxin 4 complexes coordinate with diminished 

abundance of SNARE complexes. 

 

3.3 DISCUSSION 

In this study we present the Doc2b+/- and Doc2b-/- mice as new in vivo models of 

metabolic dysregulation. The data reveal for the first time that Doc2b is a key effector for 

insulin-stimulated GLUT4 vesicle translocation in skeletal muscle, and for both phases of 

glucose-stimulated insulin secretion from pancreatic islets. Doc2b associates with 

Munc18c in an insulin-dependent manner, but Doc2b binding to Syntaxin 4 was not 

detected. Notably, Munc18c-Syntaxin 4 association was increased in the absence of 

Doc2b, suggesting that this increased association is inhibitory for the insulin-stimulated 

Syntaxin 4-mediated docking/fusion of GLUT4 vesicles. Strikingly, the disease 

phenotype of the Doc2b+/- knockout mice was almost equally severe to that of the  

Doc2b-/-, suggesting that Doc2b haploinsufficiency is worthy of future investigation in 

diabetes susceptibility.  
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Figure 3-18. Munc18c-Syntaxin 4 binding is increased in Doc2b-/- mouse skeletal 

muscle. Male 4-6 month old Doc2b+/+ and Doc2b-/- littermate mice were injected with 

insulin (10 U/kg body weight) for 5 minutes, then hindlimb muscles excised for 

Sarcolemmal/transverse tubule membrane fractions (P2) were used in anti-Syntaxin 4 

immunoprecipitation reactions to capture binary and ternary SNARE complexes 

composed of VAMP2 and SNAP23, and Syntaxin 4-Munc18c complexes, all resolved on 

12% SDS-PAGE for immunoblotting. Optical density quantitation of three independent 

pairs of Doc2b+/+ and Doc2b-/- mouse muscle extracts is shown in the bar graph; *P<0.05 

compared to insulin-stimulated Wt. 
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3.3.1 Mechanism(s) of Doc2b-Dependent Insulin Granule and GLUT4 vesicle fusion  

events 

Unlike other secretory cell types, islet beta cells require multiple Munc18 and 

Syntaxin isoforms, otherwise sharing SNAP25/SNAP23 and VAMP2, for two distinct 

phases of glucose-stimulated insulin secretion. Syntaxin 1-/- null islets lack first-phase 

insulin release, while Munc18c and Syntaxin 4 are imperative for second-phase insulin 

release from islets (28, 76, 178); Munc18-1 null islet perifusion has yet to be reported, 

although Munc18-1 and Munc18-2 were recently implicated in fast calcium-dependent 

exocytosis in electrophysiological studies (186). Demonstrating here that Doc2b is 

required for both phases of insulin release from primary islets, we speculate that Doc2b 

regulates both Munc18-1-Syntaxin 1 as well as Munc18c-Syntaxin 4 dependent secretion 

mechanisms. The role of Doc2b in the first-phase went undetected in static incubation 

studies using stable Doc2b shRNA clonal beta cells (171), but is consistent with its role 

in Munc18-1-Syntaxin 1 driven exocytosis mechanisms in brain (174). The partial 

reduction of Doc2b in clonal beta cells may not have been sufficient to uncover the 

requirement for Doc2b in first-phase. Doc2b+/- islets retained more than 60% first-phase 

function (while losing ~75% second-phase), and total ablation of Doc2b was required to 

detect more than 50% loss of first-phase function. Our data does confirm the late phase 

deficit reported in stable Doc2b shRNA clonal beta cells (171). Strikingly, second-phase 

secretion was nearly abolished in Doc2b-/- islets. While our MIN6 beta cell studies 

support a mechanistic regulation of Munc18c-Syntaxin 4 and SNARE complexes 

analogous to our studies with these proteins in skeletal muscle, future beta cell studies 
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assessing the impact of Doc2b upon Munc18-1 or -2 with Syntaxin 1 are required, as well 

as assessment of all isoform binding interactions in primary beta cells.  

 

Doc2b is present in skeletal muscle transverse tubule/sarcolemmal-enriched 

subcellular fractions under basal conditions, and does not translocate, in contrast to 

GLUT4, in response to insulin stimulation. This finding is consistent with similar 

observations in glucose-stimulated MIN6 beta cells, yet counter to calcium-stimulated 

translocation seen in other cell types (168-169). Doc2b is known to require very little 

calcium to translocate in neurons (35). Skeletal muscle may have baseline calcium 

already high enough to translocate Doc2b under resting conditions. Under such 

conditions, Doc2b can be considered constitutively active (167), which can explain the 

strong effects in the Doc2b-/- mice observed here, relative to effects previously observed 

in brain (174). In 3T3-L1 adipocytes, Doc2b is reported to bind to Syntaxin 4 only under 

high calcium buffer conditions (168). Therefore, we simulated those calcium conditions 

to investigate the physiological occurrence/relevance of this putative Doc2b-Syntaxin 4 

complex in primary skeletal muscle. However, regardless of calcium levels in skeletal 

muscle extracts, Doc2b failed to co-precipitate in anti-Syntaxin 4 immunoprecipitation 

reactions, suggesting that such an interaction might not be a dominant factor in primary 

cells.  

 

Concerning the mechanism of Doc2b actions in both insulin granule and GLUT4 

vesicle exocytosis, several possibilities might be considered. One possibility is that 

Doc2b serves as a platform for transient interactions with Munc18 and Syntaxin. 
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According to this “switch hypothesis” model, derived from beta cell studies (148, 165), 

Munc18c becomes tyrosine phosphorylated in response to a stimulus, dissociates from 

Syntaxin 4, and switches its binding preference to Doc2b. Doc2b’s sequestration of 

Munc18c would facilitate Syntaxin 4’s participation in SNARE complexes to promote 

vesicle fusion. Such a model is consistent with 1) the insulin-stimulated association of 

Doc2b with Munc18c in skeletal muscle, and 2) the strong increase in Munc18c binding 

to Syntaxin 4, concurrent with the reduced binding of VAMP2 and SNAP23 to Syntaxin 

4 in sarcolemmal/transverse tubule muscle membrane fractions, indicative of attenuated 

SNARE complex formation in the absence of Doc2b. Alternatively, Doc2b may facilitate 

fusion via a different or additional mechanism, by partially inserting into the plasma 

membrane upon calcium binding, and induce membrane deformations that assist merging 

vesicle- and plasma membrane. This property contributes to the exceptional in vitro 

fusogenic properties of Doc2b relative to all other C2-domain proteins studied (174). 

 

While the disease phenotype of the Doc2b+/- knockout mice was almost equally 

severe to that of the Doc2b-/- mice, interpreting the relative contribution of insulin 

secretory defects versus insulin resistance is complex. For example, insulin content in the 

serum following the acute glucose challenge trended towards a decrease (p=0.08, n=6), 

intermediate between that of the Wt and Doc2b-/- mice, but did not reach statistical 

significance. However, since serum insulin content is not an absolute readout of insulin 

secretion, but rather is a net readout of pancreatic insulin release, hepatic insulin 

clearance, and insulin utilization by other tissues, use of the hyperglycemic clamp 

approach will be required for full assessment. Also noteworthy was that the initial drop 
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(15-30 minutes) in blood glucose in the ITT in the Doc2b-/- mice was similar to that of Wt 

mice, seemingly counter to the blunted glucose uptake into the EDL of the Doc2b-/- mice. 

However, the glucose uptake assay was performed in vitro using excised muscle, whereas 

the ITT is performed in vivo. In vivo, the insulin bolus will initiate a decrease in hepatic 

glucose output. Given that hepatic insulin signaling in the Doc2b-/- mice was normal, it 

would seem a likely contributor to the initial blood glucose drop. 

 

3.4 CONCLUSIONS 

The data presented here demonstrate a key role for Doc2b in multiple exocytotic 

processes relevant to the maintenance of whole body glucose homeostasis, including 

insulin secretion and peripheral glucose clearance. We propose that Doc2b engages in 

stimulus-dependent association with Munc18c in skeletal muscle similar to that in beta 

cells; this implicates the mechanisms to be highly conserved, albeit the stimuli are cell-

type specific. Furthermore, our data demonstrating the need for Doc2b in first-phase 

insulin release suggests that it may also participate as a scaffolding platform for Munc18-

1 binding in the beta cell. Novel reagents based upon Doc2b may carry promise as dual 

insulin-sensitizing/insulin secretion enhancement approaches to combating a 

combinatorial disease like Type 2 diabetes. 
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CHAPTER 4. DOC2B ENRICHMENT ENHANCES GLUCOSE HOMEOSTASIS 

VIA POTENTIATION OF INSULIN SECRETION AND PERIPHERAL INSULIN 

SENSITIVITY 
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4.1 INTRODUCTION  

Glucose-stimulated insulin secretion (GSIS) and insulin-stimulated glucose 

uptake into peripheral tissues are events mediated by similar exocytotic mechanisms 

involving soluble NSF attachment receptor (SNARE) proteins. Syntaxin proteins are 

regulated by specific high-affinity binding partners called Munc18 proteins (134, 146). 

Munc18c pairs exclusively with Syntaxin 4 and is a key regulator of both insulin-

stimulated GLUT4 vesicle exocytosis as well as second-phase GSIS (146-147, 151, 178). 

Unexplained however, is why Syntaxin 4 should be necessary in both phases of GSIS, 

given that instead of binding to the first-phase isoform Munc18-1 it binds to Munc18c, 

and Munc18c is not involved in first-phase GSIS. This suggests that an additional 

“linking factor” might be required. 

 

One possible linking factor is Doc2b (Double C2 domain protein). Support for 

Doc2b as a potentially limiting factor in GSIS and glucose uptake is based upon defects 

in Syntaxin 4 exocytosis events found in islets and skeletal muscle of Doc2b knockout 

mice (187), and a possible association between Doc2b deficiency and diabetes in rodents 

(184). Intriguingly, clonal beta cell and adipocytes over-expressing Doc2b reportedly 

show enhancements in GSIS and GLUT4 exocytosis (165, 168, 171). Taken together 

these data raise the possibility that intentional elevation of Doc2b could provide a means 

to rescue aberrations in insulin secretion and insulin action simultaneously. 

 

As a first step towards testing this possibility, we generated regulatable Doc2b 

transgenic (Tg) mice using a targeting vector known to selectively drive expression in 
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pancreas, skeletal muscle, and adipose tissue (89, 152, 175). Indeed, elevated levels of 

Doc2b in these tissues in vivo resulted in improved glucose and insulin tolerance relative 

to wildtype (Wt) littermate mice. Mechanistically these improvements were underscored 

by enhanced SNARE complex formation and exocytosis function in Doc2b Tg islets and 

skeletal muscle, altogether consistent with the concept that Doc2b is limiting for these 

processes in vivo, and that Doc2b enrichment may provide the means to confer superior 

whole body glucose homeostasis. 

 

4.2 RESULTS 

We generated tetracycline-repressible Tg mice using a targeting vector previously 

shown to drive expression primarily in pancreas, skeletal muscle, and adipose tissue (89, 

152). Of the four founder lines, three transmitted the Doc2b gene, yet only one line 

exhibited greater than a 2-fold increase in Doc2b protein relative to endogenous 

expression in Wt littermates (Fig. 4-1A). No alterations in the levels of SNARE proteins 

such as Syntaxin 4, SNAP23, VAMP2 and Munc18c were detected. No transgene 

expression was detected in heart, liver, or spleen (Fig. 4-1B, no Myc staining). Doc2b 

protein levels in Tg islets were increased 3.1 fold over that in Wt islets, again with no 

alteration in expression of SNARE or Munc18 proteins (Fig. 4-2A). GLUT4 protein 

levels in heart, skeletal muscle and fat of Doc2b Tg mice were similar to that in Wt mice 

(Fig. 4-2B). 
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Figure 4-1. Protein expression in tissues of Doc2b transgenic mice. (A) 

Gastrocnemius skeletal muscle (Musc), Pancreas (Panc), and epigonadal fat were isolated 

from 3 pairs of Doc2b Tg and Wt littermate mice and immunoblotted for detection of 

SNARE and SNARE accessory proteins. Quantitation of Doc2b in each tissue is shown 

as the average ± SE; *p<0.05 vs. Wt. (B) Heart, liver and spleen were similarly assessed 

for detection of SNARE and SNARE accessory proteins. 

A) 

B) 
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Figure 4-2. Protein expression in islets and tissues of Doc2b transgenic mice. (A) 

Isolated islets from Doc2b Tg and Wt mice were assessed for Doc2b and SNARE protein 

expression; quantitation of Doc2b is shown in the adjacent bar graph. (B) GLUT4 protein 

abundance was assessed in heart, skeletal muscle and fat in 3 pairs of Tg and Wt mice. 

B) 

A) 
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4.2.1 Improved Glucose Tolerance in Doc2b Enriched Mice 

To determine whether Doc2b expression in the select tissues was limiting for 

glucose homeostasis in vivo, IPGTT analyses were performed with the line of mice 

shown to exhibit >2.5-fold Doc2b over-expression (F5170). While fasting glycemia was 

unaltered, F5170 showed significantly lower blood glucose levels than Wt mice upon 

glucose challenge at all time points (Fig. 4-3A). AUC analysis quantified this to be a 44% 

improvement in glucose tolerance (Fig. 4-3B). The rapid drop in blood glucose correlated 

with significantly increased serum insulin content in the Doc2b Tg mice within the first 

10 minutes post-glucose injection during the IPGTT (Fig. 4-3C). In addition, no 

differences in body or tissue weights were observed (Table 4-1). We also performed 

IPGTT assays with a second founder line, F5168, which over-expressed Doc2b only 

~1.7-fold (and exhibited mosaic transgene expression), as a control for the presence of 

the transgene. No significant changes in glucose tolerance were observed in F5168 line 

compared to wild type littermates (Fig. 4-3D), hence F5170 was used for all further 

studies. Together, these data suggested that Doc2b enrichment to a level >2-fold 

simultaneously in skeletal muscle, fat and pancreas contributed to potentiated glucose 

tolerance perhaps via heightened insulin release and/or peripheral glucose uptake. To 

validate that the enhanced glucose tolerance of the Doc2b Tg mice was due to the 

presence of the transgene, Doc2b Tg and Wt mice examined in Fig. 4-4A studies were 

administered tetracycline (tet)-treated drinking water for 1 week to repress the transgene, 

after which the IPGTT was repeated. Glucose tolerance of the tet-treated Doc2b Tg mice 

was similar to that of Wt mice (Fig. 4-4A-B), as were the Doc2b protein levels (Fig. 4-

4C-D). 
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Figure 4-3. Doc2b Tg mice have enhanced glucose tolerance. (A) IPGTT of Doc2b 

F5170 Tg line and Wt littermate mice was performed in 4-6 months old female mice 

fasted for 6 hours. (B) AUC data are shown as the average ± SE from 7 pair of mice; *P< 

0.05, Doc2b Tg versus Wt. (C) Insulin content present in serum taken prior to and 10 

minutes post-injection of glucose during the IPGTT. Data represent the average ± SE 

from 6 pairs of mice; *P< 0.05 vs. Wt basal; ** P< 0.05 vs. Wt glucose-stimulated. (D) 

IPGTT of Doc2b F5168 line of mice. Data represent the average ± SE from 5 pairs of 

mice. 

A) 

C) 

B) 
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Figure 4-4. Tetracycline-mediated repression of the Doc2b transgene reduces 

glucose tolerance to that of the Wt mice. (A) Doc2b Tg and Wt female mice 4-6 

months old were administered tetracycline (1 mg/ml) in the drinking water and IPGTT 

performed. (B) AUC analysis is shown as the average ± SE from 7 pairs of mice. (C) 

Tissue extracts immunoblotted for Doc2b and Clathrin. Data are representative of at least 

3 independent sets of tissues. (D) Quantitation of Doc2b in each tissue is shown as the 

average ± SE from 4 pairs of mice. 

A) 

D) 
C) 

B) 
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Table 4-1 Tissue weights of Doc2b Tg and Wt mice. 

Tissue Doc2b Wt  Doc2b Tg 

Body wt (g)  29.8 ± 4.60  29.5 ± 5.73 

 

Liver 1.68 ± 0.05  1.62 ± 0.05  

 

Lung  0.23 ± 0.04  0.28 ± 0.03  

 

 Heart  0.30 ± 0.04  0.25 ± 0.03  

  

Fat  0.80 ± 0.07  0.78 ± 0.06  

  

Pancreas  0.77 ± 0.05  0.56 ± 0.03  

  

Kidney  0.55 ± 0.05  0.50 ± 0.06  

  

Muscle  0.49 ± 0.04  0.55 ± 0.04  

  

Spleen  0.19 ± 0.42  0.16 ± 0.40  

 

Data represent the average ±Weights were collected from Doc2b Tg and Wt mice at 4-6 

months for determination of parameters shown. No statistical differences were seen. (n=6 

for Doc2b Tg and Wt mice).  
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These data confirmed that the enhanced glucose tolerant phenotype of the Doc2b Tg mice 

corresponded to the expression of the Doc2b transgene.  

 

4.2.2 Doc2b Enrichment Potentiates Biphasic GSIS. 

To determine if the increased serum insulin content of Doc2b Tg mice was related 

to increased islet function, we subjected islets to parallel perifusion analyses. Indeed, 

islets of Doc2b Tg mice exhibited a higher peak of first-phase insulin release as well as 

sustained elevation of second-phase release (Fig. 4-5A). AUC analysis quantified a 50% 

increase over that of Wt islets in the first-phase and a 250% increase in second-phase 

relative to Wt islets (Fig. 4-5B). Total insulin content was similar between Doc2b Tg and 

Wt islets (Fig. 4-5C). Basal insulin secretion was similar between Doc2b Tg and Wt islets 

(Fig. 4-5A), consistent with similar fasting serum insulin contents of the mice (Fig. 4-

6C). These data suggested Doc2b to be limiting for each phase of GSIS and that its 

enrichment could enhance functional GSIS without aberrantly raising basal insulin 

release. 

 

4.2.3 Doc2b Tg Mice have Enhanced Insulin Sensitivity and cell Surface GLUT4 

accumulation in Skeletal Muscle. 

We next assessed whether the beneficial effect of Doc2b enrichment on glucose 

tolerance was related to improved peripheral insulin sensitivity, by performing an ITT. 

Following insulin injection, blood glucose levels of the littermate Wt mice dropped by 

~45% within 60 minutes, as is normal for the C57BL6/J strain (Fig. 4-6A). In Doc2b Tg 

mice, both the rate and extent of the reduction in glycemia was significantly enhanced  
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Figure 4-5. Islets from Doc2b Tg mice exhibit potentiated biphasic insulin release. 

(A) Islets isolated from Doc2b Tg and littermate Wt mice were perifused in parallel at 2.8 

mM glucose for 10 minutes, followed by 16.7 mM glucose for 35 min, then returned to 

low glucose for 20 minutes. Eluted fractions were collected and insulin secretion 

determined by RIA, as depicted in this representative pair of traces. (B) AUC for first 

(11-17 minutes) and second (18-45 minutes) phases of insulin secretion was quantified 

from islets, normalized to baseline. Data represent the average ± SE of 3 independent sets 

A) 
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of perifused islets; *P<0.05 versus Wt. (C) Average insulin content per 10 islets from 

Doc2b Tg and Wt littermates. 
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Figure 4-6. Doc2b Tg mice exhibit enhanced insulin sensitivity. (A) ITT of 7 pair of 

Doc2b Tg and littermate Wt female mice fasted for 6 h. Data are shown as the mean 

percent of starting basal blood glucose concentrations ± SE; *P< 0.05 versus Wt mice. 

(B) Area over the curve (AOC) data are shown as the average ± SE from 7 pairs of mice; 

*P< 0.05, Doc2b Tg versus Wt.  

A) 

B) 
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(Fig. 4-6A). Area over the ITT curve for the Doc2b Tg mice showed this to be a nearly 2 

fold improvement in glycemia in the Doc2b Tg mice compared to Wt mice (Fig. 4-6B). 

These data indicated that Doc2b is limiting for peripheral insulin sensitivity.  

 

The improved insulin sensitivity suggested that Doc2b may be limiting for insulin 

signalling or insulin-stimulated GLUT4 vesicle translocation to the cell surface 

membranes in skeletal muscle, given that skeletal muscle accounts for ~ 80% of glucose 

uptake in humans (188). To test this, t-tubule/sarcolemmal cell surface enriched 

membrane fractions (referred to as P2) were isolated from saline- or insulin-injected 

hindlimb skeletal muscle of Doc2b Tg and Wt mice. P2 fractions prepared from insulin-

injected Wt mice showed the expected ~1.5-fold increase in GLUT4 accumulation 

relative to the unstimulated Wt mouse fraction (176). Remarkably, Doc2b Tg P2 fractions 

exhibited a ~2.4-fold increase in GLUT4 vesicle accumulation at the PM (Fig. 4-7A-B). 

Since AKT activation in Doc2b Tg skeletal muscle homogenates was similar to that of 

Wt mice (Fig. 4-7C), the beneficial action of Doc2b enrichment appeared to lie 

downstream of AKT activation. These data implicated enhanced insulin-stimulated 

GLUT4 vesicle accumulation at the PM as an underlying cause for the enhanced 

peripheral insulin sensitivity of the Doc2b Tg mice.  

 

4.2.4 Doc2b Enrichment Promotes SNARE Complex Formation in Beta Cells and 

Skeletal Myoblasts. 

Doc2b over-expression in clonal beta cells potentiate GSIS. This is based upon its 

ability to decrease Syntaxin 4-Munc18c association and increase Syntaxin 4-VAMP2 
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Figure 4-7. Doc2b Tg mice show increased insulin-stimulated GLUT4 accumulation 

at the plasma membrane of skeletal muscle. (A) Cell surface sarcolemma/transverse 

tubule membranes were obtained via subfractionation (176, 187) of hindquarter muscles 

from littermate mice, and GLUT4 abundance therein detected by immunoblot (Ponceau S 

shows protein loading). (B) Quantitation of GLUT4 accumulation in PM fractions, 

normalized to the unstimulated saline control in 3 sets of mice; *P< 0.05 vs. Wt basal, ** 

P< 0.05 vs. Wt glucose-stimulated. (C) Whole skeletal muscle detergent homogenates 

from mice stimulated with insulin were immunoblotted for activated AKT (pS473- AKT). 

A) 

B) 

C) 
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binding, which promotes SNARE complex formation (165). Given the known role of 

Doc2b as a positive effector in clonal beta cells, and a Munc18-1 binding protein (164), 

we sought to determine if Doc2b might also impact Syntaxin 1 based SNARE-Munc18-1 

interactions in MIN6 beta cells. Cells were transfected to over-express Doc2b, in effort to 

model that of the Doc2b Tg islet beta cells (which are insufficiently abundant for these 

biochemical assays). Indeed Doc2b over-expression increased Syntaxin 1-VAMP2-

SNAP25 SNARE core complex formation, but did not alter Munc18-1 Syntaxin 1 

association (Fig. 4-8A-B). 

 

To determine how Doc2b enrichment in skeletal muscle of the Doc2b Tg mice 

might increase PM-localization of GLUT4, Munc18c-Syntaxin 4 binding and Syntaxin 4 

activation/SNARE complex formation was studied in L6-GLUT4-myc myoblasts 

transfected to express exogenous GFP-tagged Doc2b (or GFP vector control). L6-

GLUT4-myc skeletal myoblasts are the premiere clonal muscle cell line for recapitulating 

the events associated with GLUT4 vesicle exocytosis (189) and transfect with ~30-50% 

efficiency. Immunoprecipitation of Syntaxin 4 from insulin-stimulated GFP-Doc2b 

expressing L6 cells resulted in reduced Munc18c co-precipitation compared to GFP-

vector expressing cells (Fig. 4-9A). Syntaxin 4 accessibility to VAMP2 was examined as 

an indicator of ability to form SNARE complexes, given the inability to obtain sufficient 

PM protein from transfected L6 cells for co-immunoprecipitation analyses. Syntaxin 4 

accessibility to an exogenous GST-VAMP2 protein linked to sepharose beads from 

insulin-stimulated GFP-Doc2b expressing L6 myoblasts was enhanced by ~30% relative  
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Figure 4-8. Over-expression of Doc2b increases the abundance of SNARE complexes 

in the PM of MIN6 beta cells. (A) MIN6 cells transfected to over-express Doc2b or 

vector control DNA were sub-fractionated as described (154). PM fractions were used in 

immunoprecipitation reactions with anti-Syntaxin1A antibody, and co-

immunoprecipitated proteins were resolved on 12% SDS-PAGE for immunodetection of 

Munc18-1, SNAP25, VAMP2 and Doc2b. Doc2b protein over-expression was confirmed 

in lysates. (B) Quantitation is shown as the average ± SE for 3 independent experiments; 

*P<0.05 vs. control transfected cells. 

A) 

B) 
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Figure 4-9. Over-expression of Doc2b co-ordinately decreases Munc18c-Syntaxin 4 

binding while increasing Syntaxin 4 activation in L6 GLUT4-myc myoblasts. 

Detergent lysates prepared from L6 GLUT4-myc myoblasts transfected to express GFP-

tagged Doc2b or GFP alone and stimulated with insulin were used in (A) anti-Syntaxin 4 

immunoprecipitation reactions and co-precipitated Munc18c or Doc2b proteins detected 

by immunoblotting, or (B) GST-VAMP2 interaction assays for detection of the Syntaxin 

4 present in lysates that is accessible to the exogenous GST-VAMP2 probe. Proteins were 

immunoblotted for Syntaxin 4 and GST. Quantitation is represented in the adjacent bar 

graph as the average ± SE of the ratio of Syntaxin 4 normalized to GST-VAMP2 in 3 

independent experiments; *P<0.05 vs. GFP alone. 

B) 

A) 
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to cells expressing a similar amount of GFP control protein (Fig. 4-9B). Together, these 

results suggest that Doc2b is a limiting factor for Munc18c- Syntaxin 4 dissociation in 

skeletal muscle cells, and that the potentiation of Syntaxin 4 accessibility by increased 

expression of Doc2b may underlie the enhanced GLUT4 accumulation in PM fractions 

and insulin sensitivity of the Doc2b Tg mice. 

 

4.3 DISCUSSION  

In this study, we tested the concept that Doc2b is limiting for glucose 

homeostasis, and that enriching Doc2b might provide a means to simultaneously improve 

insulin sensitivity and insulin secretion in an effort to enhance whole body glucose 

homeostasis in vivo. Using novel tetracycline-repressible Doc2b Tg mice, we show that 

increasing the expression of Doc2b by ~2-3 fold in pancreas results in potentiated insulin 

release during both first and second phases. This potentiated insulin release correlated 

with increased abundances of Syntaxin 1- and Syntaxin 4-based SNARE complexes 

assembled at the PM of beta cells. Increased expression of Doc2b in skeletal muscle 

substantially potentiated the accumulation of GLUT4 vesicles at the cell surface of 

sarcolemmal/t-tubule membranes, likely accounting for the improved insulin sensitivity 

in Doc2b Tg mice. Mechanistic studies performed in L6 myoblasts enriched with Doc2b 

demonstrated an increased abundance of Syntaxin 4 accessibility to the v-SNARE. These 

data provide the first in vivo proof of concept data for future research on Doc2b as a 

therapeutic target for treatment of pre- and T2D. 
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The enhanced glucose tolerance in the Doc2b Tg mice was found to be mediated 

by potentiation of both insulin secretion and peripheral insulin action. Increased serum 

insulin content in Doc2b Tg mice post-glucose injection is likely directly related to the 

improved glucose-stimulated biphasic insulin secretion of the islet beta cells. In our ex 

vivo islet studies, the second-phase was particularly robust, and it has been suggested that 

second-phase release communicates that quotient of insulin to the peripheral tissues, such 

as skeletal muscle. However Doc2b enrichment also potentiated the first-phase, and 

because the first-phase of insulin release rapidly impacts hepatic glucose output (190), it 

remains possible that the liver glucose output rate was reduced rapidly to contribute to the 

overall improvement of glucose tolerance. Another possibility is that the robustness of 

first-phase insulin release obviated the need for an extended second-phase. In addition, 

Doc2b Tg mice have significant enhancement in skeletal muscle insulin sensitivity and 

increased GLUT4 accumulation at the cell surface. As such, the skeletal muscle would 

require less insulin to accomplish its task, and the need for sustained insulin release 

during the second-phase may be reduced. Thus, this first Doc2b Tg mouse model 

provides the first proof of principle for the potential merit of Doc2b enrichment in 

glycemic control. Future studies utilizing skeletal muscle- and islet beta cell-specific 

Doc2b over-expression mouse models will facilitate delineation of the relative 

contributions of Doc2b enrichment in these tissues to maintenance of glucose 

homeostasis.  

 

The positive effect of Doc2b enrichment upon peripheral insulin sensitivity and 

GLUT4 accumulation at the cell surface of skeletal muscle suggests that endogenous 
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Doc2b in skeletal muscle and/or fat is limiting for insulin-stimulated glucose clearance 

mechanisms. These in vivo and ex vivo skeletal muscle data validate an earlier report 

wherein Doc2b over-expression in 3T3-L1 adipocytes enhanced glucose uptake (168). 

Our data supports an indirect role for Doc2b in its potentiation of skeletal muscle insulin 

action at the level of SNARE complex formation, since Doc2b in skeletal muscle lysates 

failed to co-precipitate with Syntaxin 4 (187), and even over-expression of Doc2b in L6 

myoblasts failed to drive an interaction of Doc2b with Syntaxin 4. However, these 

findings in primary skeletal muscle tissue do not recapitulate the binding interactions 

derived from in vitro mixing assays using recombinant Doc2b (191), and may suggest 

that these interactions are impacted by additional factors such as the particular cellular 

milieu, post-translational modifications of the proteins involved, and/or by calcium. For 

example, insulin triggers the tyrosine phosphorylation of Munc18c in skeletal muscle 

(41), enhancing the affinity of Munc18c for Doc2b nearly 2-fold while decreasing its 

affinity for Syntaxin 4 (148, 187). Thus, these data are congruent with a model whereby 

Doc2b would seemingly titrate out more Munc18c to make more cellular Syntaxin 4 

accessible, generating more Syntaxin 4-based docking/fusion sites for incoming GLUT4 

vesicles. Another possible manner by which Doc2b enrichment potentiates GLUT4 

exocytosis is via its recently described role in calcium-induced plasma membrane 

curvature induction, in vitro (191). However, prior findings suggest that calcium-

activated Doc2b actions in bona fide skeletal muscle may differ from that seen in vitro, or 

in neurons and adipocytes (167-168), and as such remains to be tested. 
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Like GLUT4 vesicle exocytosis, insulin granule exocytosis utilizes Syntaxin 4-

based SNARE complexes. Our finding that the second-phase was enhanced to a greater 

degree than first-phase GSIS from the Doc2b Tg islets is consistent with our prior 

observation that Doc2b enrichment enhanced Syntaxin 4-SNARE complex formation in 

MIN6 beta-cells (165). Corroborating this concept, islets from Doc2b knockout mice 

showed a greater impairment in second versus first-phase GSIS (187). Since second-

phase insulin exocytosis requires Munc18c and hinges upon Munc18c’s ability to 

undergo glucose-induced tyrosine phosphorylation (41, 154), the requirement and the role 

of Doc2b may be linked indirectly to Syntaxin 4 in mechanism(s) similar to that 

described above for the skeletal muscle. Doc2b potentiation of first-phase GSIS was 

related to its ability to increase Syn-1 SNARE complexes similarly to Syntaxin 4-SNARE 

complexes suggesting Doc2b improves SNARE complexes formation in beta cells in a 

parallel fashion. However, Doc2b did not alter Syntaxin 1-Munc18-1 co-precipitation, 

indicating that dissociation of Munc18-1 from Syn-1 is different from Munc18c-Syntaxin 

4 complex dissociation, consistent with prior data in beta cells (136, 154). Indeed, Doc2b 

has the ability to bind each Munc18 isoform via its distinct C2 domains: Munc18-1 binds 

to C2A (164) while Munc18c binds to C2B (165). In addition to binding Munc18 

proteins, Doc2b also binds to Munc13-1 via an N-terminal domain that is dispensable for 

binding either Munc18 protein (165); Munc13-1 also participates in biphasic GSIS (159). 

As such, we speculate that Doc2b’s role in potentiating GSIS involves its ability to serve 

as a “landing platform” for transient associations with Munc18 and possibly Munc13 

proteins. Increasing the number of Doc2b platforms may provide increased capacity for 

‘landing.  
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In summary, the data presented show promise for the concept of Doc2b as a new 

therapeutic target for pre-clinical and T2D, demonstrate its use to be feasible and safe for 

betterment of glycaemic control in vivo, and provide insight into the mechanisms of 

Doc2b action into particular SNARE-mediated exocytosis events that may prove valuable 

in future drug design strategies. 
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CHAPTER 5. CONCLUDING REMARKS 
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The objective of this dissertation was to elucidate the mechanisms by which 

Doc2b regulates glucose homeostasis by coordinating insulin action in peripheral tissues 

and biphasic insulin secretion from pancreatic islet beta cells. My dissertation work 

encompasses investigations of Doc2b as a requisite participant and as a limiting factor in 

the maintenance of whole body glucose homeostasis in vivo. Additionally, modifications 

in Doc2b levels can alter Munc18c-Syntaxin 4 mediated insulin secretion as well as 

insulin responsiveness in skeletal muscle. Here, I will discuss the primary issues 

addressed in each chapter of my dissertation, including how this work impacts the fields 

of beta cell biology, skeletal muscle biology and the regulation of whole body glucose 

homeostasis, with suggestions towards additional work needed in those specific areas. 

Additionally I propose future studies pertaining to post-translational control of SNARE 

complex formation, calcium regulation of Doc2b, and non-exocytotic roles for Doc2b 

and SNARE proteins, including their potential as therapeutics for the control of 

dysregulated glucose homeostasis. 

 

Doc2b is a relatively understudied protein in beta cells and peripheral tissues for 

its role in maintenance of glucose homeostasis. Secretion of growth hormone is enhanced 

in PC-12 cells over-expressing Doc2b (192). Also, reduction in spontaneous release 

frequency is seen in the neurons of Doc2b (-/-) mice (174). These data implicated Doc2b 

as a key player in neuronal exocytotic events suggesting a universal function for Doc2b, 

akin to that of the SNARE proteins. Our lab has shown that Doc2b binds to Munc18c, 

more so when Munc18c is phosphorylated (148). My dissertation work supports these 

observations and extends our knowledge regarding roles for Doc2b beyond that as a 
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Munc18c binding partner to show the following: 1) Doc2b is required for insulin 

secretion and insulin action, 2) Doc2b is a primary regulator of the Munc18c- Syntaxin 4 

binary complex, to facilitate SNARE complex formation and Syntaxin 4 activation in 

response to appropriate stimuli, and 3) Doc2b is limiting for insulin secretion and insulin 

action, such that its enrichment boosts these processes to benefit whole body glucose 

homeostasis. My finding that increased expression of Doc2b increases the abundance of 

SNARE complexes explains why Doc2b is limiting for the exocytotic events underlying 

insulin release and insulin action. These data contribute to our understanding how 

deficiencies in SNARE and SNARE associated proteins are associated with prediabetes 

development, and reveal for the first time the concept that Doc2b enrichment could 

provide a means of mitigating two primary aberrations underlying T2D development.  

 

Using two different mouse models, a classic whole body Doc2b knockout model 

(Doc2b KO) and a pancreas, muscle, and adipose tissue-specific Doc2b over-expressing 

transgenic model (Doc2b Tg), I demonstrated that modifications in Doc2b levels can 

either severely impair or improve, respectively, whole body glucose homeostasis. 

Furthermore, the phenotype of the Doc2b Tg animal model suggests that Doc2b is a 

limiting factor in the exocytosis of insulin granules in the pancreatic beta cells and 

GLUT4-containing vesicles in the skeletal muscle. Doc2b KO mice, following an 

intraperitoneal glucose challenge, not only failed to mount an appropriate insulin 

secretory response but also were incapable of glucose uptake at the peripheral tissues, 

resulting in impaired glucose tolerance. On the other hand, the Doc2b Tg mice displayed 

enhanced glucose tolerance, mediated through the transient potentiation of both insulin 
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secretion and peripheral insulin action (specifically, at the skeletal muscle). This is 

consistent with the reports published in cultured cells that increasing/decreasing Doc2b 

protein levels increases/decreases insulin secretion and GLUT4 vesicle exocytosis, 

respectively (165, 168). The potentiation in insulin secretion in Doc2b Tg mice was due 

to an improvement in beta cell secretory function and not insulin content, since insulin 

content was similar between the Doc2b Tg and Wt mice. These data imply that sufficient 

insulin is present within the beta cells; however, the insulin granules are released in a 

more efficient manner.  

 

Our lab has demonstrated that islets utilize Munc18c to sustain second-phase 

insulin release (178). Interestingly, islet beta cells also contain the Munc18-1 isoform, 

and over-expression of Munc18-1 in human islets selectively enhances first-phase insulin 

secretion (136). Given the ability of Doc2b to bind to both Munc18-1 and Munc18c 

isoforms via its different C2 domains, I have begun testing whether all three proteins 

could bind simultaneously in cultured cells and in vitro (Ramalingam and Thurmond, 

unpublished). Indeed, my preliminary studies show that the two different Munc18 

proteins do not bind each other, and that neither Munc18 protein competes with the other 

for binding to Doc2b (Ramalingam and Thurmond, unpublished). Since my work and that 

of others shows the Munc18-Doc2b interactions to be transient and dynamic in response 

to stimuli, my data prompt the concept of Doc2b serving as a scaffold or ‘landing 

platform’ to assemble Munc18 proteins and facilitate their cognate syntaxin-mediated 

exocytosis events in islet beta cells, as part of the underlying mechanism of biphasic 

insulin release.  
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5.1 FUTURE STUDIES 

5.1.1 Post-translational modifications and SNARE complex formation 

SNARE proteins have been implicated in exocytosis for more than 20 years, and 

even though some crucial questions have been answered, detailed molecular basis of the 

steps leading to exocytotic release is not completely established. Moreover, components 

of the SNARE core machinery are not shared by all tissues, and the impact of stress upon 

the machinery, such as diabetogenic stresses associated with obesity and inflammation, 

remains untested. Using cell based approaches and animal tissues extracts, my research 

efforts have contributed to understanding that Doc2b function in SNARE-mediated 

exocytosis is regulated by tyrosine phosphorylation of Munc18c. Specifically, in response 

to a stimulus (e.g. glucose or insulin), Munc18c becomes tyrosine phosphorylated at Tyr 

219 in beta cells and adipocytes, while at Tyr 521 in adipocytes and muscle (41, 154). 

This phosphorylation regulates Munc18c’s interaction with Syntaxin 4 (148), and induces 

a switch in Munc18c’s binding preference from Syntaxin 4 to Doc2b. A clear next step 

will be to elucidate the Doc2b-Munc18c interaction via mutation of these tyrosine 

residues, the potential for post-translational modification of Doc2b in insulin-secreting or 

-responsive cell types.  

 

In addition, the insulin receptor was recently identified as the kinase for Munc18c 

phosphorylation in muscle, and very recent work has revealed the protein tyrosine 

phosphatase 1B to be the counterpart to IR in Munc18c phosphorylation (155). Hence, it 

is vital to perform Munc18c-Doc2b association studies in mice or cell lines depleted of 

IR and of protein tyrosine phosphatase 1B. If tyrosine phosphorylation at those specific 
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residues is important, it could be useful to develop phosphatase inhibitors for therapeutic 

purposes. Moreover, it will be important to study Munc18c-Doc2b interactions while 

Munc18c undergoes O-linked glycosylation (193). O-linked glycosylation of Munc18c 

was associated with insulin resistance in adipocytes, yet my pilot data in beta cells 

suggested that Munc18c glycosylation is a normal part of its function in GSIS. Thus, it is 

imperative that the sites of Munc18c glycosylation be identified and mutated for 

functional evaluation, because if Munc18c glycosylation prompts positive action in beta 

cells, it could be exploited to activate the Munc18c switch to Doc2b so that Syntaxin 4 

can bind VAMP2. Another binding partner of Munc18c, Wnk-1 (With no K lysine) is a 

serine/threonine kinase implicated in insulin exocytosis. Wnk-1 binds Doc2b and 

Munc18c (Oh and Thurmond, unpublished). To gain further insight into the complex 

fusion process, it will be key to study if both Doc2b and Wnk-1 regulate Munc18c 

binding to Syntaxin 4. It will be intriguing if Doc2b switches its binding between Wnk-1 

and Munc18c under stimulated versus basal conditions respectively, in beta cells. A third 

Munc18 isoform, Munc18b, is also expressed in beta cells and by virtue of its high 

degree of homology to Munc18-1, may also bind to Doc2b. Since Munc18b has been 

implicated in granule-granule fusion, via binding to Syntaxin 2/3 to purportedly 

supplement biphasic insulin secretion by increasing the number of newcomer granules at 

the PM (194), one could speculate that Doc2b utilizes a common regulatory mechanism 

similar to Munc18c with Syntaxin 4. 

 

The binding switch from Syntaxin 4 to Doc2b of Munc18c temporally correlates 

with increased SNARE core complex formation, leading to exocytosis. Increased 
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Munc18c-Doc2b binding was observed under Doc2b-enriched conditions. Further, 

increased Munc18c-Doc2b binding also correlated with increased abundances of 

Syntaxin 4 available for VAMP2 binding. This elevation of PM-localized SNARE 

densities led to enhanced SNARE complex formation. The possible explanation is that 

increasing the SNARE densities would raise the probability of the SNARE complex 

formation, ultimately increasing the amount of vesicle exocytosis.  

 

Apart from Munc18c, various other Doc2b binding partners have been identified 

in other tissues. In neuronal cells, Munc13-1 binds to Doc2b through its N terminal MID 

domain to promote vesicle release. Munc13-1 is an essential priming protein facilitating 

SNARE complex formation. The direct interaction between Munc13-1 and Doc2b is yet 

to be demonstrated in beta cells. It will be important to understand the requirement for 

this association in beta cells, as reduced Munc13-1 levels are known to inhibit biphasic 

insulin secretion. For example, Doc2b is required for Munc13-1 translocation to PM in 

chromaffin cells. Further Munc13-1 is known to directly interact with Syntaxin-1 and 

switch syntaxin from closed to open position; finding these events to hold in beta cells 

would strongly suggest Doc2b to operate in granule priming. Another isoform of 

Munc13, Munc13-4 was recently identified to bind Syntaxin 4 using in vitro liposome 

assays (160). Munc13-4 is also identified as a limiting factor in platelet exocytosis (161), 

suggesting it may carry importance in insulin exocytosis. An intriguing possibility is that 

the Munc13-Doc2b interaction acts as an extra signaling factor to promote fusion by 

activating syntaxins under stress-induced conditions like hyperglycemia. Diacylglycerol 

levels are increased under hyperglycemic conditions, and Munc13-1 is reported to 
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potentiate insulin secretion in the presence of diacylglycerol. Hence, I hypothesize that 

Doc2b could alter insulin secretion through Munc13, possibly independent of Munc18 

proteins. 

 

5.1.2 Regulation of Doc2b by calcium 

In 3T3-L1 adipocytes, Doc2b reportedly binds to Syntaxin 4, but only under high 

(1 mM) calcium buffer conditions (168). Doc2b-Syntaxin 4 binding is also detected in 

vitro under high calcium conditions. In contrast, I did not detect Doc2b-Syntaxin 4 

interactions in skeletal muscle under similar calcium conditions. Doc2b is known to 

require very little calcium to translocate in neurons (35). As such, the in vitro studies 

performed uses full-length Syntaxin 4, which is known to exhibit non-specific “sticky” 

interactions owing to the presence of a transmembrane domain at the hydrophobic C-

terminus, under conditions of very mild stringency (0.5% NP40 detergent), an interaction 

was detectable in vitro. The requirement for high calcium to see the interaction might be 

related to Doc2b’s two calcium binding domains. Previous studies in neuronal cells show 

that the translocation of Doc2b from the cytosol to PM requires micromolar amounts of 

calcium. In contrast, I have shown that Doc2b does not translocate under insulin-

stimulated conditions in skeletal muscle extracts, but found already localized at the PM 

under resting conditions. Skeletal muscle may have baseline calcium already high enough 

to translocate Doc2b under resting conditions. Under such conditions, Doc2b can be 

considered constitutively active (167), which can explain the strong effects in the Doc2b-

/- mice observed here, relative to effects previously observed in brain (174). 
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Supporting the concept of a calcium-independent role for Doc2b, a previous study 

in neuronal cells demonstrated that calcium is required only for binary complex 

formation between Syntaxin and SNAP25 but not for ternary complex (Syntaxin: 

SNAP25: VAMP2) (37). As such, Syntaxin 4 in muscle may be more accessible to form 

ternary complexes in a calcium-independent manner, contingent more upon the stimulus-

induced phosphorylation and dissociation of Munc18c. Interestingly, no other protein 

with calcium binding domain, except Doc2b, is demonstrated to have a role in GLUT4 

exocytosis, indicating that calcium may not have an important function in muscle, unlike 

neurons. Hence, it will be imperative to test whether calcium binds directly to Doc2b and 

triggers insulin action by studying the function of Doc2b mutants harboring point 

mutations in its 4 calcium binding sites, as done in neuronal cells (170). 

 

Apart from Doc2b role in fusion, a few recent studies in neuronal cells have also 

focused on the role of Doc2b in membrane curvature. The C2A domain of Doc2b binds 

phospholipids in a calcium dependent manner and interacts with the PM (163). Further, 

mutation in the calcium binding residues in C2A affect fusion kinetics suggesting 

calcium may be necessary for inducing membrane curvature (191). A similar mechanism 

could possibly exist in beta cells since they express and utilize similar SNARE isoforms. 

Hence, it can be inferred that the C2B domain of Doc2b may have a role in translocation 

from cytosol to PM while the C2A domain has a role in its interaction with the PM. 
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5.1.3 Abundances of Doc2b and SNARE proteins. 

Doc2b transcript levels are significantly reduced in T2D mouse models, but 

mechanisms regulating Doc2b expression are, as of yet, unknown. MicroRNAs 

(miRNAs) may be one such mechanism. Similar to the findings from Regazzi and 

colleagues in which miRNA124 coordinately increased SNAP25 levels and elevated 

insulin release (195-196), it may be possible that miRNAs are also altering Doc2b levels, 

leading to changes in insulin secretion. Beyond miRNAs, other possible explanations for 

the reduced Doc2b expression associated with obesity and diabetes include proteosomal 

degradation, mRNA instability and impaired transcription. Evidence suggests that the 

SNARE proteins relevant to beta cell function are subject to proteosomal degradation, as 

well as miRNA targeting (82), indicating that Doc2b may be subject to similar processes. 

Identification of possible mechanisms that mediate Doc2b expression could be useful in 

deriving strategies to restore/enhance Doc2b levels to prevent and/or treat T2D. This 

would be a worthy avenue for future investigations, since restoring the levels of SNARE 

proteins in T2D islets is shown to enhance exocytotic function. Beyond improving beta 

cell function, there is a possibility that Doc2b could be involved in enhancing beta cell 

mass. Doc2b is expressed in the neuroepithelium by Embryonic Day 12 (E12), well 

before synaptic function is initiated at Embryonic Day 17 (E17), suggesting that Doc2b 

may have a role in the development of secretory cells. Coupled with data that 

demonstrates impaired blastocyst development in Syntaxin 4-depleted mouse lines, 

whether or not Doc2b has a role in beta cell development becomes an intriguing question 

to explore. 
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5.1.4 Doc2b in whole body physiology and SNARE proteins as therapies 

Defects in both insulin secretion and action can lead to prediabetes and 

progression to T2D. Insulin secretion in beta cells and glucose transport in the peripheral 

tissues are mediated by similar exocytotic mechanisms, which utilize identical SNARE 

isoforms and Munc18 proteins. Since Doc2b was found to be a limiting factor for the 

exocytosis of insulin granules in beta cells and GLUT4 vesicles in skeletal muscle, the 

relative contribution of Doc2b enrichment in glucose homeostatic tissues needs to be 

further evaluated utilizing skeletal muscle- and islet beta cell-specific Doc2b over-

expressing mouse models. Answering this question is essential, as our long term goal is 

to develop therapeutics that restore normoglycemia by targeting tissue-specific 

pathogenic effects. Of further interest is determining if over-expression of Doc2b affords 

protection against the development of glucose intolerance and insulin resistance under 

conditions of metabolic stress (e.g., high fat diet). The improvement in insulin secretion 

in Doc2b Tg mice is similar to improvements in Syntaxin 4 Tg mice. Since both Doc2b 

and Syntaxin 4 plays a role in granule docking/fusion, it would be exciting to explore the 

potential additive effect on insulin secretion in Syntaxin 4 and Doc2b double-transgenic 

mice. This is important to pursue since our lab has recently shown that islets of T2D 

humans are >40% deficient in Syntaxin 4 (Oh, Stull, Mirmira and Thurmond, manuscript 

submitted), such that Doc2b enrichment might be useful to more fully activate the 

residual Syntaxin 4 to improve GSIS function. 

 

Doc2b is ubiquitously expressed, so one caveat to my studies is that I’ve not yet 

evaluated potential contributions from the fat, liver or alpha cells of the islet. Hence, it 
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will be important to perform a euglycemic-hyperinsulinemic clamp analysis to account 

for glucose output from the liver and glucose uptake in the peripheral tissues. Any impact 

of the liver would be indirect based upon current knowledge suggesting no exocytotic 

regulation for glucose output or insulin clearance mechanisms. It would be important to 

explore the role of Doc2b in islet alpha cells, given that SNARE mediated exocytosis 

occurs in alpha cells, hence alterations in Doc2b levels could affect glucagon secretion 

from the pancreatic alpha cells. The secreted glucagon could indirectly influence the 

glucose output. This could also assess the involvement of Doc2b in regulating glucagon 

secretion which influences glucose output. Glucose metabolism is also controlled to a 

certain extent by the brain. Since Doc2b is expressed in brain, its involvement in 

regulating glucose metabolism and leptin signaling in brain needs to be determined. 

Alternatively, a second Doc2a isoform that is functional in brain may also be expressed 

and functional in beta cells (it is notably neuroendocrine-cell specific), creating a brain-

islet axis of metabolic control not yet investigated. 

 

Currently, no studies regarding Doc2b have been reported in humans. Taking a 

step ahead, it will be interesting to check whether the phenotype of Doc2b Tg mice is 

recapitulated in healthy control and T2D human islets infected with Doc2b over 

expressing adenovirus, or perhaps even peptides derived from Doc2b. Further, whether 

over-expression of Doc2b may also help preserve functional beta cell mass in T1D is of 

interest, since better insulin secretory function is observed in Doc2b over-expressing 

islets and Doc2b is implicated in cellular development. Due to the advancement in 

transplantation techniques, islets from Doc2b Tg mice can be transplanted into 
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streptozotocin-induced diabetic mice to delineate if Doc2b enrichment promotes islet 

function in vivo to restore euglycemia.  

 

5.2 CONCLUSION 

Altogether, this research has extended our understanding of the molecular 

mechanisms by which Doc2b facilitate regulated exocytosis in insulin-secreting and 

insulin-responsive cell types to control glucose homeostasis. Given its nature as a soluble 

protein and its ability to enhance SNARE complex formation in vivo, Doc2b is an 

attractive therapeutic target for the prevention/treatment of T2D. The hope is that this 

discovery will bring clarification to the complex exocytotic processes in beta cells and 

muscle/adipose tissue. The greater anticipation is that one day this research may have 

some real consequence in the treatment and/or prevention of diabetes. 
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