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Fei Huang 

 

Optimizing Hydropathy Scale to Improve IDP Prediction and Characterizing IDPs’ 

Functions in PDB Dimers 

 

Intrinsically disordered proteins (IDPs) are flexible proteins without defined 3D 

structures. Studies show that IDPs are abundant in nature and actively involved in 

numerous biological processes. Two crucial subjects in the study of IDPs lie in analyzing 

IDPs’ functions and identifying them. We thus carried out three projects to better 

understand IDPs. 

In the 1st project, we propose a method that separates IDPs into different function 

groups.  We used the approach of CH-CDF plot, which is based the combined use of two 

predictors and subclassifies proteins into 4 groups: structured, mixed, disordered, and rare.  

Studies show different structural biases for each group. The mixed class has more order-

promoting residues and more ordered regions than the disordered class. In addition, the 

disordered class is highly active in mitosis-related processes among others. Meanwhile, 

the mixed class is highly associated with signaling pathways, where having both ordered 

and disordered regions could possibly be important. 

The 2nd project is about identifying if an unknown protein is entirely disordered. 

One of the earliest predictors for this purpose, the charge-hydropathy plot (C-H plot), 

exploited the charge and hydropathy features of the protein. Not only is this algorithm 

simple yet powerful, its input parameters, charge and hydropathy, are informative and 

readily interpretable. We found that using different hydropathy scales significantly 
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affects the prediction accuracy. Therefore, we sought to identify a new hydropathy scale 

that optimizes the prediction. This new scale achieves an accuracy of 91%, a significant 

improvement over the original 79%.  

In our 3rd project, we developed a per-residue C-H IDP predictor, in which three 

hydropathy scales are optimized individually. This is to account for the amino acid 

composition differences in three regions of a protein sequence (N, C terminus and 

internal). We then combined them into a single per-residue predictor that achieves an 

accuracy of 74% for per-residue predictions for proteins containing long IDP regions. 
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I. INTRODUCTION 

1. Definition of Intrinsically Disordered Proteins (IDPs)  

Intrinsically Disordered Proteins (IDPs) are proteins without defined 3D 

structures1–5. ‘Disorder’ describes the lack of structure of such proteins. The term 

‘intrinsically’ means that their failure to fold into a specific 3D structure is inherent in the 

amino acid sequence6,7; i.e., encoded by their amino acid sequences. It is important to 

note that the amino acid composition of IDPs is biased towards certain amino acids, 

compared to the compositions of ordered proteins4. 

Many other expressions are used to describe these proteins as well. Commonly 

known expressions are, floppy, pliable, rheomorphic, flexible, mobile, partially folded, 

natively denatured, natively unfolded, natively disordered, intrinsically unfolded, 

vulnerable, chameleon, malleable, 4D, protein clouds, dancing proteins, proteins waiting 

for partners, and others6. These terms were proposed by many researchers when they 

encountered IDPs during their research, and found that these proteins exhibit features 

distinguishable from those of globular proteins.  

Despite the differences in the use of words, almost all of these names suggest a 

common feature, flexibility. However, flexibility is not stringent enough to be an 

appropriate descriptor for these proteins. Many structured proteins, such as the binding 

pocket of an enzyme, may have some degrees of flexibility but they are not IDPs6. 

Protein ensembles with no preferred lowest energy conformation that adopt many 

different forms, is a more accurate description8. Thus, we use the term ‘disorder’ to 

define this state of these proteins. 
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Even though not illustrated in all of the terms, some researchers used names that 

included words such as ‘natively’ or ‘naturally’. The word ‘intrinsically’ was chosen in 

the end because it illustrates the two most important features of these proteins equally 

well: 1. disorder is inherently encoded in their amino acid sequences; 2. the state of 

disorder is manifested under generic physiological conditions6.  

In contrast, ‘ordered’ or ‘structured’ proteins indicate proteins that have a 

preferred lowest energy conformation, i.e., a well-defined 3D structure. Therefore, the 

term ‘disordered’ and ‘ordered or structured’ are adopted throughout this manuscript to 

indicate proteins that are not disordered. It is worth noting that many proteins possess 

both states, with each state in different regions of the sequence. We refer to these proteins 

as ‘partially disordered or partially ordered proteins’, and we name these regions as 

‘disordered or ordered regions’. 

 

2. Challenging the protein structure-function dogma 

2.1 protein structure-function dogma 

The study of IDPs has been of growing interest in the recent years9,10. However, it 

is not always this case from the beginning. For a long time, the idea that a protein can 

carry out function without folding into 3D structure was not recognized by the scientific 

community9. 

The proteins structure-function dogma has been dominant for a long time. In 1894, 

Emil Fischer made the astonishing discovery of enzyme specificity. He therefore 

proposed the ‘lock and key’ model to explain such strong specificity11. In 1931, Hsien 

Wu proposed that loss of function via protein denaturation occurred when weak 
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interactions were disrupted leading to loss of structure12. This paradigm, that structure is 

necessary for function, became dominant following the very large numbers of protein 

structures determined by X-ray crystallography13. To date, 94813 protein structures haven 

been determined and deposited in the Protein Data Bank (PDB)14. 

 

2.2 Different voices 

During that time, however, there were examples suggesting that this dogma was 

not perfect. In 1953, scientists made the observation that milk protein casein is likely to 

be unstructured and this might help infants’ digestion15,16. As reviewed by Sigler17, in the 

1980s several researchers found that eukaryotic transcription factors have large regions of 

highly unusual sequences with high content of acidic residues, termed as ‘acid blobs’ or 

‘negative noodles’. These regions fail to fold into 3D structures, yet they carry out gene 

regulation.  

However, these examples are sparse and failed to draw wide attention.  They were 

merely considered to be rare exceptions to the dogma. The traditional view of protein 

structure-function dogma still held its place until the late 1990s, when nuclear magnetic 

resonance (NMR) and bioinformatics study of IDPs blossomed18–20.  

 

2.3 NMR study reveals large disordered regions 

Unlike X-ray crystallization, NMR method to study protein conformation does 

not require crystallization. NMR thus is more suitable to study IDPs20. Because of IDPs’ 

lack of stable conformation, their NMR spectra yield multiple very different structural 

possibilities. Human cell cycle control protein p21 was shown by NMR to be entirely 
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disordered, and its regulatory functions were shown to depend on its disordered state21. 

So far, many proteins are confirmed to be disordered or having a long disordered region, 

where “long” is generally taken to be ≥ 30 residues 20,22–32. Besides NMR, missing 

sequences in X-ray structure19,33–35, Raman optical activity36, Circular Dichroism (CD)37–

40, and protease sensitivity experiments41 can also identify IDPs. Since each method has 

uncertainties with regard to IDP characterization, it would be an advantage to use 

multiple methods for IDP characterization in which case the different methods 

complement each other42. 

 

2.4 Computational method reveals amino acid composition bias for IDPs 

When more and more experimental data about disordered protein accumulated, 

people started to ask the question why IDPs do not fold.  Bioinformatics study of IDPs’ 

composition reveals that IDPs have their own preference of amino acid residues 

compared to ordered proteins4,43–46. In general, hydrophilic or polar residues are disorder 

promoting. However, note that additional factors can also influence the disorder/order 

state of a protein or region as well, such as net charge, aromatic content, side-chain 

bulkiness, etc.  

The folding of an ordered protein is usually driven by the hydrophobic amino acid 

residues, such as valine, isoleucine, leucine, phenylalanine, methionine, and tryptophan, 

to form a hydrophobic core. In contrast, a disordered protein usually maintains its 

disordered state as a result of its high content of polar residues – i.e., arginine, glutamine, 

serine, glutamate, and lysine – all of which readily interact with water molecules. Note 

that cysteine, despite being a polar residue, is missing from the above list. This is because 
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when oxidized, cysteines greatly promote protein conformation stability by forming 

disulfide bonds47,48. Cysteine also readily binds prosthetic groups, and thus stabilizes 

protein structure. Note that even though lysine could also bind to prosthetic groups, it is 

still a disorder promoting residue because of the charge it carries. Another interesting 

case here is proline.  Although non-polar, proline is a very potent disorder promoting 

residue. With its unusual secondary amine or imine structure in which the N-H group is 

replaced with an N-C bond, proline lacks the N-H group critical to alpha-helix or beta-

sheet formation and thus is a ‘structure breaker’ that often flanks alpha-helices and beta-

sheets49. Overall, compared to strcutred proteins, IDPs are significantly enriched in P, E, 

S, Q and K. 

 

3. IDP predictors 

Many experimental methods are available nowadays to characterize IDPs. 

However, the number of determined protein sequences is so large that applying 

experimental method to every one of them is unrealistic. Thanks to the advances in 

computational biology methods, we can predict the disorder state of a protein or a protein 

region with fair accuracy by means of supervised learning algorithms. 

In particular, given a set of labeled training data, supervised learning algorithm 

identifies a ‘pattern’ and applies this ‘pattern’ to new data to infer its label50. Given the 

amino acid compositional differences between structured proteins and IDPs, we can 

develop algorithms that predict the disordered or ordered state of a protein or region by 

using amino acid sequences as inputs4,43,51.  
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3.1 Early predictors and C-H plot method 

Currently, many IDP prediction algorithms have been developed4,44,51–55. The first 

IDP predictor was developed by R.J.P Williams in 197956. Observing that IDPs having 

abnormally high ratio of number of charged residues divided by the number of 

hydrophobic residues, his algorithm separated two IDPs from a set of ordered proteins. 

The two proteins he studied were from the ribosome and so had a very high net charge. In 

this case, the high number of charged residues provides more repulsion among amino 

acids, and thus makes the protein less likely to fold in the absence of RNA. Furthermore, 

the low number of hydrophobic residues renders less driving force to fold into a 

hydrophobic core. However, this method developed in 1978 does not work well for 

proteins that have a large number of charged groups having a nearly equal balance of 

positive and negative charges. In this case, the large Williams ratio predicts disorder for 

many well folded proteins and thus has a very poor acccuracy9.  

In 2000, without knowledge of the prior work by Williams, Uversky et al used 

normalized net charge, not the total charge, and normalized hydrophobicity calculated 

from Kyte-Doolittle scale4,57 to classify proteins as structured or as natively unfolded. 

Applying this method to a large number of proteins, including 91 IDPs and 275 ordered 

proteins gave excellent results4. In 2004, Sussman et al transformed this method to 

FoldIndex, a per-residue predictor that can be applied to predict disorder on a local region 

of protein58. However, FoldIndex did not re-train the data to obtain a new separating 

function, and the per-residue accuracy of FoldIndex was not evaluated. In fact, 

subsequent study shows that the amino acid composition of local disordered regions from 

partially disordered proteins different significantly from entirely disordered proteins54,55. 
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As we will show herein, a simple adoption of the original linear function trained with 

fully disordered proteins performs poorly on partially disordered proteins.  

 

3.2 IUPred 

Another biophysical feature based predictor is IUPred, developed by Dosztányi et 

al. IUPred partitions disordered/ordered proteins by estimating their folding energies52. 

Without the knowledge of a protein’s 3D structure, IUPred estimates the per-residue 

energy by assuming that the energy contribution of that residue depends on its amino acid 

type and potential partners in that sequence. They tried various pairwise sidechain 

interaction energy matrices to find the one that gave the clearest difference between the 

folding energies of structured and disordered proteins estimated by this method. Since 

disordered proteins and ordered proteins gives different folding energy estimates by this 

method, IUPred can predict IDPs from the approximated per-residue folding energy.  

 

3.3 PONDR predictors 

As discussed above, charge and hydropathy are not the only features having an 

impact on the disorder/order state of a protein. Other features, including aromatic content, 

sequence complexity and many others also determine if a protein/region folds or not4,53–

55,59. In addition, a per-residue predictor that predicts local region disorder is more 

informative to infer the function of a protein.  

PONDRs (predictors of natural disordered regions) are designed as per-residue 

predictors with a combination of amino acid sequence features54,59,60. The second 

generation of PONDR, namely VLXT, was a merged neural network of three sub-

7 
 



predictors61. One predictor was trained on variously characterized, long regions of 

internal disorder (VL), and the other was trained on X-ray characterized, disordered N or 

C termini (XT). This predictor achieved a balanced accuracy above 70%, a value 

significantly better than the 50% expected by chance for two state prediction on balanced 

data61.   

Later, amino acid composition study on short (<30 residues) and long (>30 

residues) disordered regions shows that short and long disordered regions have 

significantly different amino acid biases55. VSL2 (variously characterized short and long 

regions, version 2) was developed to better cope with this difference54. Basically, VSL2 

is a meta-predictor of two sub-predictors, one trained with short and the other trained 

with long disordered regions data. This predictor used evolutionary information obtained 

by generating the position-specific scoring matrix (PSSM) of the query sequence by PSI-

BLAST (Position-Specific Iterated BLAST)62. However, PSI-BLAST is time consuming. 

As a result, VSL2B, a much faster ‘light’ version without employing PSSM, is commonly 

used and achieves an accuracy that is only slightly diminished54. 

In 2010, a consensus predictor, PONDER-FIT, was developed59. PONDR-FIT is a 

neural network meta-predictor based on the outputs of 6 commonly used disorder 

predictors, PONDR-VSL254, PONDR-VL363, FoldIndex58, IUPred52, and TopIDP49. The 

outputs of these 6 predictors are then combined into a single predictor using a neural 

network. Compared to the best of its 6 individual predictors, PONDR-FIT shows an 

overall 11% improvement.  
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3.4 CASP (Critical Assessment of Protein Structure Prediction) 

In 2002 CASP5 included disorder predictions with published evaluations, and 

links to several of these predictors are now available in the DisProt Database 

(http://www.DisProt.org)64–67. Note that CASP targets are results of up-to-date 

experiments and selected so that no prior information about them is revealed to any 

participants. The biannual CASP experiments serves as excellent, unbiased 

benchmarking for various IDP predictors.  

However, the CASP disorder prediction experiment provides very unbalanced 

datasets for which, the number of ordered residues overwhelms disordered residues66,68. 

Also, the disorder predictions accuracies from recent CASP fluctuate, showing no 

significant improvement. These fluctuations are likely due to changes in the difficulties 

presented by the different  targets, rather than fluctuations in predictor accuracies66–68.  

4. IDP abundance in nature 

One application of IDP prediction is to evaluate the abundance of IDP in nature. 

IDP predictors haven been applied to proteomics dataset of various species35,69–71. In 

general, disorder is estimated to be much more prevalent in sequence databases and in 

various proteomes as compared to PDB. Eukaryotes protein sequences contain much 

more disorder (~33% - 50%) than prokaryotes (~15% - ~30%) and archaea (~12% - 

~24%). Such predictions suggest that the human proteome, in particular, contains ~35% - 

50% disordered residues70,71. An important, open question is whether the predicted 

regions of disorder remain disordered inside the cell or become structured upon 

association with partners or ligands. 
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5. IDP functions 

Given such abundance, one cannot help but wonder what are the functions of 

IDPs? Also, why do eukaryotes have much more predicted disorder than common 

bacteria or archaea bacteria?  

 

5.1 PPI (Protein-Protein Interactions) 

One of the signature function of disordered protein is carried out through 

Molecular Recognition Features (MoRFs)72–76. These MoRFs are typically hydrophobic 

patches within a disordered region. Upon binding, the hydrophobic groups become buried 

and the IDP segment typically undergoes a disorder-order transitions. In some cases, 

significant sized parts of the original IDP region remain unstructured yet contribute to the 

binding affinity even while remaining unstructured.  Interactions involving IDP regions 

that contribute to binding affinity have been called ‘fuzzy complexes’77,78. 

Eukaryotic PPI networks are scale-free, a term that means a plot of the log of the 

number of nodes versus the log of the number of partners per node gives a straight line. 

Such a plot means that a few proteins in the network interact with many partners while 

most proteins interact with only a few partners79–81. Such proteins with high number of 

binding partners are referred to as ‘hub proteins’. An often-cited analogous network is 

that provided by the set of airline routes, in which some big cities such as New York or 

Los Angles contain connecting airports for smaller cities.  

It is intriguing to imagine how single proteins can bind to many partners. We 

suggested that the flexibility of IDPs might provide the key feature that enables one 

protein to bind to many partners, and we found that a number of hub proteins indeed used 
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disordered regions to bind to many partners2,21,82,83. Two IDP-based mechanisms were 

observed for the multipartner binding of hub proteins. In the first mechanism, one 

disordered region binds to many partners, or ‘one-to-many binding’. In the second 

mechanism, many disordered regions bind to one partner or ‘many-to-one 

binding’2,21,82,83. 

The one-to-many binding IDP regions of a hub protein are either in very close 

vicinity or at the exact same site83. When the same IDP region binds to multiple partners, 

this IDP region often changes its shape to fit with its different partners. For example, the 

N-terminal and C-terminal IDP regions of p53 each bind to more than 40 different 

partners by this mechanism.  

Alternatively, many different disordered proteins/regions of different amino acid 

sequences can bind to a single ordered partner84. Many such examples are found in PDB, 

in which a single IDP contains two or even three separate MoRF regions binding to the 

same structured partner. 

 

5.2 IDPs in alternative splicing 

Confirmed by both experimental data and computational predicted data, 

alternatively spliced protein isoforms are enriched of disordered residues85–87. During the 

process of many tissue-specific alternative splicing, many MoRF containing IDP region 

could be either kept or spliced out, resulting in tissue-specific protein-protein interactions 

based on differential retention of IDP binding regions or MoRFs. 
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5.3 IDPs in transcription factors 

Eukaryotic transcription factors have a high content of disordered residues88,89. 

The activation domains of transcription factors are often composed of IDPs. Also, 

structured functional domains in transcription factors are frequently flanked by 

disordered residues that regulate their binding to DNA.  

As an example, HOX (homeotic) domain of Drosphila regulatory transcription 

factor Ubx is flanked by evolutionarily conserved disordered regions90,91. Alone without 

the IDP region, HOX domain binds DNA with much higher affinity. In addition, an IDP 

linked YPWM motif can further weakens HOX binding. To enhance its HOX domain 

binding affinity, Ubx interacts with Extradentical (Exd). Upon interaction, the IDP linked 

YPWM motif binds into a pocket of the HOX domain on Exd. Furthermore, the IDP 

linker between HOX domain and the YPWM motif can be alternatively spliced for 

different length. Therefore, we speculate that, by regulating the length of the IDP linker 

and the availability of surrounding Exd’s binding sites, the binding affinity of Ubx’s 

HOX domain can be either promoted or repressed.  

Besides the examples discussed above, IDPs are involved in many more 

biological processes, such as protein-RNA interactions92–96, allosteric regulations97–103, 

chaperone functions104–107, protein evolution108,109, and so on. Through their dynamic 

features, IDPs participate in numerous biological functions through all kinds of 

mechanisms. It is by the dual existence of disorder and ordered state in proteins, proteins 

can perform wide diversity of functions and become the building blocks of life.  
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6. Study goals 

IDPs are abundant in nature, and they play important roles in many biological 

processes. Understanding their functions and identifying them are the two major tasks in 

the study of IDPs. Here, we present two approaches, CH-CDF plot and improved C-H 

plot method to address these two tasks, respectively.  

The CH-CDF plot method is a clustering tool that partitions IDPs into three 

subgroups. This partition method clusters IDPs according to their biophysical characters. 

Indeed, each IDP subgroup is shown to have distinguishable function features related to 

the biophysical features of that group.  

To address the 2nd task, we improved the original C-H plot disorder predictor 

developed by Uversky et al. We optimized the hydropathy scale used to calculate the 

hydropathy in the original method. The prediction power of C-H plot is significantly 

improved by the newly developed scales. In addition, this scale is highly correlated with 

popular hydropathy scales, and thus can be used to calculate hydropathy for better 

understanding of protein functions. 
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II. MATERIALS AND METHODS 

1. Subclassifying disordered protein by the CH-CDF plot method 

1.1 Protein data 

The Mus. musculus proteome were gathered from Uniprot 15.055. A total number 

of 58881 sequences were obtained. Blastclust 

(http://www.ncbi.nlm.nih.gov/Web/Newsltr/Spring04/ blast lab.html) with default 

settings was used to reduce redundancy.  

 

1.2 PDB Coverage 

PDB monomers data is downloaded from PDBe PISA. The gapped-BLAST 

algorithm was used to compare query sequences to PDB monomers, with the default 

scoring matrix (BLOSUM 62). A hit was identified only when the hit region is larger 

than 85% of the PDB monomer sequence, and with more than 30% identity.  

 

1.3 GO term analysis 

We downloaded GO terms associated with each protein from GO Database.  To 

reduce protein redundancy, proteins were clustered into protein families by Blastclust 

program. If sequence is  was assigned to cluster )( isc , and in  is the total number of 

proteins assigned to this family, we define a weight )( isw  for this sequence as
i

i
n

sw 1
)( = .  

Our 509,214 proteins are in association with 10,703 GO annotations. Protein sequence is

grouped into a quadrant kk, =1, 2, 3, 4 as group kg . And for =jGOj, 1, 2, … , 10723 

there is a cluster of proteins related to jGO , as =jCj, 1, 2, … , 10723. Therefore, we 
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calculate kjn , , the number of proteins related to jGO in quadrant k  by 

jkiikj Cgsswn ∩∈∑= ,)(, . 

In the next step, we compare 1,jn , 2,, jn , 3,, jn and 4,jn for every specific GO term jGO to 

examine if jGO  has any bias towards a certain quadrant. The expected value of protein 

frequency in quadrant k is calculated as ∑
=

⋅=
4

1
,,

k
kjkkj npE , with kp being the proportion of 

numbers of proteins in quadrant k . Then we compute 2
jX , sum of expectancy, 

as                                          . 2
jX follows a chi-square distribution with 3 degrees of 

freedom, 2
jX ~ )3(2χ .  

Under the null hypothesis that jGO distributed in 4 quadrants according to 

expectancy, we can derive jp as a p-value for jGO . Since multiple statistical tests are 

applied, we use Bonferroni correction to adjust obtained p-value. This correction reduces 

the scale of significant results as well. A threshold of 0.05 is chosen, and GO terms with 

p-values less than 0.05 are collected.  

 

2. Optimizing IDP-Hydropathy Scale for Disorder Prediction 

2.1 Dataset 

Two sets of proteins were used in this study59,60: experimentally verified entirely 

disordered proteins and experimentally verified completely structured or ordered proteins. 

Entirely disordered proteins were taken from Disprot 6.064,42. These proteins were filtered 

such that only those proteins with their entire sequences being disordered were retained. 

Our fully disordered protein dataset contains 109 disordered sequences with 22,614 

amino acid residues. The set of fully structured (ordered) proteins consisting only of 

kjkj
k

kjj EEOX ,
2

,

4

1
,

2 /)( −=∑
=
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single-chain and non-membrane proteins was assembled from the Protein Data Bank 

(PDB)14 (http://www.rcsb.org/pdb/). Only structures determined by X-ray crystallography 

and characterized by unit cells with primitive space groups were kept in our dataset. 

Structures with ligands, disulfide bonds, or missing residues were also removed. Then a 

BLASTCLUST62 analysis was performed to cluster proteins into subsets, with all 

members of each subset having at least 25% sequence identity with another subset 

member and having less than 25% sequence identity with any member of any other 

subset. The longest sequence in each cluster was selected to construct the fully ordered 

protein set. This set of experimentally determined structured proteins contains 563 fully 

structured protein sequences with 113,895 amino acid residues. 

 

2.2 Benchmarking scales 

We obtained 19 hydropathy scales57,110–127 from ExPASy-ProtScale to compare 

with the hydropathy scale of Kyte & Doolittle (1982)57. A more thorough benchmarking 

against various amino acid indices was carried out later with 535 amino acid scales. 

Among these, 531 amino acid scales were obtained from the Amino Acid index database 

(AAindex: www.genome.jp/aaindex)128–130. Another 4 disorder propensity scales were 

also examined, including TOP-IDP49, FoldUnfold131, B-value132, and DisProt49,64,42,133. 

 

2.3 Dealing with unbalanced data 

2.3.1 Assessment metrics 

Our dataset of disordered/structured proteins is highly imbalanced with 16.2% 

disordered and 83.8% structured based on numbers of chains or 17% disordered and 83% 
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structured based on numbers of amino acid residues. Accuracy, defined as the proportion 

of correctly classified samples in the population (Eq. 1), is not a good measurement when 

the number of one class dominates134. In fact, simply predicting every case as structured 

would yield an apparent accuracy close to 0.84.  A better approach is to average the 

correct prediction of order and the correct prediction of disorder, called the balanced 

accuracy and calculated as follows:  first, estimate the value for the correct prediction of 

disorder, called sensitivity (Eq. 2), and the value for the correct prediction of structure, 

called specificity (Eq. 3),  then average the values for sensitivity and specificity134 (Eq. 4):  

 

𝐴𝑐𝑐 = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

  (Equation 1), 

 

where Acc = accuracy, TP = true positive predictions, TN = true negative predictions, FP 

= false positive predictions, and FN = false negative predictions, 

 

𝑆𝑒𝑒𝑌𝑌𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑅𝑒𝑒𝑐𝑎𝑙𝑙) = 𝑇𝑃
𝑇𝑃+𝐹𝑁

  (Equation 2), 

 

𝑆𝐶𝐶𝑒𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁
𝑇𝑁+𝐹𝑃

  (Equation 3), 

 

𝐵𝑎𝑙𝑎𝑌𝑌𝑐𝑒𝑒𝑑 𝐴𝑐𝑐 = 𝑆𝑒𝑛𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑆𝑝𝑒𝑐𝑓𝑖𝑐𝑖𝑡𝑦
2

 (Equation 4). 

 

The usefulness of the balanced accuracy metric is undermined by the high fraction 

of structured residues in the training set. That is, predicting more disordered residues 
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rewards sensitivity much more than the penalty in specificity, so this imbalance 

encourages overpredicting disorder66,68,134. To further help with the analysis of prediction 

on imbalanced data, the positive predictive value (PPV) metric was introduced135–137. 

PPV, also called “precision”, is calculated as the fraction of correctly predicted disorder 

versus all the predicted disorder (Eq. 5):  

 

𝑃𝑃𝑉 (𝑃𝑒𝑒𝑒𝑒𝑐𝑖𝑠𝑖𝐶𝐶𝑌𝑌) = 𝑇𝑃
𝑇𝑃+𝐹𝑃

   (Equation 5). 

 

Overpredicting disorder will result in low PPV, whereas a high PPV value 

indicates that a high proportion of the predicted disorder is indeed actual disorder. 

Combing PPV with sensitivity (also known as recall) as indicated (Eq.6) yields the F-

score, which is an effective representation of the predictive power in imbalanced 

dataset138:  

 

𝐹 = 2 ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛∙𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛+𝑟𝑒𝑐𝑎𝑙𝑙

   (Equation 6). 

 

The F-score values range from 0 to 1, and because of the product of precision and 

sensitivity in the numerator, a high F-score usually means a high score for both PPV and 

sensitivity, or recall. 

The Matthews correlation coefficient (MCC) is another very commonly used and 

effective metric for imbalanced datasets66,139 (Eq. 7):  

 

𝑀𝐶𝐶𝐶𝐶 = 𝑇𝑃∙𝑇𝑁−𝐹𝑃∙𝐹𝑁
�(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)

  (Equation 7). 
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The MCC has been observed to be highly correlated with the F-score for disorder 

prediction in Critical Assessment of protein Structure Prediction 9 (CASP9)66.  

In contrast to PPV, a negative predictive value (NPV) measures the correctly 

predicted structured proteins over all of the predicted structured proteins135 (Eq. 8): 

 

𝑁𝑃𝑉 = 𝑇𝑁
𝑇𝑁+𝐹𝑁

  (Equation 8). 

 

A Receiver Operating Characteristic (ROC) curve is a plot of sensitivity versus 

specificity140. The area under the curve (AUC) is another often used metric for judging 

predictive power of an algorithm.  

Given all of the above, we estimated F-score, MCC, sensitivity, specificity, AUC, 

PPV, and NPV as the metrics to assess the quality of the predictions that were made on 

the unbalanced dataset used herein. Sensitivity, specificity and AUC are informative 

about the correctly predicted disorder and structure of one class. PPV and NPV reveal 

whether the algorithm is overpredicting disorder or structure. In the end, the F-score and 

MCC give an overall estimate of the quality of the predictions. 

 

2.3.2 Training method 

In the current dataset, disordered proteins are outnumbered and under-represented. 

To develop a good predictor in the scenario of unbalanced dataset, we tried several 

popular methods134. Both under-sampling structured proteins, and oversampling 

disordered proteins141–143 were implemented separately to achieve a balanced 
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disorder/order dataset. Synthesizing new data for the disordered class were also carried 

out to obtain more disordered samples144,145. We found that in this study, all of these 

methods gave similar results. The  approach of adding weights to the SVM cost 

function134,146,147 so that a greater penalty occurs when a disordered protein is 

misclassified, achieves results similar to the sampling methods above while being much 

simpler to implement compared to under- or oversampling. Therefore, for simplicity, here 

we only used the approach of using a weighted cost function.  

 

2.4 Correlation study 

The absolute value of Pearson product-moment correlation coefficient148, r, was 

calculated between IDP-Hydropathy scale and each of the 513 scales from AAIndex. For 

each scale from AAIndex, the correlation of it with IDP-Hydropathy scale is calculated 

as in Equation 9, where 𝐼𝐷𝑃𝑖 is the score for ith amino acid in IDP-Hydropathy scale, 

𝑆𝑐𝑎𝑙𝑒𝑒𝑖 is the score for ith amino acid in that AAIndex. 𝐼𝐷𝑃 and 𝑆𝑐𝑎𝑙𝑒𝑒 stands for the 

mean value of the two scales: 

 

𝑒𝑒 = ∑ (𝐼𝐷𝑃𝑖−𝐼𝐷𝑃)(𝑆𝑐𝑎𝑙𝑒𝑖−𝑆𝑐𝑎𝑙𝑒)20
𝑖=1

�∑ (𝐼𝐷𝑃𝑖−𝐼𝐷𝑃)220
𝑖=1 ∙�∑ (𝑆𝑐𝑎𝑙𝑒𝑖−𝑆𝑐𝑎𝑙𝑒)220

𝑖=1

 (Equation 9). 

 

2.5 Benchmarking 

The IDP-Hydropathy scale was derived from windows of proteins. Since entire 

protein sequences are applied to the original C-H plot by Uversky et al, for consistency, 

the benchmarking of IDP-Hydropathy scale and other 554 scales was carried out over the 

entire protein sequences. The normalized composition and net charge were calculated as 
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before. Then we obtained the ‘hydropathy score’ for each protein by multiplying the 

composition matrix and the column vector of the scale. Therefore, 2 attributes are 

calculated for each amino acid sequences, the ‘hydropathy score’ and the net charge. A 

linear SVM classifier was then applied to predict disorder/structure proteins. 

 

2.6 Charge-Hydropathy plots 

C-H plots were generated using our dataset with the following scales:  IDP-

Hydropathy, the Guy scale110, and the Kyte-Doolitte (1982) scale57. The normalized net 

charge was calculated as previously: the absolute value of [(Arginine + Lysine) – 

(Glutamate + Aspartate)]/Protein Length. Then the normalized hydropathy was calculated 

using the indicated scales. Note that to be consistent with the original C-H plot4, the 

various hydropathy scales were renormalized so as to cover the range between 0 and +1 

rather than –1 to +1 as we use elsewhere herein. The linear SVM method implemented by 

LIBLINEAR library81 was then applied to calculate the boundary in MATLAB 

(MATLAB 2012a. Natick, Massachusetts: The MathWorks Inc., 2012).  

 

2.7 Heat map 

To provide a visual comparison of variations in the different scales, a heat map 

was used.  The heat map of IDP-Hydropathy and 9 other benchmark scales are drawn by 

MATLAB HeatMap function (MATLAB 2012a). The scales visualized within the heat 

map are all normalized to be within –1 and +1. Some of the scales are negatively 

correlated, so we multiplied them by –1. 
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3. Per-residue Charge-Hydropathy Disorder Prediction 

3.1 Dataset 

The data used to train the predictor is downloaded from Protein Data Bank (PDB) 

and Disprot. PDB data are filtered to discard structures determined by methods other than 

X-ray structure. PDB data with resolutions lower than 2.5, or structure sequence less than 

40 amino acid residues are also discarded. Then, the PDB data and Disprot data are 

integrated and clustered by BLASTCLUST with 30% identity. The residues in PDB 

dataset with missing coordinates and residues in Disprot annotated as disordered are 

considered as disordered amino acid residues. All others are considered as ordered 

residues. Note that all sequences are extracted as they are in each database. Expression 

tags such as His-tags and initiating methionine(s) are included. 

To pick the sequence from each cluster family, we used the following prioritized 

criteria as Zhang et al 2012: 1) the sequence with the largest number of disordered 

residues; 2) sequence with the fewest number of disordered regions (to obtain more 

contiguous regions of disorder); and 3) protein sequence with the largest length. In the 

end, we obtained 1619 protein sequences.  

As shown in Peng et al 2006, the amino acid composition of long disordered 

regions (>30 consecutive disordered amino acids) is significantly different from the 

composition of short disordered regions (<=30). Therefore, our dataset is filtered for long 

regions. 

A blind dataset was then constructed for benchmarking with other predictors. It 

includes sequences in PDB from 01/01/2012 till now, and a random 100 proteins from 
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Disprot. The training dataset excludes these sequences. However, the final predictor is 

constructed with all protein sequences to have better coverage of known examples.  

 

3.2 Disorder distribution along the sequence 

Number of disordered residues is calculated at the N/C terminus and internal 

regions. Sequences with the internal region shorter than its N/C terminus are discarded. 

The number of disordered residues at different regions is then normalized by the length of 

each region. ANOVA analysis is performed by the Matlab ANOVA function. 

 

3.3 Correlation of amino acid composition at different regions 

The disordered residue composition at each N/C terminus and internal regions are 

calculated. Then we used the Matlab function to calculate correlation coefficient. The 

plot for the differences in composition of these three regions is also generated from 

Matlab. The internal region composition was used as the baseline to subtract from the 

composition at N/C terminus. 

 

3.4 Training via linear SVM 

The N, C and internal regions are optimized individually with the similar 

procedures. We used LIBLINEAR to optimize the hydropathy scale to calculate local 

hydropathy for best disorder prediction along with local charge. Specifically, we used a 

window of 21 amino acid residues within the target amino acid to calculate the amino 

acid composition of that local region. 21 residues were chosen because it is long enough 

to contain a typical protein domain. For target amino acid on the N and C terminus, we 
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used a spacer character to if the window extends outside the sequence. Then they are 

applied to linear SVM with 10 fold cross-validation to obtain three coefficient vectors 

that maximizes the prediction power for N, C and internal regions. The 20 coefficients in 

the vector corresponding to 20 amino acid compositions are thus normalized to serve as 

the optimized hydropathy scale. The coefficients for the charge, slope and spacer 

character for N/C terminus are normalized accordingly to comprise the final predictor of 

hydropathy and charge.  
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III. RESULTS 

1. Subclassifying disordered protein by the CH-CDF plot method 

Unlike structured proteins folding into compact structures, intrinsically disordered 

proteins (IDPs) exist as flexible ensembles under normal physiological condition1. As 

indicated by bioinformatics studies, IDPs are very common in nature. They comprise 

approximately 25% to 30% of eukaryotic proteomes149. Over 50% of eukaryotic proteins 

and 70% of signaling proteins have long disordered regions150. A wide range of 

biological activities are associated with IDPs, such as providing sites for post-

translational modifications, providing sites for binding to partners via short linear motifs, 

acting as scaffolds by binding to multiple partners , etc151–153. 

Studies of ordered proteins indicate that homologues have a conserved 3D 

structure154–156. Thus, structure similarity is used as important criterion while examining a 

protein cluster. Most proteins with similar structure have a common evolutionary origin, 

and as a consequence their functions are typically closely related154–156. Databases such as 

SCOP154 and CATH155 have been constructed using this line of reasoning. These 

databases serve as a great resource for understanding the nature of the various 

relationships between protein structure and function, and they are widely used in various 

molecular and biological areas of science154,155. 

Since IDPs lack 3D structure, structure can’t be used to partition IDPs into 

subtypes. We previously tried an approach based on disorder prediction to cluster IDP 

regions into different subtypes, which we called flavors, and some functions showed a 

weak partitioning among the different flavors157.  Here our goal is to re-explore the 

overall idea of partitioning disordered proteins into subtypes, but using a different 
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predictive approach than the one we used previously. The previous approach used 

residue-by-residue order / disorder predictions over IDP regions of proteins157, but a 

weakness of that approach was that the disordered regions varied markedly in length, 

which greatly complicated the interpretation.   

Here we will test an approach in which the order / disorder predictions are binary 

for the whole protein, indicating that a given protein is more ordered or more disordered 

overall. The two binary prediction tools are the charge-hydropathy (CH) plot4,149 and the 

cumulative distribution function (CDF)60. Applying both methods to a protein could have 

four possible outcomes: both methods predict order, both methods predict disorder, the 

CH predicts disorder while the CDF predicts order, and vice versa.  When both methods 

predict order, the protein is likely to be predominantly structured and to be found in the 

Protein Data Bank (PDB)158.  When both methods predict disorder, the proteins are likely 

to be IDPs with high net charge and very little structure, and thus are likely to be more 

extended. If CDF predicts disorder and CH predicts order or vice versa, then these two 

sets of proteins have both order and disorder tendencies, but with differing characteristics 

for each tendency.  Thus, overall, the CH-CDF plot separates proteins into 4 groups with 

differing order and disorder tendencies.   

The CH-CDF plot was previously used to compare the structure-disorder 

tendencies of the proteomes for several species within the phylum Apicomplexa, which 

include Plasmodia, Trypanosomes, and Giardia159.  The CH-CDF plot has also been used 

to classify the transcription factors associated with the induction of pluripotent stem 

cells160.  In both cases, the distributions of the various proteins among the four outcomes 

provide overviews of similarities and differences between the different sets of 
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proteins159,160.  According to these prior studies, the CH-CDF plot appears to be useful for 

identifying overall structure / disorder trends for collections of proteins. Here we apply 

the CH-CDF plot to the mouse proteome and then investigate whether the four outcomes 

are associated with differences in structure and differences in function for these proteins.   

 

1.1 CH-CDF plot  

First, let’s illustrate the overall development of the CH-CDF plot.  Figure 1A 

shows the placement of a disordered protein (red) and an ordered protein (blue) onto a 

CH plot, where the indicated line of separation was developed from a large number of 

training set proteins4,149. Note that disordered proteins have a higher net charge and lower 

hydropathy compared to ordered proteins. We use the vertical distances to the separation 

line as the Y-coordinate of the CH-CDF plot, so when Y is positive, the protein is 

indicated to be disordered.  Figure 1B shows the PONDR VSL2161 plots for the same pair 

of disordered (red) and ordered (blue) proteins. In Figure 1C, the data in 1B are plotted to 

give the CDF, where the X-axis is the prediction score and the Y axis is the total fraction 

of sequence loci having that score or lower. Note the different shapes for the CDFs for 

the ordered (blue) and disordered (red) proteins.  An ordered protein’s CDF curve 

occupies the upper part of the graph, while an IDP’s CDF curve resides in the lower part 

of the graph. The optimal separation line, represented as a collection of 7 discrete points, 

was previously estimated for a large number of structured and disordered proteins60.  The 

X-axis for the CH-CDF plot is calculated as the average of the vertical distances from the 

CDF curve to the seven boundary points.  Thus, the ordered proteins are given positive 
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values and disordered proteins are given negative values with respect to the X-axis in the 

CH-CDF plot.   

The entire mouse (Mus.musculus) proteome is put onto the CH-CDF plot in 

Figure 1D.  Included in this plot are the descriptions of the prediction characteristics for 

the proteins in each quadrant.   
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Figure 1 

 

 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
               The CH-CDF Plot. A. An example of a CH graph, with a boundary line 
(y=2.743x-1.109) and a hypothetical IDP and hypothetical structured protein. B. VSL2 
prediction curve for an IDP (red) and a structured protein (blue). C. CDF curve of the two 
proteins in B. Vertical lines are the distance of to calculate CDF score. D. The entire 
mouse proteome is put onto a CH-CDF plot.  
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One rationale behind using CH-CDF plot to subclassify disordered proteins is that 

CDF examines many more protein attributes than a CH plot, which only uses charge and 

hydropathy for prediction. Consequently, the CDF curve is more sensitive to disorder 

than the CH plot9. Proteins predicted to be ordered by the CH plot but disordered by CDF 

(as in Q3) are low in net charge and are hydrophobic, but with other features resembling 

an unstructured protein. Therefore, we propose that such proteins could have both 

disordered and ordered regions, and we refer them as mixed proteins. Meanwhile, 

proteins predicted to be unstructured by both methods are referred as disordered (Q4) and 

proteins predicted to be ordered by both predictors are likely to be structured proteins 

(Q2). As for proteins in Q1, their number is very small compared to other three quadrants. 

CH plot predicts them to be disordered, so they are typically highly charged, or 

hydrophilic, or both, all of which are strong indications for disorder. Since CDF method 

also weighs heavily on the hydropathy and charge features, the number of proteins 

predicted disordered by CH plot but ordered by CDF is very small. So here, we refer 

them as rare proteins.  

 

1.2 PDB coverage  

PDB contains protein structures, and thus PDB is biased more towards ordered 

proteins than disordered. Figure 2 shows PDB coverage percentages of various proteins 

verses their length for each quadrant.  By coverage percentage, we mean the percent of a 

given sequence that forms structure and is observed in PDB.  As expected, more of the 

proteins in Q2 have higher coverage.   
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Figure 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
                                          
 
 
 
 
 
 
 
 
 
 
                PDB coverage percentages of proteins classified into 4 quadrants. The PDB 
coverage is the combined coverage of all covered domains. 
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To quantitate the coverage data of Figure 2, histogram summaries for each 

quadrant were constructed (Figure 3).  When proteins are indicated to be disordered by 

the CDF (Q3 and Q4), the coverage summaries are similar and mostly show a small 

fraction of coverage.  When proteins are indicated to be structured by CDF (Q1 and Q2), 

the coverage summaries are similarly biased towards structure.  There are other factors to 

consider as shown below.   
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Figure 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

                PDB coverage percentage histogram for all four quadrants 
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Another important consideration is whether a protein has any structure at all in 

PDB. The structure quadrant (Q2) has the highest fraction of proteins identified with at 

least one PDB hit, while the disorder quadrant (Q4) has the lowest fraction (Figure 4). 

Note that the mixed quadrant (Q3) actually is the second highest. Its fraction is close to 

the structure quadrant (Q2), and much higher than the disorder quadrant (Q4). These data 

suggest that mixed proteins have more structured regions than disordered proteins. Recall 

Figure 2 and Figure 3, which have shown that the coverage percentages for proteins in 

Q3 are very low, around 20-30% only. Taken together, these mixed proteins are more 

likely to have structured local regions compared to the disorder quadrant (Q4), so that 

they have a higher fraction of PDB hits. 
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Figure 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          
          Fraction of protein identified with at least one PDB hit 
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1.3 Sequence window CH-CDF analysis 

Our previous studies suggest that mixed proteins (in Q3) are likely to have both 

disordered regions and ordered regions. To learn more information about these proteins, 

we decided to dissect each protein sequence into a series of windows for our CH-CDF 

analysis. This is a more accurate presentation of the disorder status of a protein, as it 

contains segmental disorder scores. Table 1 summarizes our analysis result. Proteins from 

each quadrant are chopped into windows of 30 residues. Windows are analyzed by the 

CH-CDF method, and the fractions of windows falling into a quadrant are recorded. 

Proteins from the structure quadrant (Q2) have most of the windows in Q2, and the 

extended disorder quadrant (Q4) protein windows mostly localized in Q4. Interestingly, 

windows from mixed proteins (Q3) distribute with the most in (Q4) and slightly less in 

(Q2) and (Q3), suggesting that mixed proteins very likely contain a balance of ordered 

and disordered regions.  Proteins from (Q1) distribute equally in (Q1) and (Q2) with 

slightly less in (Q4), again suggesting the presence of disordered regions.   
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Table 1 Sequence window CH-CDF analysis results 

 Window quadrant localization 
 Q1 Q2 Q3 Q4 
Q1 sequence windows 35%  35%  4%  26%  
Q2 sequence windows 13%  68%  7%  11%  
Q3 sequence windows 7%  28%  28%  37%  
Q4 sequence windows 7%  13%  16%  64%  
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1.4 Match PDB coverage to disorder prediction 

Since our previous studies show that mixed proteins (in Q3) are predicted to have 

both disordered and ordered regions, here we attempt to verify that these predicted 

ordered regions are correlated with experimentally determined structures. We calculated 

the disorder content of the PDB covered and uncovered regions, respectively. Figure 5 is 

the disorder content on all 4 quadrants. The X-axis is the disorder content of the PDB 

covered regions, and the Y-axis is the disorder content on the non-covered region. 

Disorder higher than 50% means that this region is largely predicted as disordered, while 

less than 50% means predicted to be structured.  
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Figure 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
          Percentage of disorder in PDB covered and uncovered regions 
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In all 4 plots, the majority of the points clustered above the 45 degree diagonal 

line. We interpret this as that the regions not covered by PDB have more disorder than 

the covered regions.  

The plot for the structure quadrant (Q2) has proteins clustered mainly to the left, 

both in the upper-left and lower-left corners. Those in the upper-left area could be 

disordered tails in these structured proteins. Those in the lower left correspond to 

structured regions that have not yet been crystalized. These segments are expected to be 

very common because many mouse proteins have multiple structured domains, and given 

the low percentage of PDB hits (Figure 4), it is likely that many of the structured domains 

of a given protein fail to make it into PDB.   

In contrast to the observations for (Q2), the mixed proteins (Q3) and disordered 

proteins (Q4) are clustered in the upper-left corner in this plot, meaning that the regions 

not covered by PDB have residues with more than 50% predicted to be unstructured, and 

those regions covered by PDB are predicted to be ordered. This indicates that disorder 

prediction and PDB coverage are in good agreement. Since we also showed above that 

mixed proteins are predicted to have both disordered and ordered regions (Table 1), it is 

likely that the predictions represent the true status of the protein as partially disordered 

and partially ordered. If this is true, it explains the mixed proteins’ somewhat high 

fraction of PDB hits but low coverage percentages. The ordered regions are aligned to 

PDB sequences, but they are only a small fraction of the protein. 
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1.5 Function analysis for each quadrant 

Previously we used a complicated prediction scheme to subdivide disordered 

protein regions into subtypes that we called flavors, and these different disordered flavors 

showed weak correlations with particular functions157.  Given that the proteins in the four 

quadrants of the CH-CDF plots have different characteristics, it seemed reasonable to test 

whether these different subtypes exhibit functional separation. Therefore, we analyzed 

the proteins in each quadrant for their associations with various Gene Ontology (GO) 

terms. 

 

Table 2 lists those Biological Processes GO terms found to be distinctive for each 

quadrant.  For Q1, four of the five distinctive GO terms deal with RNA.  By the CH 

analysis, these proteins are highly charged, and this feature may be associated with RNA 

association. For the Q2 structured proteins (Table 2B), most of their GO terms are related 

to metabolic processes and transporters. These functions are typical for structured 

proteins. For proteins in Q3, most of these GO terms are related to regulation or 

developmental pathways, including the Notch and Wnt pathways. As shown above, 

proteins in Q3 are likely to have both disordered and structured domains. Evidently these 

functions require both structured and disordered regions in the same proteins.  Proteins in 

disorder quadrant (Q4 and table 1D) are mostly mitosis related. 
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Table 2 GO term analysis for four quadrants. Number of protein examples found for each 
GO term is listed on the right side.   
 

Table 2A 

 
Q1 Biological Process  

tRNA methylation    
tRNA wobble uridine modification    
Translational termination    
Positive regulation of nitric oxide biosynthetic process    
rRNA export from nucleus    

Table 2B 
Q2 Biological Process  

Homophilic cell adhesion    
Glutamine metabolic process    
Phosphorylation    
Sterol biosynthetic process    
Peptide transport    
Isoprenoid biosynthetic process    
Calcium ion transport    
Nucleotide metabolic process    
Proteolysis involved in cellular protein catabolic process    

Table 2C 
Q3 Biological Process  

Regulation of transcription    
Notch signaling pathway    
Response to heat    
Osteoblast differentiation    
Negative regulation of cell differentiation    
Regulation of cell proliferation    
Pituitary gland development    
Positive regulation of neuron differentiation    
Endoderm development    
Organ morphogenesis    
Negative regulation of signal transduction    
Pancreas development    
Defense response to bacterium    
Endocytosis    
Somitogenesis    
Actin filament organization    
Wnt receptor signaling pathway    
Intracellular signaling cascade    
Epithelial cell differentiation    
Transforming growth factor beta receptor signaling pathway    

Table 2D 
Q4 Biological Process  

G1/S transition of mitotic cell cycle    
chromosome organization    
establishment of cell polarity    
response to salt stress    
mRNA export from nucleus    
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1.6 Discussion 

Since ordered proteins have different types of substructures, it is reasonable to 

expect that IDPs may also have subtypes and that the different subtypes may have 

different functions.  One previous study indicated that such disordered subtypes may 

exist157. However, the effort to subclassify IDPs such that each class has its own 

functional features still remains a difficult task. 

Instead of relying on the training of existing data to build specific classifiers by 

common methods such as machine learning, we took an alternative approach. Different 

subtypes of IDPs should exhibit different biophysical features. Such features can be 

readily captured by applying two different prediction tools, CH and CDF, which use 

different biophysical characteristics for their calculations.  We therefore developed a CH-

CDF plot for IDP partition.  

 

1.7 Structural Partitioning by the CH-CDF plot  

Proteins partitioned by the CH-CDF plot show a very different PDB coverage rate. 

The structure quadrant (Q2) has many more proteins identified with at least one PDB 

protein than the disorder quadrant (Q4). The mixed quadrant (Q3) has a fraction of 

proteins with PDB hits almost comparable to those in the structure quadrant (Q2). 

However, their coverage rate percentages are typically among 20%-30% range, while the 

ordered quadrant (Q2) are as high as 90%-100%. This suggests that mixed proteins (in 

Q3) have more ordered regions than those in the disorder quadrant (Q4).  
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Even though predicted to be structured, the proteins in the structure quadrant (Q2) 

have a significant fraction of examples with only 20% coverage (Figure 3, Q2).  As 

indicated by the data in Table 1 and Figure 5, this result likely occurs because many 

mouse proteins have multiple structured domains. Thus, the entire protein is, overall, 

predicted to be structured by both the CH and CDF predictors, but if only one of the 

domains makes it into PDB, then such a protein could have a low coverage.   

Some proteins in the mixed quadrant (Q3) and those in the disorder quadrant (Q4) 

have coverage percentage almost as high as 100%. After examining them individually, 

some of them are found to bind to ions, DNAs, RNAs, small molecules, etc. Such binding 

could potentially stabilize them, and lead to the formation of a crystal structure. However, 

there are indeed cases where they are monomers by themselves. We suspect that these 

proteins are close to the boundary of disorder and order, which we are in the process of 

testing. 

One of our early hypotheses was that proteins with relatively low net charge and 

high hydropathy, e.g. predicted to be structured by CH, and yet predicted to be disordered 

by CDF, e.g. located in (Q3), might undergo hydrophobic collapse yet remain without 

stable structure.  Such proteins would likely be native molten globules.  An alternative 

hypothesis is that proteins in (Q3) simply contain mixtures of structured regions and 

disordered regions.  

Our following experiments attempted to test the second hypothesis that (Q3) 

contains mostly proteins with both structured and disordered regions. We first showed 

that proteins in (Q3) have many more locally ordered sequence windows, indeed far more 

than the disordered quadrant (Q4), but less than the structure quadrant (Q2) (Table 1). We 
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then showed that the amino acid sequences in protein are predicted as mostly ordered if a 

PDB hit is identified for this region (Figure 5). When the sequence region is not matched 

with a PDB hit, it is most likely predicted to be disordered. So it seems that the quadrant 

(Q3) is likely to contain proteins containing relatively balanced contributions from 

structured and disordered regions. For this reason here we have named the proteins in this 

quadrant mixed rather than collapsed disorder, which may have appeared in previous 

publications159,160.  These observations don’t rule out the possibility that some of the 

proteins in (Q3) or even in (Q4) might be native molten globules.  Further analysis and 

experiments are needed to identify such proteins and determine where they fall on the 

CH-CDF Plot.  

 

1.8 The rare protein quadrant (Q1) 

Proteins in this quadrant are predicted to be unstructured by CH plot, but ordered 

by CDF. The disordered prediction from CH plot implies that a protein has high charge 

and is hydrophilic.  Thus, is should be rare for such a protein to be predicted to be 

structured by the CDF predictor; however, this is just what happens despite the high 

charge and hydrophilicity. So it is no wonder that the proteins in this quadrant are rare.  

The density plot of PDB coverage percentage distribution for the proteins in (Q1) 

showed a similar pattern when compared to the structure quadrant (Q2) (Figure 3). The 

proteins in (Q1) also have many more proteins identified with a PDB hit than those in the 

disorder quadrant (Q4) (Figure 4). Therefore, one possibility is that these proteins are 

overall structured, with some high charged or hydrophilic residues, which is just the 

opposite of proteins in collapsed quadrant (Q3). The GO term analysis showed that 4 out 

45 
 



of 5 of the significant GO terms are related to nucleotide processing.  Further analysis 

shows that many of the proteins in all four quadrants including (Q1) have net positive 

charges rather than net negative ones.  We are in the process of determining whether the 

positively charged proteins in (Q1) are associated with RNA binding. One approach will 

be testing if this is the preferred quadrant for ribosomal proteins. 

 

1.9 Disorder subtypes and IDP functions 

We tested whether the protein compartmentalization by subtypes resulted in 

function partition as well. For this test, we did an analysis of GO terms to determine if 

some terms are biased relative to others in the various quadrants (see Methods for details).  

Structured proteins exhibited significant biases towards enzymatic processes and 

transporters. Both of these processes are well known to be associated with structured 

proteins151–153.  

Meanwhile, the disorder quadrant (Q4) is mainly biased towards GO terms with 

mitosis-related functions, which again agrees with previous observations151–153. On the 

other hand, the mixed quadrant (Q3) is highly involved in regulation pathways, which are 

important in development and differentiation. The recent publication on pluripotent stem 

cell-inducing proteins, which must be heavily involved in gene regulation, showed that 

these proteins are mostly localized in the mixed quadrant (Q3)160. The flexibility 

provided by disordered regions could be important in such signaling events. The 

disordered regions could act as linkers connecting function domains. These regions could 

also directly bind to partners, functioning as Molecular Recognition Features (MoRFs). 

Such binding is usually accompanied by a disorder -> order transition. Because of their 
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flexibility, they might be able to bind to multiple partners, acting as hub proteins74,75,81 in 

the signaling network. Their flexibility is also capable of fast but short time-span binding, 

which also may be crucial in signaling events.  

 

1.10 Summary 

Intrinsically disordered proteins (IDPs) are associated with a wide range of 

functions. We suggest that sequence-based subtypes, which we call flavors, may provide 

the basis for different biological functions. The problem is to find a method that separates 

IDPs into different flavor / function groups.  Here we discuss one approach, the (charge-

hydropathy) versus (cumulative distribution function) plot or CH-CDF plot, which is 

based the combined use of the CH and CDF disorder predictors. These two predictors are 

based on significantly different inputs and methods. This CH-CDF plot subclassifies all 

proteins into 4 groups: structured, mixed, disordered, and rare.  Studies of the Protein 

Data Bank (PDB) entries and homologues show different structural biases for each group 

classified by the CH-CDF plot. The mixed class has more order-promoting residues and 

more ordered regions than the disordered class. To test whether this partition 

accomplishes any functional separation, we performed gene ontology (GO) term analysis 

on each class. Some functions are indeed found to be related to subtypes of disorder: the 

disordered class is highly active in mitosis-related processes among others. Meanwhile, 

the mixed class is highly associated with signaling pathways, where having both ordered 

and disordered regions could possibly be important. 
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2. IDP hydropathy: A New Scale That Optimizes Disorder Prediction 

2.1 Background and motivations 

Intrinsically disordered proteins (IDPs) exist as flexible ensembles under normal 

physiological conditions, thus lacking stable tertiary structures, and yet carrying out 

various biological functions2–5. These IDPs challenge the universality of the sequence  

structure  function paradigm, with biological functions associated instead with flexible 

ensembles rather than with structured ensembles. IDPs are involved in numerous 

biological activities, such as providing sites for post-translational modifications, entropic 

spring-based restoring forces, flexible linkers, specific binding to multiple partners, 

multiple binding to a specific partner, and many others1,150–153,161–166. Of course 

“structured” proteins are not lacking in motion. They too are conformational ensembles, 

but these ensembles involve atom fluctuation centered on equilibrium positions. Indeed, 

the distinction between structured ensembles and IDP ensembles is that the atom of the 

former has specific equilibrium positions, whereas the later do not.  

Given their importance and abundance in nature, many computational tools have 

been developed for predicting IDPs and IDP regions from amino acid sequence, 

including several 1PONDR®s51,54,59,61, IUPred46,52, DisoPred163,167, SPINE-D53, 

FoldIndex58 and more than 50 others66,68. For the various sequence-based approaches 

using machine learning methodologies, hydrophobicity is widely if not universally used 

as one of the inputs 46,51–53,58,66,167–170.  

  

* PONDR stands for Predictor of Natural Disordered Regions, and  PONDR® is a registered trademark of 
Molecular Kinetics, Inc. 
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2.1.1 Protein folding, the hydrophobic effect, and disorder prediction 

The hydrophobic effect makes large contribution to the folding of globular 

proteins171,172.  In particular, water molecules form a dynamic 3D network by donating 

and accepting almost two hydrogen bonds on average from each molecule. The 

introduction of a nonpolar molecular that is incapable of forming hydrogen bonds with 

water disrupts such network. Water molecules lose reorientation and translational motion, 

and this process is unfavorable in terms of free energy due mainly to the loss of motional 

entropy173.  As a result, hydrophobic residues are more likely to cluster on the inside of 

the protein to avoid contact with water molecules, whereas hydrophilic and charged 

residues are more likely to be exposed to surrounding solution.  

Based on this theory, Uversky et al developed the Charge-Hydropathy (C-H) 

model to predict protein disorder4. In this approach, normalized net charge is plotted 

against normalized hydropathy, calculated from the hydropathy scale given in Kyte & 

Doolittle (1982)57, giving the charge-hydropathy (C-H) plot.  Remarkably, this simple C-

H plot largely separates IDPs from structured proteins56.  This model has been used both 

for whole protein disorder prediction via the C-H plot56 and for residue-by-residue 

disorder prediction via the FoldIndex algorithm57.   

 

2.1.2 Various hydropathy scales 

The values for the original hydrophobicity scale were estimated experimentally as 

the side chain free energies of transfer from selected organic solvents to water174. The 

selected organic solvents, dioxane and aqueous ethanol, were chosen because their 

dielectric constants are similar to the values estimated for protein interiors. Measurements 
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using these two solvents gave similar transfer free energy values for each of the various 

hydrophobic amino acids. Such free energy values for transfer from organic solvent to 

water are negative (e.g. spontaneous) for hydrophilic amino acids and positive (e.g. 

spontaneous in the opposite direction) for hydrophobic amino acids.  While the original 

work32 focused on the hydrophobic amino acids, later scales (reviewed in31) provided 

values for both hydrophobic and hydrophilic amino acids. To reflect the balanced 

importance of both hydrophobic and hydrophilic amino acids as well as to indicate a 

scale with both types of amino acids, Kyte and Doolittle57 changed the name of the scale 

from “hydrophobic” to “hydropathic.”   They explained their revised name as follows: 

“Since hydrophilicity and hydrophobicity are no more than two extremes of a spectrum, a 

term that defines that spectrum would be as useful as either, just as the term light is as 

useful as violet light or red light. Hydropathy (strong feeling about water) has been 

chosen for this purpose.” 31 

Since the original work of Nozaki and Tanford32, many hydropathy scales or 

indices have been developed using a variety of experimental methods or using 

computational methods to estimate the transfer free energy values57,110–130.  Comparison 

of these scales is facilitated if the various scales are normalized to a common range of 

values.  For this normalization, we have chosen the range from –1 to +1, with positive 

values for the hydrophobic amino acids, thus keeping the plus-minus sign convention for 

hydrophobic-hydrophilic residues as used in the original Nozaki-Tanford publication174.  

The ExPASy server175 alone provides 19 different hydrophopathy scales in 

ProtScale176. Even after normalization, the hydrophobicity value for each amino acid 

fluctuates by a large amount in the different scales.  This raises the possibility that the 
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prediction accuracy of the C-H plot could be improved by using a different hydropathy 

scale.   

Here we used the C-H plot formalism to compare the structure-disorder prediction 

accuracy when combined with net charge for the 19 hydropathy scales from ExPASy 

along with the prediction accuracies for all 535 amino acid indices obtained from the 

Amino Acid index database (AAindex)128–130, TOP-IDP49, FoldUnfold131, B-value132, and 

DisProt49,64,42,133.  Next we used the formalism underlying the linear support vector 

machine146,177 to develop a new hydropathy scale that further improves prediction of IDPs.  

As we show by several measures, our new scale, which we named IDP-Hydropathy, 

gives substantially improved predictions as compared to the originally used Kyte-

Doolittle scale and also as compared to the best of the tested hydropathy scales.  Here we 

report these comparisons of the various hydropathy scales as well our analysis of their 

predictions and prediction errors on our set of fully structured and fully disordered 

proteins.  In addition to improved predictions using the C-H plot, we speculate that, given 

the strong negative correlation between crystallographic disorder and hydropathy178, our 

new scale would likely improve disorder prediction for any algorithm that uses 

hydropathy as one of the inputs and that is based on training sets dominated by 

crystallographic disorder.    

 

2.2 Comparing Hydropathy scale of Kyte & Doolittle (1982) with 18 other hydropathy 

scales 

The C-H plot developed by Uversky et al3 is a straightforward, simple, fast, yet 

effective whole protein disorder versus order predictor. FoldIndex is a per residue 
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predictor adapted from the C-H plot, using the same features of charge and hydropathy as 

the C-H plot. Because of their dependence on intuitive biophysical features and their 

simplicity, both methods are still heavily used today. However, unlike net charge, which 

is unambiguous, a variety of hydropathy scales have developed using quite different 

methods and assumptions. Thus, the various scales have the potential of being more or 

less useful, depending on the application.   

The hydropathy scale of Kyte & Doolittle (1982) 57 has been used in both the 

whole protein predictor based on the CH-plot and in the FoldIndex per residue predictor. 

Therefore, one natural question to ask is, how well do other hydropathy scales perform 

compared to this particular hydropathy scale? To compare the performances of various 

hydropathy scales, the 19 different hydropathy scales from ExPASy were tested via C-H 

plots to predict the structure – disorder status of the proteins in our dataset. The results of 

this experiment are given in Table 3. 
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Table 3 The Order versus Disorder Prediction Performances of 19 Hydropathy Scales. 
For each scale, the citation is given by the superscript number. 
 

Hydropathy Scales F-Score MCC AUC Sensitivity Specificity PPV NPV 

*Guy (1985)110 0.75 0.71 0.90 0.69 0.97 0.83 0.94 

Miyazawa & Jernigan (1985)111 0.74 0.71 0.90 0.71 0.97 0.81 0.95 
Manavalan & Ponnuswamy 
(1978)112 0.74 0.71 0.89 0.71 0.97 0.80 0.95 

Fauchere & Pliska (1983)113 0.74 0.71 0.88 0.67 0.97 0.85 0.94 

Rose et al. (1985)114 0.73 0.70 0.91 0.67 0.97 0.83 0.94 

Sweet & Eisenberg (1983)115 0.73 0.70 0.90 0.68 0.97 0.82 0.94 

Black & Mould (1991)116 0.70 0.67 0.87 0.64 0.97 0.82 0.93 

Hopp & Woods (1981)117 0.69 0.66 0.88 0.62 0.97 0.81 0.93 

^Kyte & Doolittle (1982)57 0.68 0.64 0.87 0.60 0.97 0.80 0.93 

Bull & Breese (1974)118 0.67 0.62 0.88 0.62 0.96 0.75 0.93 

Abraham & Leo (1987)119 0.66 0.62 0.86 0.59 0.96 0.78 0.93 

Chothia (1976)120 0.64 0.60 0.87 0.54 0.97 0.8 0.92 

Roseman (1988)121 0.64 0.60 0.86 0.56 0.97 0.78 0.92 

Rao & Argos (1986)122 0.61 0.58 0.85 0.53 0.97 0.77 0.91 

Janin (1979)123 0.58 0.54 0.86 0.50 0.96 0.74 0.91 

Eisenberg et al. (1984)124 0.56 0.52 0.85 0.47 0.96 0.74 0.90 

Tanford (1962)125 0.55 0.51 0.86 0.46 0.96 0.72 0.90 

Welling et al. (1985)126 0.51 0.49 0.78 0.40 0.98 0.77 0.89 

Wolfenden et al. (1981)127 0.45 0.42 0.79 0.35 0.97 0.69 0.89 

 
* Hydropathy scale Guy (1985) gives the top performance.  
^ Hydropathy scale Kyte & Doolittle (1982) only achieves average performance. 
MCC: Matthew Correlation Coefficient 
AUC: Area Under the Curve 
PPV: Positive Predictive Values 
NPV: Negative Predictive Values 
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Our data show that, in terms of disorder prediction, the hydropathy scale of Kyte 

& Doolittle (1982) is only average, giving the following values for the various 

performance metrics:  0.68 F-score, 0.60 sensitivity, 0.97 specificity, and 0.80 PPV, and 

ranking in the middle of the 19 hydropathy scales. The Guy (1985) hydropathy scale 

gives the highest F-score, a value of 0.75, which is a 10% improvement compared to the 

hydropathy scale of Kyte & Doolittle (1982). The hydropathy scale of Guy (1985) also 

reaches 0.69 sensitivity, which is a 15% improvement compared to the hydropathy scale 

of Kyte & Doolittle (1982). Meanwhile, use of the Guy (1985) scale maintains a PPV 

score of 0.83. Clearly the Guy (1985) hydropathy scale gives improved performance 

compared to that of Kyte & Doolittle (1982) when used with net charge to classify 

structured and disordered proteins via the C-H plot.  

 

2.3 Finding the optimal hydropathy scale for IDP prediction 

Since disorder prediction based on C-H plot can be significantly improved by 

simply adapting another hydropathy scale, it seems reasonable to ask whether another 

hydropathy scale can be developed that further improves the performance of the C-H plot. 

 

2.3.1 Use of Linear SVMs to find hydropathy scales  

To find a hydropathy scale that gives an improved order-disorder classification 

via the C-H plot methodology, we adopted a linear support vector machine (SVM)179 for 

this purpose. SVMs represent a new generation of learning systems based on recent 

advances in statistical learning theory146,177. The aim in training a linear SVM is to find 

the separating hyperplane with the largest margin; the expectation is that the larger the 
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margin, the better the generalization of the classifier.  Typically, the weights that are 

found as giving the best performance are viewed as meaningless, arbitrary parameters.  

However, in this particular instance, the SVM weight given to each amino acid 

corresponds to its hydropathy value. 

 Given the above, we rephrase the question of finding the optimal scale by viewing 

sets of protein sequences/windows as an n by 21 matrix (Eq. 10). The n rows represent n 

protein sequences/windows, and 21 columns are comprised of 20 normalized amino acid 

compositions and normalized net charge. For sequence/window i, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑗 is its j’s amino 

acid composition, and  𝐶𝐶𝑖 is its normalized net charge, calculated as (Eq. 11). We 

represent the disorder/order status of ith protein sequence/window as 𝑌𝑌𝑖 (1 or -1), thus 

giving:   

 

 

 

 

 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐶𝐶𝑖 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝐴𝑟𝑔 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝐿𝑦𝑠 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝐺𝑙𝑢 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝐴𝑠𝑝 (Equation 11).  

 

Then, the linear SVM is employed here to find a 21 by 1 weight vector w, such 

that 𝑤𝑤𝑀 + 𝑏𝑏 (bias) is closest to Y (Eq. 10).  We then can transform the w1 to w20 values 

into our IDP-hydropathy scale by scaling them. For comparison with the other 

normalized hydropathy scales, these 20 weights were normalized such that they lie on the 

interval of -1 to +1.  However, since the first published C-H plot by Uversky normalized 
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the Kyte-Doolittle scale to the interval of 0 to +1, we renormalize the hydropathy scale to 

the same interval when we draw the C-H plot.  

A 10-fold cross validation was used here, and iterated for 5 times in this method. 

We also tested a genetic algorithm180 and an elastic net147 (i.e., a penalized logistic 

regression classifier) as alternatives for the generation of the best hydropathy scale for 

order / disorder classification via the C-H plot. Both of these approaches give scales with 

prediction performance values similar to those obtained by the SVM methodology.  We 

chose to present the SVM approach because of its greater simplicity and elegance 

compared to the other methods.  

 

2.3.2 Choosing window size for training 

We previously showed that amino acid compositions associated with disordered 

segments exhibit changes that depend on segment length181 and  that construction of 

length-dependent predictors gives improved performance54. To minimize such length-

dependent variation, we tested whether use of uniform-sized segments of protein during 

training would improve the subsequent classifiers based on the C-H plot.  We found this 

to be the case. Thus, for improved training, the goal became one of finding a segment 

size that used as much of the data as possible while giving high quality predictions.   

Different window sizes were tested as shown in Figure 6. Since entirely 

disordered or entirely ordered proteins are used here, larger window sizes mean more 

information and less noise. As a result, the general trend is that, as window size increases, 

the F-scores also increase, indicating higher quality predictions. However, due to the 

limitation of protein length, longer windows mean that more sequences must be discarded.  
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These opposing effects were estimated by trying various segment sizes for which a 

protein’s sequence was divided into a collection of segments for which each successive 

segment is obtained by shifting the position of a given segment by half the length of the 

segment until there is insufficient protein remaining to cover the shifted segment.   
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Figure 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

                F-score and fraction of retained sequences versus window size. 

Both F-score and fraction of retained sequences range from 0 to 1. 
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Using the method just described, Figure 6 compares the F-score and the fraction 

of sequences that are not discarded, versus the segment length used. A segment length of 

89 residues was chosen as a good compromise, yielding both a high F-score and a low 

loss of amino acid sequences. This window size renders a relatively high performance, 

0.84 F-score, and high sequence retention, 83%. 

The hydropathy scale over a window size of 89 amino acids was constructed from 

the weight vector found by the SVM. To be consistent with the original C-H plot paper, 

and with previous hydropathy scale test results, this scale is applied and tested over the 

entire protein sequences.  This new scale shows an improved performance compared to 

the tested 19 scales, namely: 0.86 F-score, 0.83 sensitivity, 0.98 specificity, 0.95 AUC 

and 0.91 PPV. We named this scale “IDP-Hydropathy” (Table 4). Note that in the 

original C-H plot method developed by Uversky et al, the Kyte-Doolittle scale was 

normalized to 0 and 1. In many hydropathy scales, however, negative values are usually 

used to indicate a hydrophilic residue. To accommodate this tradition and to compare 

different hydropathy scales, we normalized all scales to the range of -1 to 1. 
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Table 4 IDP-Hydropathy Scale.  
 

Residue W Y I F L C V N T A 

Hydropathy Score 1.00 0.54 0.34 0.25 0.23 0.22 0.19 -0.14 -0.20 -0.27 

Residue G R M Q D S H K E P 

Hydropathy Score -0.41 -0.43 -0.46 -0.52 -0.56 -0.65 -0.71 -0.71 -0.72 -1.00 

 
This scale is normalized to span the interval from -1 to +1. 
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2.4 Disorder is harder to predict 

One interesting observation here is that across all tested hydropathy scales, 

including the IDP-Hydropathy, the specificity is high (>0.96) for all predictors, while the 

sensitivity is quite low compared to specificity. The sensitivity when using the scale of 

Guy et al is only 0.69, and the highest sensitivity is only 0.71 in the preliminary study. 

IDP-Hydropathy also has a relatively large gap between its sensitivity (0.83) and 

specificity (0.98). Disorder seems to be harder to predict than structure. We hypothesize 

that this results from the existence of many structure-forming segments being present 

within most experimentally characterized disordered proteins.  

This hypothesis is supported by running per residue predictors, PONDR® VLXT51 

and VSL254 on our whole disordered/structured protein dataset. Fractions of predicted 

disorder/order over the entire disordered/ordered dataset by each predictor are displayed 

in Table 5. PONDR® VLXT predictor predicts residue disorder tendencies within a 

narrow window, and is built to be very sensitive to protein sequence local features. 

PONDR® VSL2, on the other hand, uses a longer window, and so its prediction is 

smoother with less focus on local changes. In Table 5, on average, PONDR® VLXT 

predicts only 58% disordered residues within an entirely disordered protein, while it 

predicts 78% structured residues for the sequence of a wholly structured protein.  The 

PONDR® VSL2 prediction results are quite different. VSL2 has a comparable amount of 

predicted disorder residues within disordered protein as predicted structure in a structured 

protein. This suggests that indeed, there are many short segments with potential for 

structure-formation within regions within a disordered protein. This provides one 

possible explanation for the phenomenon in our previous study of choosing window size 
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as well. As the window size increases, such structure-forming small regions are smoothed 

out, and we observe an increase in the performance of disorder prediction. 
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Table 5 VLXT and VSL2 per residue prediction over our entirely disordered/structured 
dataset.  

 
 
 
 
 
 
 

 
 
The entries are fraction of residues that are predicted disordered/structured over the 
whole disordered/structured dataset. For simplicity, only diagonal entries in each 
predictor is shown.  
 

 

 

 

 

 

 

 

 

 

 

  

  
 

Predicted 

  VLXT VSL2 

  Disorder Structure Disorder Structure 

Dataset 
Disordered 58% ~ 78% ~ 

Structured ~ 78% ~ 74% 
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2.5 Benchmark 

In order to benchmark the IDP-Hydropathy scale, we compared it with 4 currently 

known disorder propensity scales, and with additional 531 amino acid scales retrieved 

from the AAIndex. As shown in Table 6, IDP-Hydropathy performed better than 

previously published disorder propensity scales. Its F-score of 0.86 outperformed DisProt 

(0.80), TOPIDP (0.79), FoldUnfold (0.77) and B-value (0.75). 
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Table 6                IDP-Hydropathy scale performance compared to 4 disorder propensity scales. 
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Hydro Scale F-Score MCC AUC Mean Acc Sensitivity Specificity PPV NPV

IDP-Hydro 0.86 0.84 0.95 0.91 0.83 0.98 0.91 0.97

DisProt 0.80 0.77 0.94 0.87 0.77 0.97 0.85 0.96

TOPIDP 0.79 0.76 0.93 0.87 0.76 0.97 0.84 0.96

FoldUnfold 0.77 0.73 0.91 0.85 0.72 0.97 0.83 0.95

Bvalue 0.75 0.72 0.92 0.83 0.67 0.98 0.87 0.94



The IDP-Hydropathy outperformed all 535 amino acids scales as well (Table 7). 

Compared to Linker index182, which showed the best performance among all 535 

AAIndex scales, IDP-Hydropathy scale had higher ranking for every performance metric 

that was measured. In particular, IDP-Hydropathy performs 5% and 6% better in terms of 

F-score and sensitivity than the Linker index did. Interestingly, Linker index was 

developed to predict ‘linkers’ between ordered protein domains. These linkers are rich in 

disordered regions. Therefore, it can also be viewed as a disorder index.  
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Table 7                 IDP-Hydropathy scale performance compared to top 10 scales from AAIndex 
of top performance 
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Hydro Scale F-Score MCC AUC Mean Acc Sensitivity Specificity PPV NPV

IDP-Hydro 0.86 0.84 0.95 0.91 0.83 0.98 0.91 0.97

Linker index 0.82 0.80 0.93 0.88 0.78 0.98 0.89 0.96

beta-sheet 1 0.80 0.78 0.92 0.86 0.74 0.98 0.90 0.95

beta-strands 0.80 0.77 0.90 0.86 0.74 0.98 0.88 0.95

beta-sheet 2 0.80 0.77 0.93 0.87 0.75 0.98 0.87 0.95

beta-sheet 3 0.79 0.76 0.90 0.86 0.74 0.98 0.86 0.95

Contact number 0.79 0.76 0.91 0.86 0.74 0.97 0.85 0.95

Buriability 0.78 0.75 0.91 0.85 0.73 0.97 0.86 0.95

Hydropathy 0.78 0.75 0.92 0.85 0.71 0.98 0.87 0.95

Partition energies 0.77 0.74 0.92 0.85 0.73 0.97 0.84 0.95

Interactivity 0.77 0.74 0.90 0.85 0.73 0.97 0.83 0.95



The ROC curve of IDP-Hydropathy, along with Linker Index, which is the top 

performance scale in AAIndex, top correlated scales in AAIndex, hydropathy scale of 

Guy (1985) from ExPAsy, and hydropathy scale of Kyte & Doolittle (1982) are 

represented in Figure 7, which clearly shows that the ROC for IDP-Hydropathy 

outperforms all others. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

68 
 



Figure 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               ROC curves for order-disorder classification  

The True Positive Rate is plotted versus the False Positive Rate. The IDP-hydropathy is 

compared with the next two highest ranking scales, Linker Index and TOP IDP, as well 

as with the highest ranking hydropathy scale, Guy (1985), and the originally used 

hydropathy scale, Kyte & Doolittle (1981).   
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2.6 Correlation study 

Since IDP-Hydropathy scale is derived via computation, and focused on 

maximizing prediction accuracy rather than being based on real physical attributes, 

another question to ask is if this scale is truly a hydropathy scale or if it contains input 

from other amino acid properties. One way to test this possibility is to study how this 

scale correlates with the 531 scales given in the AAIndex set. As shown in Table 8, the 

most correlated scale is the Interactivity scale, which is basically a hydrophobicity scale 

obtained through residue-residue interaction. The 2nd and 3rd most correlated scales are 

both from the work of Zhou and co-workers in which the amino acid stability and 

buriability were estimated183. These scales are highly correlated with hydropathy scales 

as well. The 4th scale, Linker index, is actually a form of disorder propensity index as 

discussed earlier. The next, Tanford hydrophobicity scale125, is established by calculating 

the free energy transfer of amino acid side chains and backbone peptides from water to 

ethanol and dioxane solutions. This study shows that the IDP-Hydropathy scale shows 

the highest correlations with other hydrophobicity or hydropathy scales, or scales closely 

associated with hydrophobicity or hydropathy.  
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Table 8 Top 10 IDP-Hydropathy correlated AAIndex amino acid scales 
 
AAIndex Name 
 

|Correlation| 
 

F-score 
 Interactivity scale,   

 
0.87 0.76 

The stability scale  
 

0.87 0.72 
Buriability  
 

0.85 0.78 
Linker index  
 

0.83 0.82 
Transfer energy, organic solvent  
 

0.83 0.72 
Normalized frequency of beta-sheet from CF  
 

0.81 0.76 
Normalized frequency of beta-sheet  
 

0.81 0.77 
Bitterness (Hydrophobicity parameters)  
 

0.80 0.73 
Conformational preference for antiparallel beta-strands  
 

0.80 0.80 
Flexibility parameters  
 

0.80 0.73 
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For an easier representation of different AAIndex scales, we grouped AAIndex 

scales to the four categories according to their experimental procedures as “Interactivity”, 

“Buriability”, “Transfer energy” and “Others”. We use “Interactivity” to indicate that this 

scale is obtained by measuring the interactions between the amino acids within a 

structured protein. “Buriability” means that the authors compared the surface residues 

and inner buried residues to calculate their scales. The 3rd category, “Transfer energy” 

measures the amount of energy associated with the transfer of residues from polar to non-

ploar phase. “Others” are methods other than these three, including vapor pressure 

measurements, chromatography, and so on. These 4 groups are adapted because IDP-

Hydropathy is mostly related to AAIndex derived from “Interactivity”, “Buriability”, and 

“Transfer energy”. 

As a result, the IDP-Hydropathy scale is most closely related to AAIndex scales 

that are derived using “Interactivity”, “Buriablility”, and “Transfer energy”. A similar 

correlation study of the 19 hydropathy scales obtained from ExPAsy reveals that they are 

also highly related to AAIndex scales derived using these three approaches (Table 9). 

These comparisons show that the IDP-Hydropathy scale is very similar to the 

experimentally derived hydropathy scales. 

 

2.7 Heat map and values of IDP-Hydropathy versus other scales 

The IDP-Hydropathy scale is compared to four of its most correlated scales from 

AAIndex, four disorder propensity scale, and Kyte-Doolittle scale by means of a heat 

map (Figure 8). Compared to Kyte-Doolittle scale, IDP-Hydropathy assigns Trp and Tyr 
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as hydrophobic, the same as other four hydrophobicity scales and four disorder 

propensity scales. 
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Table 9 19 hydropathy scales in ExPAsy and their top 3 most correlated AAIndex scale 
methods.  
 

Scale names Top 3 most correlated AAIndex Methods 

Miyazawa & Jernigen (1985) Interactivity Interactivity Interactivity 

Rao & Argos (1986) Others Interactivity Others 

Manavalan & Ponnuswamy (1978) Buriability Interactivity Buriability 

Rose et al. (1985) Others Buriability Others 

Sweet & Eisenberg (1983) Others Others Interactivity 

Black & Mould (1991) Buriability Others Transfer energy 

Janin (1979) Transfer energy Interactivity Buriability 

Wolfenden et al. (1981) Others Transfer energy Others 

Guy (1985) Interactivity Others Others 

Hopp & Woods (1981) Others Others Transfer energy 

Abraham & Leo (1987) Others Others Interactivity 

^Kyte & Doolittle (1982) Others Buriability Buriability 

Welling et al. (1985) Others Others Transfer energy 

Tanford (1962) Hydropathy Interactivity Transfer energy 

Chothia (1976) Buriability Buriability Others 

Eisenberg et al. (1984) Others Transfer energy Interactivity 
Fauchere & Pliska (1983) Others Others Others 

Bull & Breese (1974) Transfer energy Buriability Others 

Roseman (1988) Transfer energy Others Buriability 

 
Note that IDP-Hydropathy is highly correlated with AAIndex scale methods 
“Interactivity”, “Buriability”, and “Transfer energy”, which are all observed many times 
in this table. 
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Figure 8 

 

 

 

 

 

 

 

 

   Comparing hydropathy scales  

To visually compare several of the hydropathy scales, a heat map was constructed for the 

following scales (from top to bottom):  IDP-Hydropathy scale, the 4 most correlated 

scales from AAIndex (interactivity scale, stability scale, buriability scale and linker 

index), 4 disorder propensity scales (B-value, FoldUnfold, Disprot, and TOP-IDP), and 

Kyte-Doolittle scale. Each scale is annotated with their values normalized from -1 to 1. 
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2.8 Comparing C-H plots from different hydropathy scales 

In Figure 9, the C-H plots constructed using 3 different hydropathy scales are 

compared: 1. The IDP-Hydropathy Scale (4A), the Kyte-Doolittle Hydropathy Scale (4B) 

and the Guy Hydropathy Scale (4C).  In terms of classification accuracy, 4A is better 

than 4C which is better than 4B.  Notice that the net charge of each protein remains 

constant, so changes in the hydropathy scales correspond to horizontal movements of the 

proteins on the C-H plot.  In effect, IDP-hydropathy leads to the greatest leftward shifts 

for the disordered proteins and the greatest rightward shifts for the structured proteins.   
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Figure 9                 Charge-Hydropathy plots.   

In (A) the IDP-Hydropathy scale was used, in (B) the Kyte ̶ Doolittle (1981) Hydropathy 

scale was used, and in (C) the Guy (1985) hydropathy scale was used.  Gray circles 

indicate disordered proteins, black circles indicate structured proteins. For these plots, 

each scale was normalized to be in the interval of 0 to 1. In (A) the numbers are indices 

for misclassified examples given in Table 10, and the function describing the boundary 

is: <charge> = 3.35<hydropathy>  ̶  1.09. In (B) the function describing the boundary is: 

<charge> =1.31<hydropathy>   ̶   0.48.  In (C), the function describing the boundary is: 

<charge> = 2.25<hydropathy>  ̶   0.90.  
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The relationships among the misclassified proteins observed for the three 

hydropathy scales are shown in the Venn diagram of Figure 10, with misclassified 

disordered proteins in 5A and misclassified ordered proteins in 5B.  
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Figure 10                   Venn diagrams.   

In (A), the intersections are given for sets of misclassified disordered proteins that result 

from use of IDP hydropathy, Kyte ̶ Doolittle (1981) hydropathy, or Guy (1985) 

hydropathy.   In (B), the intersections are given for the sets of misclassified ordered 

proteins that result from use of the same three hydropathy scales.  
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In our dataset of disordered proteins (109 in total, Figure 10A), IDP-Hydropathy 

made 19 mistakes (17%), while the Kyte-Doolittle scale made 43 (39%), and the Guy 

scale made 38 (35%). Almost all of the disordered proteins predicted to ordered by the 

IDP-Hydropathy (18 out of 19) are also misclassified by the other two scales. On the 

other hand, 29 of the mistakes made by either the Kyte-Doolittle scale or by the Guy 

scale are correctly classified by IDP-Hydropathy scale. 

Of the 563 ordered proteins, there are only 10 (2%), 17 (3%), and 14 (3%) 

misclassifications by the IDP-hydropathy, Kyte-Doolittle, and Guy scales, respectively. 

The IDP-Hydropathy scale committed 4 errors not committed by either of the other two 

scales, and 6 errors shared by one of other two scales. On the other hand, IDP-hydropathy 

avoided 13 errors made by at least one of the other two predictors. 

Consider the C-H plot based on IDP-Hydropathy (Figure 9A). For this plot there 

are only 10 ordered proteins misclassified as disordered, and 19 disordered proteins 

misclassified as ordered. Several of these misclassified proteins are very close to the 

boundary and so were ignored, leaving 4 of the misclassified ordered proteins (indexed 1-

4), and 9 of the misclassified disordered proteins (indexed 5-13).  These individual 

misclassified proteins were subjected to detailed analyses to determine, if the possible, 

the reasons for the misclassification.  

Protein 1 (PDB ID: 2PNE) is a structured protein that was predicted to be 

disordered. This protein adopts a highly unusual six-stranded polyproline II helix bundle, 

and contains two structure-stabilizing disulfide bonds that somehow escaped the 

detection of our disulfide bonds filter, which tested the distances between cysteine sulfur 

atoms to detect disulfide bonds. This failure of our filter is being studied further to 
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improve future work. The amino acid composition of this protein certainly looks like that 

of an unstructured protein, and this protein is strongly predicted to be disordered by our 

various PONDR® algorithms.  This highly unusual structured protein is simply 

misclassified by the C-H plot as well as by various other order / disorder predictors.   

Protein 2 (PDB ID: 1L2P) is a coiled-coil, which in fact should not have been 

classified as globular, structured protein.  We need to check our filter that is supposed to 

yield globular, monomeric proteins. Coiled-coil proteins often exhibit lower complexity 

than globular proteins184, as is the case for this protein, and many coiled-coil proteins are 

predicted to be disordered185. Indeed, much this protein is predicted to be markedly 

disordered by several of our PONDR® predictors.   

Protein 3 (PDB ID: 1X3O) was crystallized using dioxane as the precipitant.  

Adding low dielectric co-solvents often causes disorder-to-order shifts in protein 

structure, likely by promoting backbone hydrogen bond formation and by reducing the 

ionization of the acidic and basic side chains.  We cannot find information whether, for 

example, this protein contains substantial disorder that becomes structured as dioxane or 

another dieclectric-lowering, water miscible co-solvent is added.  Furthermore, protein 3 

contains a serine modified with a large moiety that is rather hydrophobic, uncharged, and 

contains several hydrogen bond donors and acceptors, and thus could very likely induce 

formation of structure. Interestingly, different PONDR® prediction methods behave quite 

differently with protein 3. In particular, a large part of this protein, approximately residue 

20 to 65 is predicted to be disordered by VLXT and VL3, while this same region is 

predicted structured by VSL2 and PONDR®-FIT. It is not surprising that our C-H plot 

predictor is in agreement with VLXT and VL3, since they both rely heavily on 
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hydropathy. Another interesting observation is that regions predicted to be ordered by 

VSL2 and PONDR®-FIT have scores fairly close to the order/disorder boundary region, 

suggesting very modest stability. Given such lower confidence scores and the 

disagreement among predictors, it is quite possible that dioxane and the modified serine 

assist in the process of folding as suggested above.  

Protein 4 (PDB ID: 1CEI) is misclassified as disordered by the C-H plot method. 

However, all 4 PONDR® predictors correctly predict this protein to have substantial 

structured regions. We cannot find any reason to explain this classification error made by 

the C-H plot. 

For protein 5, the first of the disordered proteins predicted to be structured, and its 

circular dichroism (CD) spectrum shows that this protein contains a substantial amount of 

secondary structure.  Thus, it is not likely to be entirely disordered as indicated by 

DisProt.  Indeed, PONDR® predictors indicate substantial regions of structure for this 

protein.  Its classification as disordered in DisProt was due mainly to author comments. 

Based on these observations, its fully disordered status is being re-evaluated.    

Protein 6 is classified as fully disordered in DisProt on the basis of its sensitivity 

to proteolysis along with author comments. Unlike other experimental procedures such as 

CD, sensitivity to proteolysis is a less confident approach in the determination of 

disordered proteins.  PONDR® predictions also suggest that it has abundant structured 

regions. 

Protein 7 is sensitive to proteolysis only in the absence of its scaffold protein 

Agrobacterium  autoinducer (AAI). When AAI is present, protein 7 folds onto the 

scaffold and becomes insensitive to proteolysis.  This protein has the characteristics of 
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structured proteins.All four PONDR® methods predict large structured regions for this 

protein. In possibly related studies186,187, the fully structured thioredoxin protein was 

cleaved by proteases in separate experiments at two different single sites; for each single 

cleavage, the two fragments were separated.  When alone, three of the four fragments did 

not aggregate significantly and behaved like IDPs.  When the pairs of fragments from the 

same single cleavage were combined, the fragments mutually and correctly folded into an 

intact structure.89,90  These thioredoxin (Trx) fragments have the appropriate balance of 

hydrophobic and hydrophilic amino acids for folding, as they located at the structural side 

of C-H plot, but they evidently lack an appropriately folded state with steric fitting of the 

various side chains, a shortfall that could potentially retard folding. From the folding 

funnel perspective, when alone these fragments evidently lack a deep well.  From these 

earlier experiments and theories, we speculate that Protein 7 has an appropriate sequence 

for folding, but does not have a low-energy, self-folding structure.  However, Protein 7 

folds quite well when it encounters the surface of its scaffold protein.  

For protein 8, a sub-region, namely residues 1-96, is reported to be disordered. 

However, the entire sequence of protein 8 was mistakenly put into the DisProt dataset. 

Trimming protein 8 and leaving only residue 1-96 yields a correct disordered prediction 

for this region. Thus, this error was due to an annotation error in DisProt, and this 

annotation error will be corrected.   

Proteins 9 and 13 appear to be molten globules in their native states. Molten 

globules are characterized by backbones having semi-stable secondary structure but with 

loss of rigid packing by the side chains thus leading to fluctuating, unstable tertiary 

structure188,189.   Since native molten globules would likely have values for their net 
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charge and hydropathy similar to those for folded proteins, elsewhere we have previously 

suggested that native molten globules would likely appear to be structured proteins on the 

C-H plot5,9.  These data support those earlier suggestions. 

Proteins 10-12 were all indicated to be disordered by random-coil-type CD 

spectra, while at the same time these proteins were observed to contain relatively high 

fractions of hydrophobic residues190,191.  As would be expected for such amino acid 

compositions, all of these proteins are predicted to be mostly structured by the various 

PONDR®s.  While having sufficient numbers of hydrophobic groups is necessary for 

protein folding, these results suggest that this feature alone is not sufficient, perhaps for 

the same reasons discussed above for Protein 7.  Therefore, we speculate that, like 

Protein 7, each of these proteins would readily fold into 3D structure in the presence of 

the appropriate partner.    

 

2.9 Discussion 

In our work, we show that the performance of C-H plot can be improved 

significantly by introducing a new hydropathy scale. This new IDP-Hydropathy scale 

boosts the predictor’s F-score from an original value of 0.68 to the 26% higher value of 

0.86. This new scale also performs considerably better than four existing disorder 

propensity-based scales and other 531 amino acid scales obtained from the AAIndex. A 

correlation study and a heat map show that this scale is indeed highly associated with 

amino acid hydropathy. 
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2.9.1 Disorder is harder to predict 

In all of our tested scales, including IDP-Hydropathy, disorder prediction 

accuracy is much lower than the order prediction accuracy. We hypothesize that this 

results from the existence of many small regions with increased order propensity that are 

located inside larger disordered regions. Despite of these short structure-prone elements, 

these regions are still experimentally shown to be mostly disordered. These regions with 

increased order propensity are likely to be functional domains within the disordered 

proteins. Molecular recognition features (MoRFs) that bind to specific protein or nucleic 

acid partners are one type of disorder-based functional regions. When not bound to a 

partner, such MoRF segments remain disordered and flexible. Upon binding, they 

typically become structured, adopting an ordered conformation that depends on the 

template provided by the binding partner. Their flexibility in the unbound state allows 

them change their shape as needed to fit onto the surfaces of different and distinct 

partners75,81,162,192. 

 

2.9.2 Error analysis 

Judging from our error analysis in Table 10 and in supplementary information, the 

underlining theory for C-H plot is simple yet powerful. Many of the mis-classified 

examples in this study resulted from errors of the process of dataset collection and 

annotations. Only 2 of the strongly misclassified structured proteins is clearly not related 

to annotation errors or potential disorder-to-order transitions induced by experimental 

conditions, and one of these proteins is an extremely unusual 6-stranded PPII helical 

bundle. Furthermore, only three of the misclassified disordered proteins strongly violate 
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the overall hypothesis. These three are significantly hydrophobic with modest net charges, 

yet are shown to be disordered by CD.  We speculate that these proteins do in fact 

become structured upon association with the appropriate protein partners as is observed 

for one protein having a similarly modest net charge along with a significant 

hydrophobicity.  
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Table 10 Missclassified examples and brief comments 
 

Index PDB/DisProt 
Entry Brief comments 

1 2PNE193 Antifreeze protein. 6 Polyproline II helix with 2 disulfide bonds to 
stabilize 

2 1L2P194 Coil-coil structure. 

3 1X3O Dioxane used as precipitant. Contains modified O-(pantetheine 4'-
phosphoryl)serine 

4 1CEI195 High net charge.  

5 DP00714196 CD shows substantial secondary structures.  
6 DP00723197 Sensitivity to proteolysis is the sole evidence of disorder. 

7 DP00198198 This protein is sensitive to proteolysis in the absence of a scaffold 
protein. 

8 DP00069199 Only residue 1-96 is used for CD. Our predictor correctly predicts this 
sub-region. 

9 DP00193200 Molten globule protein with substantial secondary structures. 

10 DP00626190 High proportions of hydrophobic amino acids(Val, Ile, Leu). CD 
supports high amount of disorder 

11 DP00288191 High hydrophobicity. Shown to be highly disordered by CD. 

12 DP00626_C001190 High proportion of hydrophobic amino acids. Disorder supported by 
CD 

13 DP00465201 Molten globule protein with substantial secondary structures. 
 
The index of each example corresponds to the index in Figure. 8, with 1-4 being 
structured proteins misclassified as disordered and 5-13 being disordered proteins 
misclassified as structured.  
CD: circular dichroism 
The citation for each protein is indicated by its superscript number. A manuscript 
describing the 1X3O structure is yet to be published. 
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2.9.3 Limitations of composition based IDP predictors 

Apart from the hydrophobic effect, hydrogen bonding within the protein is 

equally important to protein stability171.  The interactions of neighboring residues are not 

explicitly studied in the pure compositional based predictor. Moreover, in the study of 

protein secondary structure prediction, long-range residue interaction is considered as one 

of the accuracy limitation202. Also, the ‘chameleon’ sequences, which do not have a 

strong structural preference, adopt different secondary structures depending on their 

surrounding sequences203. It is possible that the above features for globule proteins are 

also applicable to disordered proteins or regions, all of which are not fully addressed in 

the simple compositional based approach. 

 

2.9.4 Application and future work 

This new scale, IDP-Hydropathy derived from entirely disordered and structured 

proteins, is a very handy tool because of its simplicity and prediction power. This new 

scale should improve other disorder predictors that use hydropathy as one of the input 

features. We are looking forward to the incorporation of this new scale into a per-residue 

predictor based on these same principles. 

 

The original hydrophobicity scale of Nozaki and Tanford174 was developed with 

the purpose of understanding the relative importance of different amino acids to protein 

folding.  The IDP-hydropathy scale developed here is based on sets of sequences that fold 

into 3D structure as compared to collections of sequence that don’t fold, using the C-H 

plot as the classifier.  Thus, to a very significant degree, IDP-hydropathy fulfills the 
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intent of the original scale by providing a measure of how the various amino acids 

contribute to protein folding by means of their hydropathy values.     

   

2.10 Summary 

The earliest whole protein order / disorder predictor (Uversky et al., Proteins, 41: 

415-427 (2000)), herein called the charge-hydropathy (C-H) plot, was originally 

developed using the Kyte & Doolittle (1982) hydropathy scale, which was chosen due to 

its frequent use. In an effort to improve the performance of the CH-plot, we tested 

alternative hydropathy scales, with the finding that the Guy (1985) hydropathy scale was 

the best of the tested hydropathy scales for separating structured proteins and intrinsically 

disordered proteins (IDPs) on the C-H plot.  Next, we developed a new scale, named 

IDP-hydropathy, which further improves the discrimination between structured proteins 

and IDPs.  Applying the C-H plot to one particular dataset containing 109 IDPs and 563 

non-homologous fully structured proteins, the Kyte & Doolittle (1982) hydropathy scale, 

the Guy (1985) hydropathy scale, and the IDP-hydropathy scale gave balanced two-state 

classification accuracies of 79%, 83%, and 91%, respectively, indicating a very 

substantial overall improvement is obtained by using different hydropathy scales.  A 

study comparing the IDP-hydropathy with 554 amino acid indices shows that IDP-

hydropathy is strongly correlated with other hydropathy scales or with scales that are in 

turn highly correlated with hydropathy scales, thus suggesting that IDP-hydropathy has 

only small contributions from amino acid properties other than hydropathy.  We suggest 

that this scale would likely be the best one generally to use for predictors of protein 

disorder.  
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3. Per-residue Charge-Hydropathy Disorder Prediction 

Our previously developed IDP-Hydropathy scale optimizes disorder prediction for 

entire protein sequences. However, many proteins have dual disorder/order states, in 

which one protein has both disordered regions and ordered regions9. In addition, 

experimentally identified IDP regions seldom have uniform sequence characteristics 

regarding their disorder tendencies. MoRFs, for example, typically display hydrophobic 

residues inside a stretch of mostly hydrophilic plus proline residues having a strong 

tendency to be a disordered region74,75. The intermixed disordered and ordered regions 

and the intermixed order and disorder tendencies in disordered regions are both crucial to 

the protein’s function. The hydrophobic regions can readily bind to the surface of another 

protein while the disorder region can adapt to the conformation of that partner, as 

described in the introduction and as illustrated by a MoRF’s one-to-many binding. The 

typical example of such flexible binding is provided by the N and C termini of the p53 

protein192.  Both disordered termini of p53 use multiple conformations to bind to a large 

number of specific partners.  

Hence, predicting the per-residue disordered or ordered state of a protein or 

predicting changes in the order or disorder tendencies can reveal important information 

regarding protein function. Many per-residue disorder predictors have been developed, 

including the PONDR family (VLXT61, VSL363, VSL254, PONDR-FIT59), IUPred52, 

Disopred167, SPINE-D53 and many more. They have been built based on different 

hypothesis and by means of different algorithms.  

Just as for protein function and structure predictions, evolutionary comparisons, 

such as by means of multiple sequence alignments, make very powerful contributions to 
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many of these methods53,54,167. However, such sequence comparisons are very time 

consuming, with computations over entire proteomes taking weeks or more to complete. 

Therefore, many methods (such as VSL2B) have been developed to be both accurate and 

fast without the usage of evolutionary information. 

Most of the per-residue disorder predictors have been built using supervised 

machine learning models with many inputs. In recent years, many complex and integrated 

methods have been developed that use very large feature spaces. However, as shown in 

recent the CASP exercises66–68, the accuracy of disorder prediction is more likely to be 

dependent on the difficulty of the examples being predicted than on the power of the 

predictors being used. The feature information used for prediction is often so complex as 

to not provide any useful insight regarding the IDP regions under study.  

Going back to the basics, among the most intuitive and fundament features 

underlying the folding of a given protein are its hydropathy and charge4,9. In this study, 

we built a simple, fast yet accurate and informative linear model that uses these 

hydropathy and charge features as the only inputs. More specifically, we optimized the 

protein hydropathy scale on protein local regions with linear Support Vector Machine 

(SVM)146,177. Then we used this scale to calculate local hydropathy. Together with charge, 

the local hydropathy are used to build the linear model to predict protein disorder.  

Three different hydropathy scales were optimized individually for the N-terminus, 

C-terminus, and internal regions of regions of sequence.  Such an approach was found 

empirically to be superior to the use of a single hydropathy scale. Each scale then 

provides the basis for per-residue charge- and hydrpathy-based disorder prediction for the 

residues in the three respective N-, C- and internal regions. 
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Our predictor, which we are calling FoldIndex II, performs comparably to much 

more complex recently-developed per-residue disorder predictors. More importantly, in 

addition to order or disorder prediction, our algorithm also outputs regional hydropathy 

and net charge. Comparing to the original FoldIndex, which also uses linear function of 

charge and hydropathy for prediction, our predictor is much more accurate. In addition, 

our predictor includes predictions to the  N- and C- protein termini, regions that they are 

skipped in the original FoldIndex. 

 

3.1 Disorder is not evenly distributed alone the sequence 

To examine the effect of residue position on residue disorder or order status, we 

need to first define the number of residues relative to the N- or C-terminus. To compare 

these predictors with our previous work61, we chose 21 residues to be the window size for 

the order-disorder prediction with the prediction applied to the residue at the center of the 

window. In our training data, there are 6839 partially overlapped disordered windows at 

N terminus, 83268 at internal region, and 6839 at the C terminus. 

  

3.1.1 Disorder is enriched at the N/C terminus 

In Figure 11, the normalized number of disordered residues at N, C, and internal 

regions are calculated and their distributions are plotted as a boxplot. Disorder is not 

evenly distributed at these three regions, with a significant p-value of 3.79e-69 from 

ANOVA analysis. In fact, the N and C termini are much more enriched of disordered 

residues.  
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Figure 11 

 

 

 

 

 

 

 

 

 

 

                 Boxplot for normalized number of disordered at N/C terminus and internal 

regions. The red lines are the median, meaning 50% of data are greater than this value. 

The upper and lower blue lines are the upper and lower quartile, respectively. There are 

25% of data are greater or less than them, respectively. The black line is the maximum, 

which is the greatest value excluding outliers. The short red lines are the outliers, 

meaning that their values are more than 3/2 times of the value at upper quartile.  
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3.1.2 Disorder composition different significantly among the N and C termini and the 

internal regions 

Even though disorder is more enriched at the termini, the amino acid composition 

indicating disorder could still remain the same for these regions. So we summarized the 

composition for disordered residues at N and C termini and internal region, respectively, 

and carried out correlation analysis as shown in Table 11. Interestingly, in Table 11A, the 

correlation coefficient is low between internal regions and N-terminus, and their p-value 

indicates that they are not correlated. On the other hand, the N-terminus disorder-

indicating amino acid composition correlates to that of the C-terminus with an r of 0.63. 

Its p-value, 0.0086, is at the edge of being significant. Meanwhile, the C-terminus is 

related to internal region with an r of 0.68, and its p-value is 0.0027. Again, this p-value 

is close to the significance threshold.  

In the composition bar plot, which uses the composition of internal region as the 

baseline, the content of many residues in N-terminus is much higher or lower than the 

corresponding contents observed for internal regions. Because the initiation codon 

encodes methionine, methionine is particularly enriched at the N terminus. On the 

otherhand, the common use of polyhistidine-tag on the N or C terminus of protein 

sequences for purification likely contributes to the sharp peaks of histidine composition. 

Moreover, there are residues, such as P, T, and V, that are enriched or depleted in both N 

and C terminus; and there are also residues, such as D, E, Q, and K, that are enriched or 

depleted only in N-terminus. Interestingly, most residues in N and C terminus that vary 

significantly from internal region are either both enriched or both depleted.  
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In general, the amino acid compositions of some residues in N/C terminus and 

internal regions for disordered proteins are significantly different. However, some 

residues are consistently enriched or depleted across all three locations. The N-terminus 

is very different from the internal regions, with high p-value indicating no correlation. 

The correlation coefficient between N-term/C-term, and the correlation between C-

term/internal are relatively high, but with interesting p-value. This might be explained by 

the fact that mostly, residue contents among these regions are similar, causing r as high as 

over 0.6, but with some exceptions and raises p-value.  

To account for the differences in the compositions of some residues among three 

regions,  we decided to divide the sequence into three regions as N/C terminus and 

internal regions, and optimizes the hydropathy scale individually. 
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Table 11 Amino acid composition correlation coefficient (A) and p-values (B) at N/C 
terminus and internal regions 

  N term Internal C term 
N term 

   Internal 0.31 
  C term 0.63 0.68 

  

Table 11 A. Correlation coefficient 

  N term Internal C term 
N term 

   Internal 0.56 
  C term 0.0086 0.0027 

  

Table 11 B. p-value after Bonferroni correction 
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Figure 12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                   Amino acid compositions bar graph at N-terminus, internal regions, and C-

terminus 
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3.2 Optimizing hydropathy scale for improved disorder prediction 

We used linear SVM to optimize the hydropathy scale for disorder prediction. In 

particular, protein sequences are divided into three regions, N-termnius, C-terminus and 

internal regions. Amino acid composition was calculated for protein sequence at a 

window size of 21. Spacer characters are added at the N and C ends of protein sequences 

to fill any window that extends outside of the protein chain.  Charge of the protein 

sequence at a specific window is calculated as the sum of number of arginine and lysine, 

minus the sum of number of aspartic acid and glutamic acid. Then the charge is 

normalized by dividing the length of window size. Then we take the absolute value of the 

normalized charge, which also make the charge attribute non-redundant with the 

composition attributes.  

 

To obtain the hydropathy scale that optimize disorder prediction, linear SVM were 

applied to N-terminus, C-terminus and internal regions separately. We take the 

coefficient for each amino acid composition, and normalize them to be between -1 and 1. 

In the end, the prediction accuracies are shown in table 12. 
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Table 12 Accuracy matrices for disorder prediction on N/C terminus and internal regions. 

 

 Balanced 
Accuracy Sensitivity Specificity F-score MCC AUC   

N-term 0.75 0.74 0.76 0.75 0.49 0.82 
Internal 0.74 0.73 0.75 0.61 0.44 0.81 
C-term 0.72 0.72 0.72 0.70 0.44 0.80 
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The predictor is optimized to achieve the best balanced sensitivity and specificity, 

and minimize the difference between sensitivity and specificity. Note that the data are 

heavily biased towards ordered proteins, especially for the internal regions. This is the 

likely explanation for the observation that, while sensitivity and specificity are similar for 

all three regions, the F-score for the internal region is much lower than both the N and C 

termini. The predictor can compensate the disorder prediction power by over-predicting 

disordered residues, therefore boost its sensitivity. Meanwhile, the number of over-

predicted disorder mistakes is small compared to the large number of ordered residues, 

and thus maintaining the specificity. The calculation of F-score involves positive 

predictive value (PPV), which measures the proportion of true positives versus predicted 

positives. The over-prediction of disorder in the internal region is reflected in PPV, and 

thus lowering its F-score. Despite of this, sensitivity and specificity is a common 

measurement of prediction power, and they are straightforward and meaningful. So we 

still use the traditional measurement.  

The receiver operating characteristic (ROC) plot (Figure 13) plots the true positive 

rate against the false positive rate at varying thresholds of the linear function output. The 

dashed diagonal line represents random guesses. Predictors for all three regions perform 

fairly well above the diagonal line, and have similar AUC (area under curve). 
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Figure 13 

 

 

 

 

 

 

 

 

 

 

 

 

                  ROC curve for disorder prediction on internal regions, N-terminus and C-

terminus, respectively.  
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3.3 Benchmark the per-residue IDP scale 

The performance of the optimized scale is tested against three different predictors 

as shown in Figure 14. FoldIndex is also a per-residue disorder predictor, which also uses 

hydropathy and charge as input features. Note that since FoldIndex do not have spacer 

characters, it starts prediction at the residues that are within half of the window size from 

the beginning, and ends prediction half of the window size from the end of the sequence. 

Therefore, we applied the same procedure in this test. FoldIndex uses Kyte-Doolittle 

hydropathy scale to calculate hydropathy. Its ROC curve is shown as magenta in Figure 

14. We also trained a second predictor using the Guy hydropathy scale, since it showed 

best prediction performance for entirely disordered proteins (green dashed line in Figure 

14). Our optimized predictor outperforms both of them (blue line in Figure 14). 
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Figure 14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 ROC curve for different predictors. Blue line is the new optimized predictor. 

Magenta line represents the ROC curve for FoldIndex predictor, red line is the predictor 

optimized with Kyte-Doolittle hydropathy scale, and the green line is the predictor 

optimized with Guy hydropathy scale.  
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3.4 Further improvements 

During our development of the per-residue IDP-hydropathy scale, we found that 

different window sizes drastically affect the prediction power. We also found that 

smoothing the output by a typical window size could improve the prediction. However, 

our dataset is dominated with ordered protein examples. Moreover, one part of the dataset 

is comprised of protein examples from Disport, which contains consecutive long 

disordered regions. Therefore, using longer input window size and an output smoothing 

window is likely to enforce ordered predictions in general, and disordered predictions 

over long disordered regions. Short disordered segments are likely to be missed, even 

though they may bear important biological meanings.  

The impact of the likely explanation for the observation that long and short disorder 

regions prediction has been studied and resulted in the development of VSL2 predictor. 

However, at that time, there were only 153 sequences from Disprot. Now, there are 694 

disordered sequences from Disprot alone. The conclusion that short and long disordered 

residues have different amino acid preferences for order and disorder is likely still valid, 

but the construction of length-dependent disorder predictors needs to be re- addressed the 

the larger datasets currently available. 

Most current disorder predictors use compositional and evolutionary features. As 

shown in recent CASP, the disorder prediction is more likely dependent on the difficulty 

of examples than their prediction power. As more and more data become available, new 

attributes, such as adding inputs based on amino acid sequence patterns, should further 

improve the prediction power.  
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3.5 Summary 

Here we describe a per-residue C-H IDP predictor called FoldIndex II that used a 

linear Support Vector Machine with just normalized net charge and normalized 

hydropathy as the only inputs.  Using our recently developed method for optimizing a 

hydropathy scale for prediction of disorder using just normalized net charge and 

normailized hydropathy, three hydropathy scales are optimized individually, one for the 

amino terminal region, one for the internal region and one for the carboxyl terminal 

region. These three scales along with normalized net charge then provide the inputs for 

the Support Vector Machine. FoldIndex II substantially outperforms the original 

FoldIndex algorithm as shown by receiver operating characteristic curve analysis.  
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