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CHAPTER ONE: INTRODUCTION 

1.1 Cell 

 
Cell is the structural, functional and biological unit of living organisms. Robert 

Hooke, in 1665 described cells as the microscopic units that made up the structure of a 

splice of cork and coined the term cell. With the invention of microscope by Antoni van 

Leeuwenhoek at the beginning of seventeenth century, it became possible to witness a 

live cell. The idea of cell being the basic component of living organisms emerged from 

cell theory, the most important generalization in biology made by Rudolf Virchow, 

Matthias Jakob Schleiden, and Theodor Schwann in 1938. According to cell theory, “cell 

is the basic unit of life; all living organisms are made of cells and their products; and new 

cells are formed from pre-existing cells ” (Mazzarello, 1999).   

All living cells are divided into two groups: prokaryotic cells and eukaryotic cells. 

Prokaryotes are single celled organisms that do not have a nucleus and other membrane 

bound organelles. The key difference between prokaryotes and eukaryotes is the 

eukaryotes have their DNA well organized into nucleus surrounded by nuclear envelope. 

1.1.1 Cell division 

Cell division is the fundamental process by which cells multiply during the 

growth of tissues and organs in higher eukaryotes. It is the terminal stage of cell cycle 

that brings unparalleled visible changes within the nucleus and cytoplasm. In 

prokaryotes, it occurs by simple fission where the parent cell divides into daughter cells. 

In eukaryotes, cell division involves karyokinesis (division of nucleus) followed by 
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cytokinesis (division of cytoplasm of the cell). Cell division is considered to be the 

source of tissue repair in multicellular organisms (Kinfield, 1999).   

Prokaryotes such as bacteria and simpler eukaryotes such as yeast use a relatively 

simple form of asexual reproduction called binary fission, a process of cell division. It is 

characterized by the replication of DNA followed by splitting of the parent cell into two 

daughter cells (Weiss, 2004). In eukaryotes, cell division can also occur through either 

mitosis or meiosis. Mitosis or somatic cell division is required for growth and asexual 

reproduction whereas, meiosis is required for sexual reproduction. Eukaryotic cell 

division is characterized by the formation of bipolar spindle to segregate the replicated 

genetic material into separate nuclei. The spindle divides the nuclei, and ensures the 

formation of cell plate for the partition of cytoplasm into two daughter cells (Pines and 

Rieder, 2001). In mitosis, chromosomes separate and form into two identical sets of 

daughter nuclei followed by cytokinesis. In other words, in mitosis the parent cell divides 

into two genetically identical daughter cells. Unlike mitosis, meiosis is a process of 

reductional cell division in which the diploid chromosome number is reduced to haploid 

and is essential for sexual reproduction (Kleckner, 1996).   

1.2 Stem cells 

Stem cells (SCs) are defined as clonogenic cells that have the ability to perpetuate 

themselves through self-renewal and differentiate into specialized cells (Sylvester and 

Longaker, 2004). They are considered as units in evolution by natural selection as they 

have remarkable potential to develop into different cell types in the body during early life 
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and during growth of an organism. SCs represent natural units of embryonic development 

and tissue regeneration (Weissman, 2000).  

1.2.1 Biological role and properties of stem cells 

Stem cells are different from other kinds of cells in the body. The essential 

characteristics that a cell must demonstrate for being considered as stem cell are: it must 

be capable of asymmetrical cell division, produce an exact multipotent replica cell, and 

form an additional progeny cell that can perform a more specialized function (Weissman, 

et al., 2001). All stem cells regardless of their source have two general properties 

including, self-renewal capability by cell division and ability to differentiate into tissue- 

or organ-specific cells.  

1.2.1.1 Stem cells are self-renewing 

Most specialized cells like muscle, blood and nerve cells do not replicate by 

themselves and hence their supply is maintained by stem cells. Thus, cells are 

continuously replenished as they die. Based on the self-renewal interval, SCs are divided 

into long-term subset (capable of indefinite self-renewal) and short-term subsets (having 

definite self –renewal interval) (Weissman, 2000). They help in maintaining the process 

of homeostasis, where cells die, either by natural death or injury, and they are replenished 

with new cells (Fuchs and Segre, 2000).  

1.2.1.2 Stem cells are unspecialized and differentiate into more specialized cells 

One of the characteristic properties of stem cells is that they do not perform all 

functions associated with differentiated cells. For instance, a stem cell cannot perform the 
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function of a heart muscle cell or red blood cell. However, they can give rise to 

specialized cells including nerve or blood or heart muscle cells by the process of 

differentiation. Differentiation is the process by which a less specialized cell becomes a 

more specialized cell and this ability of a SC is called as potency. SC can be either 

totipotent, or pluripotent, or multipotent. The term totipotent suggests that their potency 

is total and they can differentiate into every cell type of the body to form an entire 

organism. Pluripotent SCs such as embryonic stem cells are capable of differentiating 

into all cell types of the body except placenta. Multipotent SCs can give rise only to a 

limited number of cell types (Mitalipov and Wolf, 2009).   

1.2.2 Origin of stem cells 

During embryogenesis, a single fertilized oocyte, formed by the union of sperm 

and egg, gives rise to a multicellular organism with differentiated cells and tissues to 

perform specified functions. Totipotent stem cells occur at the earliest stage of embryonic 

development as the fertilized oocyte remodels into a totipotent zygote (Stitzel and 

Seydoux, 2007). The totipotent zygote undergoes differentiation to form a hollow sphere 

of cells called blastocyst, with an outer layer of cells and an inner cell mass (ICM) inside 

the sphere.  The outer layer forms the placenta and other supporting tissues during fetal 

development and the ICM gives rise to progenitor/ somatic and primitive germ-line SCs. 

1.2.3 Types of stem cells 

In vertebrates, stem cells are traditionally characterized into two groups.  They are 

pluripotent embryonic stem (ES) cells and multipotent stem cells, which are generated 

from ES cells (Figure 1).  The first group namely, ES cells, derived from inner cell mass 
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of the blastocyst are capable of generating all differentiated cell types in the body. The 

second group viz., multipotent stem cells, are organ- or tissue-specific stem cells that are 

capable of generating the cell types comprising particular tissue in embryos and in some 

cases, adults.  These are intermediate stem cells that are restricted to the lineage of a 

particular organ. Conventional examples of multipotent stem cells include hematopoietic 

stem cells (HSC) that generate cell types of blood and immune system, and neural stem 

cells (NSC) (Anderson, et al., 2001). 

 
Figure 1 Stem cell hierarchy 

Fertilization of oocyte leads to the formation of a totipotent zygote. By repeated cell 
division, zygote proceeds onto totipotent morula and further onto pluripotent blastocyst 
stage. Blastocyst is characterized by the outer layer of cells that surround an inner cell 
mass (ICM). Only ICM retain the capacity to build up all three primary germ layers, 
(endoderm, mesoderm, and ectoderm) and the primordial germ cells (PGC) that produces 
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male and female gametes. The multipotent and progenitor cells formed from the three 
germ layers replace lost or injured cells in adult tissues and organs (Wobus and Boheler, 
2005).  
 

1.3 Embryonic stem cells 

During fertilization, when a sperm fertilizes an egg, the resulting single celled 

zygote begins to divide and multiply at a rate much faster than that observed in somatic 

cells. These primordial embryonic cells have potential to form into a complete organism. 

Hence, they are referred to as totipotent stem cells. Within few days of fertilization, these 

rapidly dividing cells form a hollow sphere, called as blastocyst.  The stem cells derived 

from the ICM of totipotent blastocyst stage are known as ES cells. They differentiate into 

all somatic cell lineages as well as into male and female germ cells (Figure 1). 

Pluripotency is one of the characteristic features of ES cells that differentiate them from 

adult stem cells. ES cells are essentially immortal and can indefinitely produce fully 

operational ES daughter cells (Wobus and Boheler, 2005). 

The essential properties of ES cells include derivation from the pre-implantation 

embryo, prolonged undifferentiated proliferation and stable developmental potential to 

form all the three embryonic germ layers (ectoderm, endoderm, and mesoderm). The 

characteristics that are essential to differentiate ES cells from embryonic carcinomal (EC) 

cells include: normal diploid karyotype, ability to colonize without causing tumors and 

developmental anomalies, and formation of normal gametes when differentiated into the 

germ-line (Suda, et al., 1987).  

ES cells can differentiate into any cell type in the body while, adult SC are 

multipotent and can differentiate into only limited number of cell types.  Under controlled 
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conditions, ES cells can be propagated in-vitro, thus allowing them to be potential tools 

in research and regenerative medicine. 

1.4 Multipotent stem cells 

Adult stem cells are found in specialized organs and adult tissues. They occur in 

mature tissues such as bone marrow, brain, and gut. For example, bone marrow contains 

two kinds of stem cells, one population called hematopoietic stem cells (HSC), that form 

all types of blood cells in body and second population called mesenchymal stem cells 

(MSCs), that form cells such as, osteoblasts, chondrocytes and adipocytes (Colter, et al., 

2001). The main function of adult SCs is to replenish cells in the specific organs and 

tissues in which they are found and maintain stable state of specialized tissues. In order to 

replace lost cells, they generate intermediate cells called progenitor or precursor cells that 

undergo divisions coupled with maturation to form fully specialized cells.  

1.4.1 Neural stem cells 

Neural stem cells (NSCs) are self-renewing, multipotent cells that have the ability 

to differentiate into all the major cell types of adult central nervous system (Kennea and 

Mehmet, 2002). The existence of stem cells in central nervous system (CNS) was 

reported in early 1990s. They were first isolated from the embryonic CNS and peripheral 

nervous system (PNS). After the discovery of embryonic NSCs, adult NSCs were isolated 

from adult neurogenic regions, the hippocampus, the subventricular zone (SVZ), and in 

non-neurogenic regions including spinal cord (Lois and Alvarez-Buylla, 1993).  

However, they were reported to have limited differentiation potential compared to ES 

cells (Price and Williams, 2001). To be considered as SC in CNS, the cells must have the 
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potential to differentiate into neurons, astrocytes, and oligodendrocytes and to self renew 

to provide sufficient numbers of cells in the brain. 

Neural differentiation occurs soon after germ layer differentiation and all the 

neural tissues are formed from ectoderm germ layer. The tissues of CNS are derived from 

neural plate formed during neurulation, a process of formation of dorsal nerve cord and 

eventual formation of CNS.  

1.5 Stem cells in therapy and research 

The potential of stem cell biology lies in its promising advancement towards 

regenerative medicine. Exploiting the self-renewal and differentiation properties of ES 

cells has made the prospect of tissue regeneration a potential clinical reality (Sylvester 

and Longaker, 2004).  It is cardinal to channel multipotent SCs with high proliferative 

capacity into specified differentiation programs within the body. NSCs remain as a hot 

area of research as they have great potential to treat neurodegenerative disorders such as 

Alzheimer’s, multiple sclerosis, spinal cord injuries, and Parkinson’s disease (Fuchs and 

Segre, 2000).  

ESC derived NSCs can be manipulated by cell culture conditions to generate 

different types of neurons and glial cells which makes NSCs useful for transplantation. 

Commonly encountered neurological disorders including Parkinson’s disease (PD) and 

amyotrophic lateral sclerosis (ALS) are characterized by selective loss of dopaminergic 

(DA) and cholinergic neurons respectively. One way of exploiting the replacement 

strategy of NSCs is to generate these neurons in sufficient quantities in them (Bithell and 

Williams, 2005). Lee et al reported the increase in number if DA and serotonergic 
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neurons with the addition of ascorbic acid (AA), Shh (sonic hedgehog) and FGF8 (Lee, et 

al., 2000).   

1.6 Neurotransmitters involved in stem cell development 

Neurotransmitters are the chemical substances that transmit signals from one 

neuron to the next across synapses.  Acetylcholine is the first neurotransmitter to be 

discovered in fertilized sea urchin eggs in 1953. The neurotransmitters such as serotonin, 

dopamine, noradrenaline, adrenaline, acetylcholine and gamma-amino butyric acid are 

shown to be involved in developmental processes of animal species. These substances 

play a crucial role throughout the development of an organism, including stages prior to 

development of nervous system. Hence, they are referred to as “prenervous” 

neurotransmitters. Buznikov et al substantiated the role of neurotransmitters as 

“morphogens” during the development.   Morphogens are the developmental signals that 

exert specific effects on cell receptors (Buznikov, et al., 1996). Neurotransmitters act as 

morphogens to exert their effects through receptors and signal transduction mechanisms 

similar to those in adult nervous system.  This suggests the possibility of specialized roles 

played by neurotransmitters in synaptic transmission to have evolved during course of 

development. Serotonin (5-hydroxytryptamine, 5-HT) is one well-known 

neurotransmitter that might play a major role in the stem cell development.  In vitro 

studies reveal that serotonin signaling participates in the regulation of development even 

before onset of neurogenesis (Buznikov, et al., 2001).  
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1.7 Gene regulation 

In cells, the gene expression process is dynamic and its regulation is the most 

important event involved in avoiding abnormal gene expression. Gene regulation governs 

all the essential biological processes and used to control the transformation of 

information in genes into gene products. Hence, impairment of gene regulation can lead 

to many diseases. 

Gene regulation at the transcriptional level plays a crucial role in any biological 

process because it controls many events such as gene expression initiation, elongation 

and termination events. In this process, the cell receives signals from either external or 

internal environment and mediates the gene regulation machinery accordingly. This 

process is very common in both prokaryotes and eukaryotes; however the mechanisms of 

gene regulation are different. 

In prokaryotes, the gene expression depends on the availability of nutrients, 

physicochemical properties in the surrounding environment. Prokaryotes that live in 

varying niches have to develop highly efficient regulatory mechanism to survive in those 

environments whereas endosymbiontic bacteria living in habitats that do not vary a lot 

have very simple regulatory mechanisms. The complexity of gene regulation increases 

with the variability of the habitat (Silva-Rocha and de Lorenzo, 2010). Prokaryotes 

adopted a typical regulatory mechanism called as “operon” in which a set of genes is 

controlled by a common promoter and common operator. The sigma unit of RNA 

polymerase initiates the transcription and the core sub unit of RNA polymerase elongates 

the transcription. In addition to RNA polymerase activity, binding of activators in the 
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promoter or catabolite gene activator protein (CAP) region and repressor binding in the 

operator region facilitate transcriptional regulation (Choudhuri, 2004; Silva-Rocha and de 

Lorenzo, 2008; Zhou and Yang, 2006). 

In eukaryotes, a very small number of genes are expressed at any given point of 

time. The rate of gene expression depends on the cell requirement for a specific protein. 

However, abnormal gene expression causes several diseases including cancer and hence 

regulation of gene expression is very crucial in many biological process. In eukaryotes, 

most of the gene regulation occurs at the level of transcription and for gene expression 

regulation, eukaryotes employ diverse mechanisms such as chromatin condensation, 

DNA methylation, transcriptional initiation, alternative splicing of RNA, mRNA 

stability, translational controls, several forms of post-translational modification, 

intracellular trafficking, and protein degradation. Among these mechanisms, transcription 

initiation is the most common controlling mechanism (Wray, et al., 2003). In eukaryotes, 

the transcription process is dependent on accessibility of chromatin to the transcription 

machinery. Hence, these organisms have adopted different chemical mechanisms such as 

methylation, acetylation and phosphorylation to alter the chromatin structure and to 

provide favorable environment to transcription (Lauria and Rossi, 2011; Luco, et al., 

2011).  

The components involved in the transcriptional regulation are known as 

regulatory components. There are five types of regulatory components that regulate the 

transcription by RNA polymerase including specificity factors, repressors, activators, 

transcription factors and enhancers (Austin and Dixon, 1992). Among these, specificity 

factors such as sigma factor are commonly used by prokaryotes whereas enhancers and a 
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variety of transcription factors are used by eukaryotes than by prokaryotes (Austin and 

Dixon, 1992; Choudhuri, 2004). During transcription, very limited chromatin is exposed 

to transcription machinery and specifically, in eukaryotes, a group of components work in 

various combinations and regulate the gene expression (Weake and Workman, 2010).  

The regulatory regions in higher eukaryotes exist either adjacent to 5’ end of the 

gene, called as promoter region, or sometimes very far away from transcription start site 

(TSS) known as enhancers that bind to enhancer regions of the genes (Abnizova and 

Gilks, 2006). Mostly, these regulatory components are small DNA binding proteins often 

referred as transcription factors (TFs) that will bind to promoter regions of genes and 

guide the RNA polymerase for transcription. Depending upon the signal received by cell, 

these TFs are either act as activators or repressors or enhancers (Silva-Rocha and de 

Lorenzo, 2008).  

TFs are sequence specific and will bind to specific regions called transcription 

factor binding sites (TFBSs). These TFBSs could be located anywhere in the genome 

however, they are mostly located in the upstream regions of transcriptional start site 

(TSS). Once the TF is bound to its TFBS, it recruits transcriptional basal complex near 

the TSS and controls transcription (Narlikar and Ovcharenko, 2009).  

Transcription regulation studies are complex in higher eukaryotes because of the 

huge genome size and identification of regulatory components is often very difficult 

(Noonan and McCallion, 2010). Moreover, sparse and uneven distribution of TFBS in the 

genome, and short and imprecise location of TFBS makes it very difficult to identify in 

the genome (Wray, et al., 2003).  
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Generally, in eukaryotes, a number of TFs act in combination to get the desired 

gene expression. These combinations of TFs and their corresponding TFBSs are called as 

regulatory modules. A regulatory module that contains homotypic (with same TFs) and 

heterotypic (with different TFs) clusters of TFs are termed as cis-regulatory module 

(Gupta and Liu, 2005).  

1.8 Trends and challenges in transcriptional regulation 

Transcriptional regulation studies are indeed complex processes as it involves 

myriad of TFs that cross communicate with each other and drives the biological 

processes. Furthermore, the length of human genome, lack of universal structural feature 

of promoters, TFs binding specificity, and TFBS uneven distribution makes these studies 

more complex.  

Many techniques have been implemented to identify the DNA-protein interactions 

viz., nitrocellulose-binding assay, electrophoretic mobility shift (EMSA), enzyme-linked 

immunosorbent assay (ELISA), DNase I footprinting, and DNA-protein cross linking 

(DPC), chromatin immunoprecipitation (ChIP) (Narlikar and Ovcharenko, 2009). These 

biochemical assays give the quantitative measurement of the interactions.  

Conventionally, the effects of regulatory components on gene regulation are studied by 

knocking down the respective gene, or TF that is the gene, or TF is silenced/removed 

from the genome; followed by the measurement of phenotypic changes (Bogarad, et al., 

1998; Cox, et al., 2006; Tuoc, et al., 2009). Most of the earlier studies were focused on 

single macromolecule such as a gene or TF. However, focusing on a single component 

may not give the best solution for a given hypothesis since biological processes occur at 
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systems level and each process involves more than a single component. Hence, this has 

led to a trend-shift towards high-throughput techniques. 

In high-throughput methods thousands of genes are tested in a single experiment. 

Transcriptional regulation often involves multiple components and hence the use of high-

throughput techniques would be a better choice. Many high-throughput techniques have 

been proposed and implemented to identify regulatory components at genomic scale 

(Balaji, et al., 2008; Hudson and Snyder, 2006). Recently, high-throughput techniques 

such as microarray, ChIP-chip, and ChIP-seq are widely used techniques in 

transcriptional regulation studies (Narlikar and Ovcharenko, 2009). Large amounts of 

data are generated as a result of these experiments and manual inspection or analysis of 

this data is almost impossible. Hence, the best way to deal with this problem is the use of 

computational methods. Latest advances in computer technology and the cheaper cost of 

computational resources helped researchers to develop highly efficient and powerful 

algorithms to handle and analyze this high-throughput data. Databases such as Genbank, 

European Molecular Biology Laboratory (EMBL), UCSC genome browsers, Ensembl, 

and Pubmed are commonly used to store and retrieve the biological data across the globe 

(Stein, 2008). 

1.9 Transcriptional regulation studies 

The study of the molecular mechanisms regulating gene transcription aids in 

understanding the differential expression of genes. The next step after identifying the 

thousands of gene signatures in the various genome projects is to dissect the 

transcriptional control regions and regulatory mechanisms. Understanding the 
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transcriptional regulation of approximately 30,000-40,000 mammalian genes is one of the 

central goals of gene expression studies (Antequera and Bird, 1993). During the 

mammalian ES cell development, 200 unique cell types are formed from single totipotent 

cell. Hence, fundamental understanding of the transcriptional regulatory circuitry 

responsible for pluripotency and self-renewal in ES cells is critical to explore the 

therapeutic potential of these cells (Pera and Trounson, 2004).  

Characterizing the transcription factor binding sites (TFBSs) is the key to 

understand gene regulation. Regulatory regions in eukaryotes are divided into promoters 

(that are close to 5’ end of gene) and enhancers or cis-regulatory modules (CRMs) 

(Abnizova and Gilks, 2006). The biological phenomena underlying the various methods 

to recognize regulatory regions are mainly based on the facts that: transcription factors 

(TFs) tend to regulate gene activity in distinct regulatory modules, individual TFs have 

multiple binding sites within a regulatory module and binding sites within a regulatory 

module tend to be spatially clustered.  

  The methods for identification of regulatory regions of DNA are briefly divided 

into six groups: recognition of regulatory DNA regions based on statistics of known 

TFBS, based on evolutionary conservation by phylogenetic footprinting, content based 

methods, motif recognition and discovery, combination of experimental information with 

statistics of DNA sequence (Abnizova and Gilks, 2006). The first method based on 

statistics of known TFBS exploits the clustering of known TFs from major sources of 

TFBS such as TRANSFAC, JASPAR etc. Phylogenetic footprinting assume that 

regulatory regions are highly conserved across evolutionarily related genomes 

(Dermitzakis and Clark, 2002). However, the performance of this method depends on the 
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evolutionary distance between species being concerned and is not widely used. Content-

based methods are based on the difference of local nucleotide composition between 

regulatory and non-regulatory DNA regions. This difference in nucleotide composition is 

attributed to the multiple TFBS in the regulatory regions (Abnizova and Gilks, 2006).  

Motif recognition and discovery method of regulatory region recognition is 

mainly divided into two large categories: supervised or de novo method and unsupervised 

or ab initio method. Supervised methods are based on known TFBS and constitute 

screening of a set of DNA against precompiled library of motifs to find statistically 

significant motifs in the given sequences. On the other hand, there is no prior knowledge 

of TFBS sequences in unsupervised methods and these methods search for recurrent 

patterns of any kind. Combining the experimental information with the computational 

approach helps in filling the uncertainty of whether the predicted CRM possess the 

expected function. Of all the methods, combined experimental and statistical approaches 

are most promising ways to increase the precision of the identified regulatory regions 

(Abnizova and Gilks, 2006).  

1.10 Techniques in functional genomics studies 

The complete sequencing of several genomes, including that of the human, has 

signaled the beginning of a new era in which scientists are becoming increasingly 

interested in functional genomics; that is, uncovering both the functional roles of 

different genes, and how these genes interact with, and/or influence, each other. 

Functional genomics is an important aspect of genomics that refers to the development 

and application of global (genome-wide or system-wide) experimental approaches to 
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understand the function of genes and other parts of the genome. Even though the Human 

Genome Project identified all the approximate 20,000-25,000 genes in human DNA, 

many questions such as the function of most of the genes still remain unanswered.  The 

rate at which biological information is acquired depends on the research techniques 

employed. Various techniques starting at the level of DNA, RNA and protein aid in 

understanding the function of the organism’s genes and its products. The techniques 

include: microarray experiments, knockout experiments, and the most recent deep DNA 

sequencing techniques such as ChIP-seq and RNA-seq (Wold and Myers, 2008).   

Microarrays offer the promise of rapid accurate measurement of gene expression 

under many experimental conditions.  Analysis of microarray gene expression data 

reveals differentially regulated genes. Development of microarrays has permitted global 

analysis of gene expression at the transcript level and provided a glimpse into the 

coordinated control and interactions between genes (Schulze and Downward, 2001). 

Microarray is a 2D array on a solid substrate that assays large amounts of biological 

material using high throughput screening methods. Different types of microarrays include 

DNA microarrays, protein microarrays, tissue microarrays, cellular microarrays, chemical 

compound microarrays, antibody microarrays, and carbohydrate arrays. They facilitate 

the parallel execution of experiments on a large number of genes simultaneously (Butte, 

2002). Various microarray platforms include: Affymetrix, Illumina, Agilent, AlphaGene, 

Ciphergen Protein Chip Products. The principle of microarray experiment is that mRNA 

from a given cell or tissue is used to generate a labeled sample, referred to as ‘target’, 

which is hybridized in parallel to a large number of DNA sequences, immobilized on a 

solid surface in a microarray (Schena, et al., 1995). The microarray is then scanned and 
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the expression levels are measured. Microarray data analysis is conducted using 

bioinformatics tools and image processing softwares (Kerr and Churchill, 2007). 

With the advent of next-generation sequencing technologies in 2005, there had 

been a tremendous impact on the field of functional genomics (Morozova and Marra, 

2008). The basic next-generation techniques include conventional ChIP experiments, 

RNA seq, and GRO-seq (global run-on sequencing) etc. Hence, whole-genome 

microarrays and ultra-high-throughput sequencing techniques are mostly used in gene 

regulation studies (Birney, et al., 2007; Wold and Myers, 2008).   

Global pattern of protein-DNA interactions can be discovered either by ChIP-chip 

or by ChIP-seq (Lieb, 2003; Valouev, et al., 2008). Chromatin immunoprecipitation 

(ChIP) is an important assay to study protein-DNA interactions and gene regulation. It is 

an experimental method to determine the TFBS in the genomic sequence. In a typical 

ChIP experiment, the DNA is sheared into short fragments. The antibody specific to the 

TF of interest is added to the sheared DNA fragments followed by separation of the DNA 

fragments that have TFBS of interest. In ChIP-chip, immunoprecipitation (IP) step is 

followed by microarray hybridization whereas, in ChIP-seq, IP is followed by sequencing 

of millions of DNA fragments (Ho, et al., 2011). However, ChIP-chip is being replaced 

by ChIP-seq as the former has various disadvantages such as low resolution, high noise 

etc (Johnson, et al., 2008). Other techniques include, RNA-seq, one of the recently 

developed approaches that provide far more precise measurement of transcripts and aid in 

identification of in a cell.  
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1.11 Computational advances in transcriptional regulation 

Deeper knowledge of gene regulation is indispensable for better understanding of 

almost all life processes. Despite the global interest in elucidating the mechanisms of 

transcriptional regulation, a comprehensive source of strategic, conceptual, and technical 

information is not very well outlined. Identification of regulatory regions is desirable but 

very difficult because of lack of known properties of DNA, degeneracy of TFBS, lack of 

evolutionary understanding of transcriptional regulation and complicated structure of 

regulatory regions. Furthermore, major portion of human genome constitutes non-coding 

regions, which act as TFBS contributing to false positives in the results. Hence, finding 

the motifs in regulatory regions is described as “finding a needle in a haystack”. The 

bioinformatics algorithms developed lately accelerated the identification of regulatory 

regions. Various databases are being developed to order the published data on eukaryotic 

gene transcription regulation making the data available for gene regulation studies. They 

include TRANSFAC, TRANSCompel, JASPAR, GeneSigDB, List of lists-annotated 

(LOLA), MSigDB, and Transcriptional regulatory element database (TRED) etc.  

TRANSFAC is a database on transcription factors, their binding sites, nucleotide 

distribution matrices and regulated genes. TRANSCompel has composite elements of the 

genes.  The information in them is extracted from experimentally curated data (Matys, et 

al., 2003; Matys, et al., 2006). JASPAR is an open access database of annotated, high 

quality, matrix based TFBS profiles. It offers significant advantages over other resources. 

TRANSFAC contains a redundant set of binding profiles of diverse quality where as 

JASPAR is a non-redundant collection of reliable binding profiles (Bryne, et al., 2008; 

Portales-Casamar, et al., 2010; Sandelin, et al., 2004; Vlieghe, et al., 2006).  
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MSigDB is one of the largest collections of gene signatures. It has curated gene 

signatures from 344 publications and provides them as annotated lists of genes 

(Subramanian, et al., 2005).  LOLA database contains 47 gene lists and gene list input 

format is limited to Entrezgene or Affymetrix probeset identifiers (Cahan, et al., 2005). 

GeneSigDB is a manually curated database of gene expression signatures. It has more 

than 575 transcribed gene signatures that are manually extracted from more than 850 

publications and is focused on cancer and stem cells gene signatures (Culhane, et al., 

2010). TRED is a collection of cis- and trans-regulatory elements and its distinguishing 

features include: it uses an automated pipeline and curation to map the gene transcription 

start site (TSS) and core promoters of human, mouse and rat genomes (Jiang, et al., 2007; 

Zhao, et al., 2005).  

In this study, we performed transcriptional regulation analysis using the high-

throughput microarray data to understand the role of serotonin in ES cells. This study 

attempts to identify key regulatory components and regulatory modules that drive the 

regulation of serotonin responsive genes involved in ES cells differentiation.  
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CHAPTER TWO: BACKGROUND 

2.1 Role of serotonin in ES cell differentiation 

Serotonin (5-HT) is a monoamine neurotransmitter that is synthesized from the 

amino acid L-tryptophan in serotonergic neurons and stored in vesicles of central nervous 

system. It is primarily found in gastrointestinal tract, platelets and in the CNS of animals 

(Lauder, et al., 1981).  During the early stages of embryo, the presence of 5HT can be 

attributed either due to its synthesis from tryptophan in the presence of the enzymes 

tryptophan hydroxylase, aromatic amino acid decarboxylase or by uptake from 

surroundings. Basu et al confirmed the presence of serotonin in pre-implantation embryos 

and reported that it is localized to the mitochondria (Basu, et al., 2008). Even before its 

role as a neurotransmitter in mature brain was discovered, 5-HT has been shown to play 

an important role in regulating brain development. Monoamine neurotransmitter systems, 

in particular, serotonin is present relatively early during the development of mammalian 

brain (Lauder and Krebs, 1978).  In fact, studies on the development of serotonin 

containing neurons in various species such as rat, chick, non-human primates and humans 

revealed that the levels of serotonin are higher in early development rather than in adult 

systems (Lauder, 1990).  The early appearance of serotonin in target regions, ahead of 

other monoamines might be involved in the regulation and development of other 

monoamines, in particular dopamine (Whitaker-Azmitia, 2001).  

2.2 Serotonin in early development 

5-HT is reported to regulate early cleavage divisions in rodent embryo (Burden 

and Lawrence, 1973). The level of 5-HT (exogenous or endogenous) in pre-implantation 
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embryo plays an important role in autocrine and paracrine regulations of mouse embryo 

development (Il'kova, et al., 2004). In another study, 5-HT was added to whole embryo 

culture followed by anti-5-HT treatment to detect the serotonin uptake in mouse embryo. 

It was reported that there is a transient expression of 5-HT uptake sites during the early 

stages of gestation in craniofacial epithelia, hindbrain and myocardium (Buznikov, et al., 

1996).  Serotonin appears to auto regulate development of serotonergic neurons and can 

initiate and autoamplify its own synthesis in hypothalamus.  It plays an important role in 

neurogenesis, neuronal differentiation, axon myelination and synaptogenesis. In vivo 

studies on Drosophila mutants and adult snails depleted of 5-HT, resulted in aberrant 

growth of serotonergic and other axons (Baker, et al., 1993; Budnik, et al., 1989).  These 

studies suggest that altered levels of 5-HT may affect the development of serotonergic 

system in vertebrate and invertebrate embryos (Buznikov, et al., 1996).   Removal of 

serotonin during the early fetal development in rats resulted in reduction of number of 

neurons in adult brain (Brezun and Daszuta, 1999; Lauder and Krebs, 1976).  Fukumoto 

et al reported the presence of 5HT in early chick and frog embryos and observed its role 

in embryonic patterning (Fukumoto, et al., 2005). They also suggested that serotonergic 

signaling which might be responsible for regulating left-right patterning in vertebrate 

embryos.  

Tryptophan hydroxylase (TPH) is the only known 5-HT synthesizing enzyme in 

adult neuronal and endocrine cells. Administration of para-chlorophenylalanine (PCPA), 

an inhibitor of TPH in pregnant mice, resulted in the arrest of cytokinesis at zygote stage. 

From this, it is deduced that 5-HT is of extraordinary importance in the first steps of 

mammalian embryonic development. In later stages of pregnancy, depletion of 5-HT due 
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to PCPA administration resulted in abnormal organogenesis affecting development of 

brain, eyes, vascular system and jaws (Khozhai, et al., 1995).  This suggests that 5-HT is 

required during different phases of development from gametes over fertilized eggs and 

cleavage divisions to gastrulation and neurulation.  

Walther et al reported that ES cell extracts contain easily detectable amounts of 5-

HT (Walther and Bader, 1999). From their study, they concluded that ES cells could be 

used as model cell line for early embryogenesis with respect to the expression of genes in 

serotonergic system. Hence, ES cells are appropriate models for identification of gene 

products of neurotransmission systems and thus can be used for detailed study of 

neurotransmitter actions in prenervous ontogenesis (Walther and Bader, 1999). These 

studies also focus on the importance of monitoring the prescription of drugs during 

pregnancy as, several compounds intervene with the serotonergic systems and other 

neurotransmitters leading to improper development of embryo.  

It is evident that serotonin plays a cardinal role in the development of mammalian 

brain. It is also evident that serotonin plays a role in early mammalian development 

before the nervous system appears. Hence, exploring the transcriptional regulatory 

elements and understanding the genes that govern the special properties of ES cells is 

interesting and of importance.  

2.3 High throughput studies in ES cells 

 Various high throughput studies have been carried out in ES cells to explore the 

genes that contribute to ‘stemness’ of these cells.  These studies were carried out in ES 

cells, neuronal precursor cells, embryonic fibroblasts or hematopoietic stem cells. 
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Mikkelson et al performed a microarray to study the expression profiles of murine ES 

cells along with neuronal precursors, embryonic fibroblasts (Mikkelsen, et al., 2007). The 

data is publicly available under GSE8024 record for detailed analysis of the differentially 

expressed genes in ES cells over other lineages. Ramalho-Santos et al reported 1676 

genes that were enriched in ES cells compares to neural and hematopoietic SCs. They 

also reported 133 genes to be enriched in all the three SCs suggesting the possible role of 

these genes in contributing the ‘stemness’ of these cells (Ramalho-Santos, et al., 2002). 

Other studies on ES cells include Ivanova et al, Sperger et al, and Fortune et al (Fortunel, 

et al., 2003; Ivanova, et al., 2002; Sperger, et al., 2003) and reported genes enriched in ES 

cells. Roma et al compared Ramalho-Santos et al, Fortune et al, and Ivanova et al studies 

on gene expression profiling in ES cells and reported 332 genes common to these studied 

that were enriched in ES cells (Roma, et al., 2007). However, there are no functional 

genomic studies on exploring the role of serotonin in ES cells. 

2.4 Knowledge gap and motivation 

Most of the ESCs studies are focused on the knock-down or addition of single 

component such as a receptor or gene or chemical and the corresponding phenotypic 

changes. However recently, the functional genomic studies have begun to focus on whole 

genome as well since each biological process is mediated by more than a single 

component. High-throughput techniques such as microarrays and deep-sequencing 

methods provide a new approach to look at multiple components and their levels and 

roles. Very few high-throughput studies have been reported in the ESCs arena and their 

differentiation (Fortunel, et al., 2003; Ivanova, et al., 2002; Roma, et al., 2007; Sperger, 

et al., 2003). 
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Furthermore, the data generated from these high-throughput methods is huge in 

amount and hence robust computational methods have become necessary and offer a 

great potential to handle such data. Many computational methods have been developed 

and are being widely used in transcriptional regulation studies however very few ESCs 

studies have implemented these in silico methods to interpret the results. 

It has become recently evident that serotonin plays a cardinal role in ES cells. 

There is a lack of knowledge about the downstream and transcriptional target genes that 

are regulated by serotonin. Hence, exploring the transcriptional regulatory elements and 

understanding the genes that govern the special properties of stem cells is quite essential. 

In this study, we implemented a data-driven approach to identify transcriptional 

regulatory elements that regulate gene expression patterns of 5HT responsive genes.  

2.5 Goals and objectives 

 The main goal of our study was to understand the role of serotonin in ES cells. In 

order to achieve this goal, we formulated four objectives: 

1. To identify differentially expressed gene signatures using stringent statistical 

techniques. 

2. To identify and analyze transcriptional regulatory elements associated with 5-HT 

involved ES cell differentiation. 

3. To compare our dataset with public domain data and perform further literature 

validation. 

4. Perform functional annotation of differentially expressed 5-HT responsive genes. 
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CHAPTER THREE: METHODS 

We propose to explore the transcriptomic signatures that are regulated by 

serotonin in ES cells. To prove that the TF binding motifs identified from computational 

approaches are associated with the role of 5-HT in ES cells, we implemented an in silico 

experimentation protocol (Figure 2). The sections in this chapter describe the various 

stems illustrated in this flow chart. The datasets used in this study and different 

experimental methods and algorithms are also described.  

3.1 Microarray experiment 

Considerable homology exists between mouse and human genes and hence we 

used mouse ES cells in our study. The microarray used in our study were done by 

Genotypic and has duplicates of four samples viz., control, 5-HT treated, P+C treated, 

and P+C+5HT. The samples from each treatment were prepared, RNA was isolated and 

cDNA was generated, biotinylated and hybridized to the Agilent microarray platform. 

Parachlorophenylalanine (P) and Carbidopa (C) inhibit the biosynthesis of 5-HT. 

Parachlorophenylalanine inhibits tryptophan hydroxylase, the rate-limiting enzyme in the 

biosynthesis of serotonin. It hydroxylates tryptophan to 5-hydorxytraptophan. Carbidopa 

inhibits the next step in the biosynthesis of 5-HT by inhibiting the decarboxylation of 5-

hydroxytryptophan by aromatic acid decarboxylase or DOPA decarboxylase. Together, 

they should sharply decrease the endogenous levels of serotonin in ES cells.  

The ES cells that were not treated with 5-HT or P and C were considered as 

control, viz., sample 1. The second sample included the ES cells that are treated with the 

exogenous addition of 5-HT (denoted as 5-HT). The third sample had the murine ES cells 
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treated with P and C to block the synthesis of endogenous 5-HT (denoted as P+C) and 

fourth sample was treated with inhibitors of endogenous 5-HT synthesis (P, C) followed 

by the treatment of exogenous 5-HT (denoted as P+C+5HT).  

The second sample, viz., 5-HT treated, helps in identifying the genes that are 

regulated by both exogenous and endogenous 5-HT. In third sample, P+C, we are 

blocking the synthesis of endogenous serotonin and observing changes in gene 

expression patterns. This sample will give us the genes that are differentially expressed 

by blocking the endogenous 5-HT. In sample 4, P+C+5HT, we have blocked endogenous 

5-HT synthesis and then added serotonin exogenously to identify the genes that would be 

strictly regulated by exogenously added 5-HT. 
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Figure 2: Workflow of experimental analysis to understand the role of serotonin 
responsive genes in ES cell differentiation. 

The raw Agilent data was preprocessed and MA plots, box plots were used to determine 
the quality of the data and to monitor the effect of normalization. After preprocessing, 
stringent filtering strategies (One way ANOVA, volcano plots and Genotypic analysis) 
were implemented to find differentially expressed genes. We considered the genes that 
were 1.5 fold up and down regulated, and p-value less than 0.05 in control/5HT and 
P+C/P+C+5HT conditions as 5HT induced, 5HT suppressed genes respectively (shown 
in box in middle right, outlined with dotted line). Gene ontology analysis was performed 
to explore the functional annotation of differentially expressed 5HT responsive genes. 
Motif prediction analysis was performed on the filtered genes and random sequences 
using MEME and MotifScanner. The results were further validated by comparing with 
Public domain data and by literature validation.  
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3.2 Quality assessment 

The quality of the chip was assessed in the R programming environment 

(Gentleman, et al., 2004; Team., 2007), bioconductor software and GeneSpring by using 

raw data as input. Bioconductor is free and open source software based on the statistical 

R programming language for comprehensive analysis of genomic data. Limma (Linear 

models for microarray data) is one of the bioconductor software packages used for the 

analysis of gene expression microarray data (Gentleman, et al., 2004). The data files from 

Agilent contain data from image analysis of scanned arrays and can be either one-colored 

or two-colored based on number of samples hybridized to every array (number of 

fluorescent dyes used). The dataset used in our study is a one-colored and the data file 

contains only one channel (green or red channel). Determining the quality of the dataset 

is a crucial step before proceeding to quantitative analysis. The exploratory data analysis 

is the commonly used method for quality assessment. 

3.2.1 Exploratory data analysis 

For Agilent one-color arrays there are two very commonly used quality control 

tools, namely box plot and MA plot. It is always better to produce quality control plots 

before and after normalization of data in order to monitor the effect of normalization.  

3.2.1.1 Box Plots 

Box plots of the data before and after normalization help in observing whether 

normalization applied had intended effects. The standard box plot has every single array 

represented by one box. It reflects the differences between populations without making 

assumptions of underlying statistical distribution. The medians of each box are marked 
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within the horizontal bars inside the boxes. If the median line within the box is not 

equidistant from the hinges, then the data is skewed. Using the box plots, one can quickly 

compare the data samples, and have information on the data’s symmetry, normality, 

median level and skewness. 

3.2.1.2 MA Plots 

MA plots give a quick overview of the distribution of the data. It is a plot of 

distribution of log expression intensities ratio (M) versus the average log intensities (A) 

of the microarray data (Bolstad, et al., 2003). It visualizes the modified red and green 

intensities against each other. After normalization, MA plots should not contain any 

visible non-linearities.  

3.3 Normalization of the data 

Systemic variations in DNA microarray experiments affect the measured gene 

expression levels. After the quality control check, the microarray data has to be 

normalized prior to the selection of differentially expressed genes. Normalization is the 

process by which the spot intensities are adjusted to take into account the variability 

across different experiments and platforms (Allison, et al., 2006). It removes the non-

biological variations and systemic biases in microarray experiments. To measure the gene 

expression changes more accurately and precisely, random and systematic variations 

must be taken into account. Biases associated with the fluorescent dyes used in 

microarray experiment can be considered as an example for need of normalization (Yang, 

et al., 2002).  
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Agilent data normalization typically consists of two phases, background 

correction and normalization. The simplest method of background correction is 

subtraction of background intensities from the spot (foreground) intensities followed by 

addition of the offset. Offset is the number added to the spot intensity in the background 

correction. In our study, we used quantile normalization and the data is log2-transformed. 

3.4 Selection of differentially expressed genes 

 After the quality assessment and normalization of data, the genes that are 

differentially expressed are to be filtered. Microarray data analysis is used to discover 

genes that are differentially expressed across the treatment conditions. In our study, the 

experiment is done across four samples control, 5-HT, P+C and P+C+5HT treatments. 

There are 15208 probesets in the Agilent platform we used. The noise inherent in the raw 

expression data and the dimensionality issue are significant challenges to analyze the 

data. A wide range of methods for selecting the differentially expressed genes includes 

simple fold change technique, classic t-test statistic and moderate t-statistics (Jeffery, et 

al., 2006). The choice of method used for selecting differentially expressed genes greatly 

affects the resultant gene lists identified. The preliminary filtering is based on flag values 

namely present, marginal and absent flags. The order of importance of flag values is 

present > marginal > absent. A present flag implies that the feature on the array is 

positive, significant, uniform, above background, not saturated and is not a population 

outlier and vice versa. The genes with flag values of present and marginal are filtered 

(poor quality probes are removed).  
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After eliminating poor quality probes, fold change and p value filtering strategy 

was used. Fold change (FC) is a metric used for comparing a gene’s expression between 

two experimental conditions (Allison, et al., 2006). It is one of the earliest approaches 

used for the selection of differentially expressed genes because of its easy interpretation 

and simplicity. The FC for each probe is calculated as the ratio of mean control and mean 

treatment observations.  In our analysis, we considered the genes that differ by more than 

one and half fold expression value. In other words, the genes whose expression value in 

one condition is 1.5 fold more or less than that under the other condition were selected.  

In addition to fold change, we also used the Student’s t-test to determine 

statistically significant differences between two conditions by looking at the difference 

between two independent means. The significance of the difference in the gene 

expression between test and control samples was estimated using the t-test. The null 

hypothesis is that there is no difference in the expression between control and test 

samples. The t-test compares the consistency in the expression values between test and 

control samples; and gives the significance value. If this significance value (p-value) is 

less than 0.05, it implies that the null hypothesis is not true and the difference in the 

expression between test and control samples is significant. In our study, a gene is 

considered to be upregulated by the 5HT treatment (exogenous 5HT) if the ratio of its 

average expression values in 5HT to control and P+C+5HT to P+C is > 1.5 and has a t-

test p value <0.05 in each of these comparisons. In addition, a gene is considered to be 

down regulated by the 5HT treatment (exogenous 5HT) if the ratio of its average 

expression values in 5HT to control and P+C+5HT to P+C is < 1.5 and has a t-test p 
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value <0.05 in each of these comparisons.  Based on the p value from t-test and the fold 

change, volcano plots were generated to highlight the statistically significant results.   

To avoid inclusion of false positives, we also used one-way ANOVA to test for 

differential expression across conditions defined by one treatment parameter. In order to 

control the type I error, we used Welch method in one-way ANOVA to detect the 

differences among the conditions. The genes filtered from one-way ANOVA are those 

that are differentially expressed in at least one of the conditions with significant p-value. 

We further filtered the genes that were differentially expressed in both control VS 5HT 

and P+C Vs P+C+5HT. We also used the results from Genotypic software analysis and 

performed Excel analysis to identify differentially expressed genes using the fold change 

and p value filter. The 1.5 fold upregulated and down regulated genes with p value < 0.05 

were filtered out from Genotypic results.  

We separated the differentially regulated genes into 4 gene lists namely: Genelists 

1 and 2 have the combined results of one-way ANOVA and volcano plots. Genelists 3 

and 4 have the results from the Genotypic analysis. The 5-HT induced genes from 

combined ANOVA & volcano plots and Genotypic analysis are listed in genelists 1, 3 

respectively. The genelists 2, 4 have the 5-HT suppressed genes from combined ANOVA 

& volcano plots and Genotypic analysis respectively. 

3.5 Sequence retrieval and repeat masking 

In general, the regulatory modules are located in the upstream regions of the gene, 

near the promoter (Blanchette, et al., 2006). Hence, we retrieved the -1000 to +100 region 

with respect to transcription start site (TSS) for all the gene lists and also for random 
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genes. The sequences were retrieved from the regulatory sequence analysis tool (RSAT) 

(Thomas-Chollier, et al., 2008). These sequences contain stretches of highly repetitive 

regions such as, simple repeats, tandem repeats, segmental duplications, and interspersed 

repeats. Approximately 50% of the human genome is repetitive in nature. In order to 

avoid this problem, we used RepeatMasker program to mask the repeats (Smit AFA, 

1996-2010).  

RepeatMasker, through a cross-match program that uses the Smith-Waterman-

Gotoh algorithm screens the input DNA sequences for any repeats, low complexity 

regions and replaces the nucleotides in the repeats with the alphabet ‘N’ or lower case 

letters. The resulting output shows all the input sequences whose repeat regions are 

masked and it has the same length of sequence as the input file. Along with the repeat 

masked file, summary of query sequences and annotations of masked sequence is also 

provided.  

3.6 Identification of TFBS 

The expression of genes is regulated at transcriptional level by binding of the TFs 

to the regulatory elements of the genes. The identification and characterization of these 

TFBS is an important and challenging task. Motif discovery is one of the first steps in 

computational analysis of gene-regulation. We used both the de novo and ab initio TFBS 

prediction tools such as MEME (Bailey, et al., 2009) followed by STAMP analysis, and 

MotifScanner (Aerts, et al., 2003) respectively in our study. The repeat masked gene 

sequences were given as input to MEME whereas for MotifScanner, the input sequences 

along with curated position weight matrices (PWMs) of TFs are provided. We performed 
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this analysis on our four gene lists  (foreground, FG) as well as on random sets of genes 

(background, BG) to find enrichment of TFs in input sequences.  

3.6.1 MEME 

MEME is a tool used for de novo method of discovering motifs or patterns in a 

group of related DNA sequences. It is an unsupervised learning algorithm that uses a 

multiple sequence alignment approach to find statistically significant motifs in the input 

set of sequences. It uses PWMs to represent the probability of a nucleotide to be present 

at each position in the patterns (Bailey, et al., 2009; Bailey and Elkan, 1995).  

MEME is available as a both web server application and a command line version 

(Bailey, et al., 2006). The web version of MEME can execute the sequence files 

containing less than 60000 characters only. The web interface allows users to perform 

four types of motif analysis: motif discovery, motif-motif database searching, motif-

sequence database searching and assignment of function. The web server is more user 

friendly where, the input parameters can be specified directly. If the input sequence file 

contains more than 60000 characters, the command line version of MEME has to be 

installed in a local server. The sample command of MEME used in the command line 

version: 

(>meme sequences  in FASTA format -sf <filename.txt> <-dna or –protein> -mod 

<zoops or oops or anr> -nmotifs <Number of motifs> -minw <minimum width>  -maxw 

<maximum width> <other parameters (optional)) 
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If the optional parameters are not specified, default values are considered for the 

prediction. To get reliable results, the low complexity regions and repeats must be 

removed by using tools such as RepeatMasker. Thus, MEME takes input DNA or protein 

sequences and predicts the occurrence of as many motifs as requested in the input 

sequences. The parameters used in our study are: number of motifs (20), minimum width 

(6), maximum width (15), and mode of motif distribution (zero or one per sequence, 

zoops). Revcomp parameter was also used additionally to search for the motif in both 

strands of DNA. 

The output results from MEME include an overview of all discovered motifs, 

detailed information of each motif predicted by MEME, combined block diagram 

showing the tiling of the motifs in the input sequences, and command line summary. 

Summary of the motifs predicted includes: E-value (statistical significance of motif), 

width of the motif, number of sites of occurrence in input sequences, log likelihood ratio 

of motif, information content (IC) and relative entropy. In addition to this, the output also 

has a sequence logo of the predicted patterns. The output has embedded links to submit 

the predicted motifs to other databases such as MAST, FIMO, TOMTOM, GOMO, and 

BLOCKS for further analysis. The output from MEME can be downloaded in html, xml 

and text format.  

The MEME output is analyzed to find the significant motifs that have high IC 

(measure of motif strength in terms of conserved position viz., more the motif is 

conserved, higher its information content) and number of occurrences. In general, the 

motifs that have 70% IC and that occur in 10% of input sequences are considered for 

further analysis. The selected motifs predicted by MEME were provided to STAMP. 
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3.6.2 STAMP 

Most of the de novo motif prediction tools report the predicted motifs in the form 

of frequency matrices such as PWMs that are stored in TF databases such as JASPAR 

and TRANSFAC. The interpretation of these outputs is very challenging. STAMP is a 

web tool for alignment, similarity and database matching for DNA motifs (Mahony and 

Benos, 2007). It uses scoring metrics, pairwise alignment methods, gap penalties, 

multiple alignment strategies and tree building algorithms. STAMP supports various 

motif databases such as JASPAR, TRANSFAC, Saccharomyces cerevisiae regulatory 

code motifs, Drosophila motifs, Escherichia coli motifs, and RegTransBase prokaryotic 

motifs. After uploading the input motifs to STAMP, once can choose the above 

parameters. We can also directly submit the output from the de novo motif finding 

algorithms to STAMP for interpreting the results (Mahony and Benos, 2007).  

In our study, the output from MEME is provided as input to STAMP and the 

option of finding 10 best matches in JASPAR v2010 database to each of the motifs in the 

input sequences are selected. Other parameters such as, Pearson correlation coefficient 

for comparison of input matrices, ungapped Smith-Waterman algorithm for alignment, 

iterative refinement multiple alignment strategy, UPGMA tree building algorithm, and 

the input sequences submitted are left to be default (Mahony, et al., 2007; Mahony, et al., 

2005).  

The output from STAMP can be exported either as a webpage or as a pdf file. The 

output contains, a ‘familial binding profile’ based on the final multiple alignments, a tree 

showing the similarity between the input motifs and its best match from TF database, and 
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detailed TF matches from database for each input motif. The alignment between the input 

motif and the match is represented as a consensus sequence along with the e-value of the 

alignment.  

3.6.3 MotifScanner 

MotifScanner is an algorithm implemented in C++ that is used to screen DNA 

sequences with precompiled TFBS. It is an integrated part of TOUCAN, which is a 

workbench for regulatory sequence analysis. MotifScanner is probabilistic sequence 

based model in which the motif is assumed to be hidden in a noisy background sequence. 

It scans the input DNA sequences with the PWMs of the TFs to look for TFBS. Instead of 

using a predefined threshold, motif scanner uses a probabilistic model to estimate the 

number of instances a motif is likely to occur in a specific sequence, given the 

background and motif model. Thereby, choosing the appropriate background model 

reduces the number of false positives and estimating the number of motif instances 

instead of using a threshold helps in picking the stronger sites rather than weaker sites 

(Aerts, et al., 2003; Aerts, et al., 2005).  

This algorithm is available as both a command line version as well as a web 

interface. The PWMs of the TF of interest (motif model), input sequences in FASTA 

format, suitable background model are the required parameters to be given as input to 

MotifScanner. The optional arguments include: single stranded motif search (0) or double 

stranded search (1), prior value that indicates stringency level viz., lower the prior value 

higher the stringency and it is proportional to length of the input sequence (Aerts, et al., 

2003). In general, prior value of 0.1-0.2 is given for sequences smaller than 300 bp and 
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0.9 for sequences larger than 1500 bp. The following is the command line code for 

executing MotifScanner: 

(./MotifScanner –f <path to input sequences in fasta format> -b <background model> -m 

<motif model description> -p <prior value> -s <0/1> -o <output file>) 

In our study, the length of the input sequences used was 1100bp and hence, we 

used the prior probability value of 0.6 and s value of 1 to look for the motif in both 

strands of DNA. We used all the non-redundant vertebrate motifs (130), reported in 

JASPAR database as the motif file. The output from MotifScanner is in the form of GFF 

(Sanger’s General Feature Format). It has the motif instances information such as name, 

start, end, confidence score, and strand in which it is present. Perl scripts were used to 

tabulate the number of instances a particular motif is enriched in each input sequence, to 

calculate fold change enrichment with respect to background and a z-value. 

3.6.4 Motif enrichment analysis 

To validate our results, both MEME and MotifScanner were performed on mouse 

genome random sequences generated from RSAT (regulatory sequence analysis tool) 

(Thomas-Chollier, et al., 2008). For MEME, the same number of random sequences as 

the number of sequences in serotonin responsive genes sets was retrieved. The sequences 

were masked with repeat masker as mentioned in Methods section 3.5. On the other hand, 

for MotifScanner, 25000 sequences of length 1100bp that were collected randomly from 

mouse genome. Then these sequences were masked using Repeat Masker. From this pool 

of masked sequences, we randomly sampled 1000 sets each of size that is same as the 

number of sequences as in the serotonin responsive genes sets. Hence, 1000 random sets 
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were generated for each of the four lists that were selected as differentially expressed 

genes. MotifScanner was performed on all of these random sets. The MEME and 

MotifScanner results of actual selected gene lists (foreground) and their respective 

random gene lists (background) were compared. 

3.7 Literature validation and comparison with public domain data 

The results from our study were compared to two public domain microarray 

datasets to demonstrate the validity and accuracy of the study. Mikkelsen et al performed 

a microarray to study the expression profiles of murine ES cells, neuronal precursors 

(NPC), and embryonic fibroblasts (MEF) (Mikkelsen, et al., 2007). The samples were 

prepared from each group and cDNA was generated, biotinylated and hybridized to 

Affymetrix Mouse Genome 430 2.0 Array platform. The microarray data is available in 

NCBI-GEO database under GSE8024 record (PDD1). All the cel files, and sample 

records were downloaded and analyzed using affy package (Gautier, et al., 2004). Robust 

multiarray average (RMA) method was used for preprocessing and normalization of the 

cel files. After normalization, the cel files were converted into expression files that were 

used for further analysis. The average expression value of each probe across the 

replicates and the fold change enrichment of ES cells over NPC and MEF were 

calculated. The probes that were 1.5 fold enriched (both 1.5 up and 1.5 down) in ES cells 

were filtered for comparison with the results from our dataset.  

Ramalho-Santos et al compared the transcriptional profiles of murine ES cells, 

neural SC, and hematopoietic SCs (Ramalho-Santos, et al., 2002).  The samples were 

isolated and the mRNAs hybridized to Affymetrix U74Av2 DNA microarray and the 
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arrays were analyzed using dChip and Affymetrix microarray suite. They reported 1676 

genes (PDD2) that were enriched in ES cells. We used the list of these genes to compare 

with our dataset.  

As a part of literature validation, we also compared the 5-HT responsive genes 

identified in our study to various studies in stemness and ES cells (Fortunel, et al., 2003; 

Ivanova, et al., 2002; Ramalho-Santos, et al., 2002; Roma, et al., 2007; Sperger, et al., 

2003).  

3.8 Functional annotation of 5-HT responsive genes 

 We used gene ontology (GO) analysis to explore the biology behind the 5-HT 

responsive genes. GO analysis shows the ontology categories and functional annotations 

that are highly represented in the data. It characterizes the functions of genes based on 

biological processes, molecular functions, and cellular components. We used Gene 

ontology for functional annotation (GOFFA) (Sun, et al., 2006) and GO-Proxy (Martin, et 

al., 2004) for functional annotation of 5-HT responsive genes identified in our study. 

 GOFFA is a FDA based gene ontology tool, which ranks the GO terms for a list 

of genes based on statistical significance. It is a Java based platform integrated with 

ArrayTrack software and uses an ORACLE database, which has GO project data and 

gene identifiers from the NCBI Entrez gene database (Sun, et al., 2006). GO-Proxy is a 

GO-based clustering tool, which is used for grouping the functionally related genes 

together. It calculates the annotation-based distance between genes based on 

Czekanowski-Dice formula and forms a functional classification tree using this distance 

matrix, defines the classes and statistical relevance of terms associated with each class 
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(Martin, et al., 2004). The GO categories enriched in the 5HT induced and suppressed 

genelists were analyzed. 
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CHAPTER FOUR: RESULTS 

4.1 Exploratory data analysis 

Determining the quality of the dataset is an important step in microarray analysis. 

The quality of the dataset was assessed by exploratory data analysis. It uses statistical 

techniques to identify hidden patterns in the dataset.  In our study, we used box plots and 

MA plots to assess the quality of Agilent one-color data and the results are shown in 

Figures 3, 4, and 5 respectively.   

A box plot also known as a whisker plot is often used in exploratory data analysis 

to summarize and compare groups of data. It conveys information about the sample’s 

range, median level, normality and skewness of distribution of data. Figure 3 shows the 

box plot of the datasets used in this study after normalization.  

The horizontal line inside the box is the median, which is the middle value of each 

sample. The position of the median line indicates the skewness of the distribution. In all 

the samples, the median line is present at the center of the box, thereby indicating that the 

data is not skewed. The two lines extending from the box are called as whiskers. The 

position of the box within the whiskers indicates the normality of the sample distribution. 

It is observed that the boxes are equidistant from the whiskers, which indicates that the 

data is normally distributed and there is no skewness in the data. The size of the box 

indicates the kurtosis or peakedness of the data.  Smaller the size of the box relative to 

whiskers, thinner the peak is and vice versa. It is observed in figure 3, that the size of the 

box is proportionate to the whiskers and hence the data is free from kurtosis. Kurtosis is 

used to measure peakedness or flatness of data relative to normal distribution. 
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Figure 3: Box plot of the four normalized samples. 

The X-axis represents 5HT treated, control, P+C treated, and P+C+5HT treated and the 
Y-axis has the normalized intensity values. The box plot shows the distribution of the 
data, reflects the range, normality, median level, and skewness of the data. After 
normalization of the data, the box plot was generated for all the four samples. The 
medians of all the samples appear to be at same level, which indicates that the 
normalization has been effectively done.  

A MA plot gives an overview of the overall distribution of the data. It is the plot 

of log intensity ratios Vs log intensity averages. They are generally useful to monitor the 

efficacy of normalization. PlotMA3by2 function of bioconductor was used to generate 

MA plots for all the samples in the dataset including the replicates.  
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Figure 4: MA plot of the duplicates of four samples before normalization. 

As a part of the exploratory data analysis, MA plots were generated before normalization 
using the PlotMA3by2 () function in bioconductor. The conditions: control, 5HT, P+C, 
P+C+5HT are labeled as sample 1-4. There are two replicates for each sample. Hence, 
sample 1_1 represents first replicate of sample 1 and so on. The plots reveal that the raw 
data is non-linear and noisy. 

Figures 4 and 5 show the MA plots for all the samples before and after 

normalization respectively. The MA plots before the normalization (figure 4) was plotted 

directly by importing the raw data files into the bioconductor package. The plots are non-

linear and noisy indicating that the data has to be normalized.  
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Figure 5: MA plot for normalized samples. 

After normalization, the MA plots were generated to monitor the effect of normalization. 
The log intensity ratios (M) are plotted along Y-axis and average log intensities (A) are 
plotted along X-axis. The plots across the replicates of the samples are linear and do not 
have noise. 

After monitoring the quality of the raw data in Figure 4, the data was normalized 

using quantile method of normalization and MA plots were generated with the 

normalized data. Figure 5 demonstrates that normalization has been effective, as the MA 

plots do not show any non-linearities.  

Thus, exploratory data analysis was performed to ensure the quality of the data 

before proceeding on to the quantitative data analysis. 
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4.2 Selection of differentially expressed 5-HT responsive genes 

To identify the differentially expressed 5-HT responsive genes, we filtered out the 

genes based on volcano plots, one-way ANOVA, and Genotypic analysis (i.e. the 

commercial provider’s analysis) using fold change criteria, and p –value from student’s t-

test. The comparison of the samples that aid in filtering the 5-HT responsive genes are 

namely: control vs 5HT and P+C vs P+C+5HT. Initially, the microarray dataset consisted 

of 15,208 probes. A total of 10,918 probes remained after employing the present, 

marginal flag filtering criteria as mentioned in the Methods section.  

One-way ANOVA with unequal variance using Welch test was performed on 

these 10,918 probes. Out of the 565 probes filtered from one-way ANOVA, 468 probes 

showed 1.5-fold enrichment. As one-way ANOVA gives the genes that are differentially 

expressed in at least one of the conditions with significant p-value, we filtered the list 

further based on the 1.5 fold enrichment in the control vs 5HT and P+C vs P+C+5HT 

comparisons alone. Out of the 468 probes from one-way ANOVA, 276 and 192 probes 

were 1.5 fold up and down regulated respectively in the control vs 5HT comparison. On 

the other hand, 295 and 173 probes were up and down regulated respectively in the P+C 

vs P+C+5HT comparison. There were 10 genes that are 1.5 fold upregulated and 14 

genes that were 1.5 fold down regulated common to both the comparisons (Table 1). 
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Table 1: Summary of ANOVA results 

ANOVA No. of genes in 
Ctrl Vs 5HT 

No. of genes in 
PC Vs PC5HT 

No. of genes common to 
both comparisons 

5HT induced 
genelist 276 295 10 

5HT suppressed 
genelist 192 173 14 

Figure 5 shows the volcano plots, where the gene expression data was plotted as 

significance (p-value) versus the fold change. Volcano plots gives both statistically 

significant genes and differentially expressed genes based on fold change.  

 

Figure 6: Volcano plots of Control Vs 5HT and P+C Vs P+C+5HT comparisons.   

The logarithm of base 2 of fold change and log base 10 of p value of the data set were 
plotted along X and Y axis respectively. The green lines represent the separation of the 
data by imposing fold change and p value cut offs. The points that are 1.5 fold enriched 
and p value less than 0.05 are highlighted in red. 
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The volcano plots were generated using the 10,918 probes as seed. Out of these, 

361 and 336 probes showed significant (p < 0.05) 1.5 fold up and down regulation 

respectively (Figure 5). Out of the 351 probes, 207 were up regulated in control vs 5HT 

condition and 154 were up regulated in P+C vs P+C+5HT condition. Of the 336 1.5 fold 

down regulated probes, 159 and 177 probes are down regulated in control vs 5HT and 

P+C vs P+C+5HT respectively. There were only 10, and 3 genes that were 1.5 fold up 

and down regulated common in both the comparisons respectively (Table 2). 

Table 2: Summary of Volcano plot results 

Volcano plots 
No. of genes with 

p-value <0.05, 
1.5fold enriched 

No. of genes in 
Ctrl Vs 5HT 

No. of genes in 
PC Vs PC5HT 

No. of genes 
common to both 

comparisons 
5HT induced 

genelist 361 207 154 10 
5HT suppressed 

genelist 336 159 177 3 
 

At this stage, we combined the ANOVA and volcano plot results to identify 5-HT 

responsive genes. The probes that were 1.5 fold upregulated were denoted as 5-HT 

induced genes (genelist1) and 1.5 fold down regulated were denoted as 5-HT suppressed 

genes (genelist2) in both control/5HT and P+C/P+C+5HT conditions. Thus, genelist1 has 

10 genes from ANOVA and 10 genes from volcano plots (total 20) that showed 

significant 1.5 fold up regulation in both control/5HT and P+C/P+C+5HT. Similarly, 

genelist2 has 14 genes from ANOVA and 3 genes from volcano plots (total 17) that 

showed significant 1.5 fold down regulation in both the conditions. 

The results from Genotypic analysis were further filtered based on the fold change 

and p value using basic Excel analysis. The genes that were 1.5 fold enriched (up-
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regulated and down-regulated), and with p value less than 0.05 were filtered. A total of 

1307 genes were 1.5 fold up-regulated in both control/5HT and P+C/P+C+5HT 

conditions, out of which, 24 genes had significant p value (p < 0.05).  There were 628 

genes that were down regulated in both the conditions and 12 genes among them had 

significant p value. These 24 and 12 genes were reported as genelist3, and 4 respectively.  

Thus, the genelists 1, 3 have 1.5 fold up-regulated genes; hence considered as 5-

HT induced genelists and genelists 2,4 have 1.5 fold down-regulated genes; hence 

considered as 5-HT suppressed gene lists (Table 3). Thus, we get 20, 17, 24, and 12 

differentially expressed 5-HT responsive genes based on our stringent filtering paradigms 

(Table 4). 

Table 3: Summary of differentially expressed 5-HT responsive genelists 

Final Genelists Comparison 

Results from one-way ANOVA and Volcano plots: 

Genelist1 Up-regulated 5-HT induced genelist 

Genelist2 Down-regulated 5-HT suppressed genelist 

Results from Genotypic analysis: 

Genelist3 Up-regulated 5-HT induced genelist 

Genelist4 Down-regulated 5-HT suppressed genelist 

Table 4: List of differentially expressed 5HT induced and suppressed genes after 
stringent filtering 

Genelist1 Genelist2 Genelist3 Genelist4 

Cldn14 
Zfyve26 
Cyp4f14 
Hoxb1 
Slc38a5 

Irak3 
Tnfrsf11b 
Prmt3 
Galc 
Mtap6 

Acpp 
Bysl 
Ccnd2 
Cdc23 
Cxcl9 

Rnf216 
Abcc1 
Asb8 
Gdf1 
Lace1 
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Adrb1 
Car4 
Pitpnc1 
Eif2s1 
Gtf2h4 
Creb3l1 
Rbbp9 
Nkd2 
Rgs14 
Rnd2 
Dnajc16 
Bhlhb8 
Ank3 
Barx2 
Doc2a 

Sqrdl 
Polk 
Adam3 
Frem2 
Nsg1 
Ch25h 
Olfr406 
Igsf1 
Thbs1 
Fas 
Rbl2 
4932417H02Rik 

Dgkg 
Dst 
Gjb3 
Kdr 
Lifr 
Ltbr 
Ly6c1 
Mid1 
Mras 
Ncor1 
Olfr1312 
Olfr606 
Pcdhb17 
Ppp3r2 
Rhoq 
Slc5a1 
Snca 
Syne1 
Tnfrsf11b 

Mak 
Nptxr 
Plin 
Ppp1r16b 
Rgs11 
Rnf130 
Rpn1 

 

4.3 Identification of TFBS using motif prediction tools 

Understanding the cause and effect relation between transcriptional regulation and 

gene expression is very crucial as it reveals the regulatory components associated with a 

particular gene expression pattern. In order to correlate gene expression with 

transcriptional regulation, we identified characteristic TF-TFBS interactions that are 

unique to the 5-HT responsive genes. As mentioned in the Methods section, the 

sequences of upstream regions for the 4 genelists were retrieved and repeat masked. We 

used MEME (de novo approach), and MotifScanner (Ab initio approach) for identifying 

regulatory regions in the upstream of the selected genes.  

The input gene sequences were given to MEME, and the parameters for de novo 

motif prediction were given as explained in the Methods section. The output from MEME 

contains a list of motifs defined by user parameters such as number of motifs, their 
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sequence logos, E-value, information content, number of sites, PWMs, block diagrams 

etc. The MEME output was stored as a .txt file and given as input to STAMP.   

STAMP compares PWMs of MEME predicted motifs and searches for the profile 

TFs against TF databases such as JASPAR and TRANSFAC. In addition, it outputs a 

motif tree with the input motifs and the best-matched TF in the JASPAR database. 

Moreover it also lists top matched TFs for each motif ranked by E-value. The STAMP 

results for some of the MEME motifs of 5-HT induced and suppressed genes are shown 

in figures 7 and 8.  

 
Figure 7: Stamp results for MEME motifs enriched in 5HT induced gene sequences 

The input motifs to STAMP (Left) and the corresponding JASPAR match along with the 
E-value (Right) in the 5HT induced genelists (genelist1, 3) are shown. The motifs 
predicted by MEME that were in concordance with the MotifScanner are shown here.	
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   Random murine sequences were generated using RSAT as mentioned in the 

Methods section and given to MEME. The motifs reported in the figures 7, 8 were 

enriched in the input gene sequences (foreground) rather than the background random 

sequences.	
  

	
  
Figure 8: STAMP results for MEME motifs enriched in 5HT-supressed gene 
sequences 

STAMP results for 5HT suppressed genelists viz., genelists2, 4 are shown with the 
MEME motif on the left and the corresponding JASPAR match on the right.  

 Ab initio motif prediction was performed using MotifScanner with the parameters 

as explained in Methods section.  The output from MotifScanner has the information 

about the motif occurrence in each gene namely, start position, end position, score 

(confidence score), strand in which it is present, and name and sequence of the predicted 

motif. Analyzing the output in this format is difficult and hence, we used PERL scripting 

to count the number of occurrences of a particular motif in each gene.  
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4.4 Motif enrichment analysis 

After compiling the MotifScanner results, motif enrichment analysis was 

performed to find the motifs enriched in foreground (FG) compared to background (BG). 

In order to characterize transcriptional regulatory elements specifically controlling 

serotonin responsive genes as supposed to house keeping genes, we employed a stringent 

strategy to pick random sequences viz., randomly selected 1000 sets of 1100bp length 

from a set of 25000 masked random sequences.  MotifScanner was performed on the 

random sets and PERL script was used to calculate the total number of occurrences of the 

motifs. The significant motifs should be enriched in the foreground (FG, 5HT responsive 

genes) compared to the background (BG, random sets). 

We calculated the mean and standard deviation for number of occurrences in 

random sets. Based on these values, fold change, z-value, and p-value were calculated. 

The fold change is the ratio of number of sites in FG to the number of sites in BG. The 

statistical Z-value is calculated using the formula (X-µ)/σ where X is the number of sites 

in FG, µ is the mean number of sites in BG and σ is the standard deviation of the 

distribution of number of sites in BG. P- value is the probability that the normally 

distributed sites in BG will be greater than the no. of sites in FG. Higher the Z-value and 

lower the p-value, greater is the significance of enrichment of a motif and vice-versa. The 

top 15 hits from MotifScanner with the number of occurrences in FG and BG, fold 

change, z-value, p-value for 5HT induced genes (genelists 1 and 3) are shown in the 

tables 5 and 6. 
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Table 5: List of top 15 hits from MotifScanner for genelist1 sequences 

TF 
No. of sites in 

FG 
No. of sites in 

BG Fold change Z-value P-value 

TFAP2A 59 34 1.74 7.719 6E-15 

SP1 53 31 1.71 5.471 2E-08 

Egr1 13 5 2.60 4.124 2E-05 

INSM1 15 7 2.14 3.228 0.001 
Myf 10 4 2.50 2.792 0.003 

Pax5 18 10 1.80 2.787 0.003 

MZF1_5-13 33 24 1.38 2.406 0.008 

Klf4 25 17 1.47 2.194 0.014 

MZF1_1-4 44 37 1.19 2.046 0.020 

Tcfcp2l1 22 15 1.47 1.955 0.025 

NHLH1 15 9 1.67 1.753 0.040 

Spz1 14 10 1.40 1.538 0.062 

Zfx 15 10 1.50 1.524 0.064 

CTCF 7 4 1.75 1.431 0.076 

HIF1A::ARNT 13 9 1.44 1.369 0.085 

* Genes that are significantly enriched in foreground (FG) when compared to background 
(BG) are highlighted in red (p value <0.05). The TFs common to both the 5-HT induced 
genelists (1,3) are highlighted in red. 

Table 6: List of top 15 hits from MotifScanner for genelist3 sequences 

TF 
No. of sites 

in FG 
No. of sites in 

BG FC Z-value P-value 

TFAP2A 56 40 1.40 4.137 2E-05 

Arnt 22 11 2.00 3.054 0.001 

INSM1 16 8 2.00 2.913 0.002 

USF1 20 10 2.00 2.670 0.004 

SP1 48 37 1.30 2.613 0.004 

HIF1A::ARNT 18 11 1.64 2.334 0.010 

CTCF 10 5 2.00 2.262 0.012 
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MAX 13 7 1.86 2.097 0.018 

Klf4 28 21 1.33 1.919 0.027 

IRF1 10 6 1.67 1.898 0.029 

Pax5 16 12 1.33 1.317 0.094 

Nr2e3 19 13 1.46 1.290 0.098 

Mycn 13 9 1.44 1.077 0.141 

Myc 13 10 1.30 1.024 0.153 

Zfx 15 12 1.25 0.786 0.216 

* Genes that are significantly enriched in foreground (FG) when compared to background 
(BG) are highlighted in red (p value <0.05). The TFs common to both the 5-HT induced 
genelists (1,3) are highlighted in red. 

We identified four TFs viz., TFAP2A, INSM1, SP1, and Klf4 common to 5-HT 

induced genes (genelists 1,3) that were significantly enriched in FG when compared to 

BG with p-value <0.05.  

Tables 7, 8 show the top 15 hits from MotifScanner for the 5HT suppressed genes 

(genelists 2,4). We identified two TFs viz., TFAP2A and Zfx that were common to both 

the genelists. These two TFs were significantly enriched in FG when compared to BG 

with a significant p-value.  

Table 7: Top 15 hits from MotifScanner for genelist2 sequences 

TF 
No. of sites 

in FG 
No. of sites in 

BG FC Z-value P-value 

Myf 10 4 2.50 3.304 0.0005 

PLAG1 4 1 4.00 3.212 0.0007 

Zfx 17 9 1.89 3.046 0.0012 

TFAP2A 36 28 1.29 2.487 0.0064 

Egr1 7 4 1.75 1.433 0.0759 

Arnt 11 8 1.38 1.085 0.1389 

Mafb 27 24 1.13 1.052 0.1464 



	
   57	
  

Pax5 11 8 1.38 0.999 0.1589 

Arnt::Ahr 12 10 1.20 0.953 0.1703 

Evi1 3 2 1.50 0.922 0.1784 

Zfp423 2 1 2.00 0.918 0.1793 

NF-kappaB 11 9 1.22 0.801 0.2115 

NFKB1 6 5 1.20 0.613 0.2698 

HIF1A::ARNT 9 7 1.29 0.589 0.2778 

USF1 9 7 1.29 0.576 0.2822 

* Genes that are significantly enriched in foreground (FG) when compared to background 
(BG) are highlighted in red (p value <0.05). The TFs common to both the 5-HT 
suppressed genelists (2,4) are highlighted in red. 

Table 8: Top 15 hits from MotifScanner for genelist4 sequences 

TF 
No. of sites in 

FG 
No. of sites in 

BG FC Z-value P-value 

TFAP2A 32 20 1.60 4.644 2E-06 

Zfx 13 6 2.17 2.895 0.0019 

Esrrb 8 5 1.60 1.335 0.0910 

Mafb 20 17 1.18 1.300 0.0969 

HIF1A::ARNT 8 5 1.60 1.192 0.1165 

ZEB1 20 17 1.18 1.169 0.1212 

REST 2 1 2.00 1.119 0.1316 

INSM1 6 4 1.50 0.969 0.1663 

NHLH1 8 6 1.33 0.911 0.1811 

Klf4 12 10 1.20 0.659 0.2550 

SRF 2 1 2.00 0.615 0.2692 

SP1 20 18 1.11 0.533 0.2971 

EBF1 14 13 1.08 0.312 0.3775 

RXR::RAR_DR5 3 3 1.00 0.241 0.4048 

PPARG::RXRA 14 14 1 0.171 0.4320 

* Genes that are significantly enriched in foreground (FG) when compared to background 
(BG) are highlighted in red (p value <0.05). The TFs common to both the 5-HT 
suppressed genelists (2,4) are highlighted in red. 
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Thus, MotifScanner results showed enrichment of 4 TFs (TFAP2A, INSM1, SP1, 

Klf4) in 5HT induced genelists and 2 TFs (TFAP2A, Zfx) in 5HT suppressed genelists. 

Further study on these TFs will provide insight into understanding the role of 5HT in ES 

cells. From the MotifScanner results, we went back to get the genes that have the binding 

sites to these enriched TFs. The list of 5-HT induced and suppressed genes that have 

significant TFBS predicted by MotifScanner are listed in tables 9, and 10 respectively. 

Table 9: List of 5HT induced genes having TFBS predicted by MotifScanner 

TF Genelist1 Genelist3 

TFAP2A, SP1 
Creb3l1, Rbbp9, Nkd2, Rgs14, Rnd2, Ank3, 
Barx2, Doc2a, Cldn14, Zfyve26, Cyp4f14, 

Hoxb1, Slc38a5, Adrb1, Car4, Pitpnc1, 
Gtf2h4, Bhlhb8 

Acpp, Bysl, Ccnd2, Cdc23, Cxcl9, 
Dgkg, Dst, Kdr, Lifr, Ltbr, Mras, 

Ncor1, Ppp3r2, Rhoq, Slc5a1, Snca, 
Tnfrsf11b, Ly6c1, Pitpnc1 

Klf4 Creb3l1, Nkd2, Rgs14, Rnd2, Dnajc16, 
Barx2, Doc2a, Cyp4f14, Hoxb1, Slc38a5, 

Adrb1, Car4, Bhlhb8 

Acpp, Bysl, Ccnd2, Cdc23, Dgkg, Dst, 
Gjb3, Kdr, Ltbr, Pcdhb17, Ppp3r2, 

Rhoq, Slc5a1, Snca, Ly6c1 

INSM1 Nkd2, Ank3, Barx2, Doc2a, Cldn14, 
Zfyve26, Cyp4f14, Hoxb1, Slc38a5, Car4, 

Q8K4R4-2 

Acpp, Ccnd2, Cxcl9, Dgkg, Dst, Kdr, 
Pcdhb17, Ppp3r2, Rhoq, Snca, Syne1, 

Ly6c1 
	
  

Table 10: List of 5-HT suppressed genes having the enriched TFs predicted by 
MotifScanner 

TF Genelist2 Genelist4 

TFAP2A 
Irak3, Tnfrsf11b, Prmt3, Galc, Mtap6, 
Sqrdl, Adam3, Frem2, Nsg1, Ch25h, 
Thbs1, Fas, Rbl2, 4932417H02Rik 

Abcc1, Lace1, Mak, Nptxr, Plin, 
Ppp1r16b, Rgs11, Rnf130, Rpn1, Gdf1 

Zfx Irak3, Prmt3, Mtap6, Sqrdl, Adam3, Nsg1, 
Fas, Rbl2, 4932417H02Rik 

Abcc1, Lace1, Ppp1r16b, Rgs11, Rnf130, 
Gdf1 

The distribution of the enriched TFs in the 5HT induced and suppressed gene sets 

are shown in Figure 9. The frequency ratio of the enriched TFs in the corresponding 
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genelists was calculated from the number of genes in the genelist in which the TF is 

enriched and total number of genes.  

 

Figure 9: MotifScanner results of enriched TFs in 5HT responsive genes 

The distribution of the enriched TFs in both the 5-HT induced and suppressed gene lists 
is shown. The TFs enriched in 5-HT responsive genelists and frequency ratio are plotted 
along X and Y-axis.  

We identified that the transcription factor TFAP2A is enriched in both 5-HT 

induced and suppressed gene lists. This might suggest the cardinal role of this TF in 

regulation of 5HT responsive genes. Hence, we focused our attention to look at the 

enrichment of TFAP2A TF in all the genelists and BG random sets. We used R to plot the 

distribution of TFAP2A in the FG and in the1000 random sets generated for each 

genelist. In general, the distribution of number of TFBS in random sequences follows 

normal distribution. For a TF to be enriched in the sequence of interest, the number of 

sites of TF in it should fall outside this random distribution.  Figure 10 shows the 

distribution of TFAP2A in FG of 5-HT induced genelists and BG.  
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Figure 10: Enrichment of TFAP2A in FG of 5-HT induced gene lists 

MotifScanner results were used to plot this figure. The average number of TFAP2A sites 
in BG for genelist 1 and 3 (34 and 40) is shown in blue. The number of TFAP2A sites in 
genelists 1, and 3 (59 and 56) is shown in red.  

The distribution of number of TFAP2A sites in the random sets (BG) and 5-HT 

suppressed genelists is shown in the Figure 11. Thus, from the figures 10, and 11, it is 

evident that the number of sites in 5-HT induced and suppressed genes falls outside the 

distribution of random sets. This clearly suggests that the transcription factor, TFAP2A is 

significantly enriched in 5-HT responsive genelists when compared to the BG sequences. 
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Figure 11: Enrichment of TFAP2A in FG of 5-HT suppressed gene lists 

MotifScanner results were used to plot this figure. The average number of TFAP2A sites 
in BG for genelist 2 and 4 (28 and 20) is shown in blue. The number of TFAP2A sites in 
genelists 2, and 4 (36, 32) is shown in red.  

Thus, our findings suggest that TFAP2A may play a key role in regulating 5HT 

responsive genes. This TF along with Klf4, INSM1, and SP1 regulates the 5-HT induced 

gene expression. In addition, Zfx, and TFAP2A were found to regulate the expression of 

5HT suppressed genes. 

4.5 Literature validation and comparison with public domain data 

We approached the validation of the 5HT- responsive genes identified in our 

study by comparing our dataset with public domain data (PDD). We used Mikkelsen et al 

(GSE8024) microarray data as PDD1 (Mikkelsen, et al., 2007) and Ramalho-Santos et al 

study as PDD2 (Ramalho-Santos, et al., 2002). We selected the genes that were 1.5 fold 
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up-regulated and down regulated in PDD1 and compared with the genes that were 1.5 

fold up and down regulated in the Genotypic analysis (p-value was not considered). 

Based on the fold change analysis, we identified, 1307 and 476 genes that were 1.5 fold 

up-regulated in our Genotypic analysis dataset and PDD1 respectively (figure 12a).  

 

Figure 12: Comparison of 1.5 fold enriched genes in our dataset and Mikkelsen et al 
study 

Venn diagram showing numbers of genes common to the Genotypic analysis and PDD1. 
The numbers next to the gene categories are the total number of genes that are 1.5 fold 
enriched in our dataset and PDD1. Part (a) shows the comparison of 1.5 fold up regulated 
genes and part (b) shows the comparison of 1.5 fold down regulated genes. 

We also identified 703 and 631 genes that were 1.5 fold down-regulated in 

Genotypic analysis and PDD1 respectively. Figure 12(b) shows that 25 genes are 

common to both the lists. Thus, we found a potential list of 37 5HT-induced, 25 5HT-

suppressed genes common to our analysis and PDD1. 

Ramalho-Santos et al reported 1676 genes that were enriched in ES cells. Hence, 

we also compared our data with their results. Figure 13 shows the comparison between 
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the list of 1307 5HT-induced genes from the Genotypic analysis and 1676 genes in PDD2 

dataset. A total of 85 genes from our dataset are reported to be enriched in ES cells by 

Ramalho-Santos et al.  

 
Figure 13: Comparison between 1.5 fold up regulated genes from our results and the 
Ramalho-Santos et al study  

Venn diagram showing numbers of genes common to the Genotypic analysis and PDD2. 
The numbers next to the gene categories are the total number of genes that are 1.5 fold up 
regulated in the Genotypic analysis and PDD2.  

 We found 8 5-HT induced genes common between the Genotypic analysis 

(without considering p-value), PDD1, and PDD2. The list of these genes is shown in 

Table 11. 

 
Figure 14: Venn diagram comparing the common genes across our Genotypic 
analysis, PDD1, and PDD2.  
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Venn diagram showing the numbers of genes common to all the three datasets. We 
compared the 37 genes from Figure 12 (a) and 85 genes from Figure 13. The highlighted 
section represents the common genes found in the comparison and are listed in table 11.  

Table 11: List of genes common in our dataset, PDD1 and PDD2.  

Gene Symbol 
Nanog 
Gria2 
Ggta1 

Serpine1 
Sema3e 
Tcfcp2l1 
Timp1 
Spint1 

 

Sperger et al compared the expression profiles of human ES cell lines, germ cell 

tumor cell lines and tumor samples, somatic cell lines, and testicular tissue samples and 

reported that five independent human ES cell lines clustered together with highly similar 

expression profiles (Sperger, et al., 2003). They performed significance analysis of 

microarrays (SAM analysis) between ES cell lines versus somatic cell lines and normal 

testis expression data. They reported 1760 positively and 1028 negatively significant 

genes. A total of 50% and 63% of genes in our 5-HT induced genes (genelist1, 3 

respectively) and 52% and 50% of genes in our 5-HT suppressed genes (genelist2, 4 

respectively) were identified to be among the 1760 positively and 1028 negatively 

significant genes in their study. 

4.6 Gene Ontology analysis 

 We performed gene ontology (GO) analysis on the 5-HT responsive genes using 

GOFFA and GO-Proxy. The GO terms with higher granularity viz., deeper levels in the 

GO hierarchy were selected to avoid redundancy in results. Among the 5-HT induced 
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genelists (1,3) the GO terms, namely regulation of translation in response to stress, 

energy derivation by oxidation of organic compounds, and mitochondrial ATP synthesis 

are enriched. These GO categories support the findings of the Basu et al study which 

suggests that 5-HT is localized in mitochondria of ES cells (Basu, et al., 2008). Other GO 

terms common between 5-HT induced genelists (1&3) include G- protein signaling 

pathway, regulation of cytoskeleton organization, regulation of transcription, regulation 

of dopamine secretion, and synaptic transmission. The genes from 5-HT suppressed 

genelists (2&4) were enriched with the GO terms, namely apoptosis, and regulation of 

transcription factor activity.  The GO terms enriched in the 5-HT responsive genes are 

shown in Table 12. 

Table 12: Functional annotation of 5-HT responsive genes 
Genes Enriched GO terms 

5-HT induced genes 

Genelist1 

Regulation of translation in response to stress, regulation of 
transcription and DNA-dependent, autonomic nervous system 
development, parasympathetic nervous system development, pre-
ganglionic parasympathetic nervous system development, regulation 
G-protein signaling pathway, positive regulation of transcription. 

Genelist3 

Cellular response to oxidative stress, energy derivation by oxidation 
of organic compounds, regulation of dopamine secretion, regulation 
of cytoskeleton organization, positive regulation of transmission of 
nerve impulse, ATP synthesis coupled electron transport, G-protein 
coupled receptor protein signaling pathway.  

5-HT suppressed genes 

Genelist2 

Apoptosis, induction of apoptosis via death domain receptors, 
negative regulation of innate immune response, binding of sperm to 
zona pellucida (cell adhesion), positive regulation of TF activity, 
negative regulation of cytokine mediated signaling pathway. 

Genelist4 Apoptosis, Cellular protein metabolic process, proteolysis. 
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CHAPTER FIVE: DISCUSSION 

Understanding the role of serotonin in ES cells is very interesting and important. 

A lot of research carried out in the late 90’s suggested some roles for serotonin in ES 

cells. Various studies on 5-HT report that the prime role of serotonin in regulating early 

cleavage divisions, neurogenesis and development is in ES cells (Khozhai, et al., 1995). 

However, these studies did not attempt to identify any global TF-TFBS interactions that 

explains the transcriptional signatures responsible for the distinction of 5-HT induced and 

suppressed genes. Hence, transcriptional regulation studies help in understanding the 5-

HT responsive genes that govern the special properties of stem cells and provide insight 

to understand the ES cell biology.  

This study aimed to explore the transcriptomic signatures of serotonin in ES cells. 

We performed functional genomics study to identify the 5-HT responsive genes (induced, 

suppressed) by using a stringent filtering strategy. We have identified 44 genes in 5-HT 

induced genelists and 29 genes in 5-HT suppressed genelists. We employed pattern 

search algorithms such as MEME and MotifScanner on these genes followed by 

literature-based validation. Motif prediction analysis was performed using the upstream 

sequences of these genes to identify the TFBS and their profile TFs. We found four TFs 

viz., TFAP2A, Klf4, SP1, INSM1 regulating the expression of 5-HT induced genes and 

two TFs viz., TFAP2A, Zfx regulating the expression of 5-HT suppressed genes.   

Previous studies on the transcription factor TFAP2A reveal that it plays an 

important role in differentiation of neural crest from stem cells (Barrallo-Gimeno, et al., 

2004). It was observed that in the absence of TFAP2A, the neural crest progenitors fail to 
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differentiate and die by apoptosis. This suggests that TFAP2A plays a critical role in 

regulating the target genes mediated in ES cell differentiation.   

Ramalho-Santos et al in their study compared the enrichment of genes in 

hematopoietic SCs, ES cells, neural SCs. They reported 1787 genes that were enriched in 

ES cells and 216 genes that were enriched across all the three SCs. The comparison 

between these genes and our dataset showed 85 genes common with their 1787 genes. 

Some of the genes from our final genelists (1-4) belonging to Bysl, Ccnd, DnaJ, Adam, 

Slc, and Cdc gene families are reported to be enriched in all the three SCs and more 

specifically in ES cells respectively. 

Bysl, bystin like gene, commonly expressed in ES cells, NPC, and HSC cells is 

essential for cell adhesion, embryo implantation and embryo survival (Adachi, et al., 

2007). Aoki et al in their study, reported that Bysl plays an important role in 

differentiation of ES cells (Aoki, et al., 2006). Another study claimed that Ccnd2 is a D-

type cyclin, which is enriched in all the three SCs and is associated with cell 

proliferation, and regulation of cell cycle. It is an important target in Wnt signaling and is 

reported to be more involved in developmental process rather than cell proliferation 

(Shin, et al., 2007).  Similarly, Dnajc16 reported in our genelist1 and Adam3 listed in 

genelist2, belong to the DnaJ family of co-chaperones and Adam family of genes are 

found to be essential for placental development and sperm-egg adhesion respectively 

(Glassey and Civetta, 2004; Hunter, et al., 1999). 

Roma et al compared different studies reporting on gene expression profiling in 

ES cells (Roma, et al., 2007). The comparison of results from Ramalho-Santos et al, 
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Fortune et al, and Ivanova et al revealed that there were 332 genes enriched in ES cells 

that were common to three studies. The genes belonging to the family Cdc (Cdc23), Gdf 

(Gdf1) Slc(Slc5a1), Eif(Eif2s1), Rnf(Rnf130,216) were found to be common between our 

4 genelists and the 332 genes common in the above mentioned three studies.  

 Among the 44 genes in our 5-HT induced genelist, 14 genes were reported in 

literature to be associated with ES cells (Cldn14, Zfyve26, Hoxb1, Slc38a5, Car4, Eif2s1, 

Rbbp9, Dnajc16, Bysl, Ccnd2, Cdc23, Kdr, Ltbr, Slc5a1). It was also reported that the 

gene Cldn14 from genelist1 might have an additional role in cell-cell adhesion and 

embryonic development (Ben-Yosef, et al., 2003). Zfyve26 is suggested to play a role in 

embryonic development (Hanein, et al., 2008) and Hoxb1 plays an important role in 

specification of neural progenitor cells from ES cells (Gouti and Gavalas, 2008). 

Furthermore, Slc38a5 gene belongs to the solute carrier family of genes that are reported 

to be highly expressed in ES cells (Zeng, et al., 2004). Yap et al, in their study, observed 

genes from our lists such as the ones from the cytochrome P450 family (Cyp4f14), 

growth differentiation factor family (Gdf1), Car4, Kdr, and tumor necrosis factor receptor 

family (Tnfrs11b) are being differentially expressed between ES cells and their 

differentiating counterparts (Yap, et al., 2007).  

Generally, cellular processes are regulated by the binding of TFs to the TFBS 

resulting in activation/repression of their target genes. We have identified transcriptional 

regulatory networks where, the transcription factors such as TFAP2A regulate the 

expression of 5-HT induced (Creb3l1, Rbbp9, Rgs14, Rnd2, Ank3, Barx2, Cldn14, 

Cyp4f14, Hoxb1, Slc38a5, Car4, Bysl, Ccnd2, Cdc23, Cxcl9, Ltbr, Ncor1, Ppp3r2, 

Slc5a1, Tnfrsf11b, Ly6c1) and suppressed genes (Tnfrsf11b, Prmt3, Mtap6, Sqrdl, 
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Adam3, Ppp1r16b, Rnf130). GO functional annotation of these genes reveals that some 

of them belong to transcriptional regulation which implies that, these genes regulate 

expression of other genes and form a typical transcriptional regulatory network. 

 The GOFFA and GO-Proxy analysis of the genelists helped in comparing the 

gene ontology of the genes across as well as within the 5-HT induced and 5-HT 

suppressed genelists. The GO categories that were enriched in 5-HT induced genelists 

include translation in response to stress (Creb3l1, Gtf2h4 and Eif2s1), and energy 

derivation by oxidation. These categories support the observation that 5-HT is localized 

in mitochondria of pre-implantation embryos (Basu, et al., 2008). Similarly, GO terms 

namely, parasympathetic nervous system development and cranial nerve development, 

suggest the role for 5-HT in the development of nervous system (or development of NPC 

from ESCs). In addition, the regulation of dopamine secretion term enriched in 5-HT 

induced genelists supports the Whitaker-Azmitia et al study that the early appearance of 

serotonin ahead of other monoamines might be involved in the regulation and 

development of other monoamines, in particular dopamine (Whitaker-Azmitia, 2001). In 

5-HT suppressed genes, the enrichment of the apoptosis gene ontology term suggests that 

5-HT is required for proper cell growth. 

 Few genes from the 5-HT suppressed lists namely Sqrl, Polk, Asb8, Ppp1r16b 

and Fas were reported as negatively significant genes in the Sperger et al study (Sperger, 

et al., 2003).  Some of the 5-HT induced genes in ES cells viz., Cldn14, Cyp4f14, Hoxb1, 

Slc38a5, Car4, Eif2s1, Rgs14, Rnd2, Dnajc16, Barx2, Ccnd2, Cdc23, Cxcl9, Gjb3, 

Ly6c1, Olfr1312, Olfr606, Pcdhb17, Ppp3r2, Slc5a1, Tnfrsf11b were novel genes 

identified in our study. However, few of the family members of these genes are reported 
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to be enriched in ES cells (Sperger, et al., 2003). One of the characteristic features of SCs 

is their ability to continuously perpetuate thus forming new cells and maintaining 

homeostasis. The biological process GO term ‘homeostasis’ that was enriched in the 5-

HT responsive genes is responsible for one of the characteristic features of SCs viz., the 

ability to continuously perpetuate thus forming new cells.  

One limitation of our study is that we identified very few number of genes in all 

the four genelist because of the following reasons: the replicates in our microarray study 

showed greater variability and we used stringent filtering such as one-way ANOVA, 

volcano plots, 1.5 fold enrichment and p value less than 0.05. As a result, we might have 

missed some of the false negatives. However, our analysis showed significant results that 

are essential for understanding the role of serotonin in ES cells.  
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CHAPTER SIX: CONCLUSION 

 This study is useful in understanding transcriptional regulatory mechanisms of 5-

HT responsive genes in ES cells. By combining gene expression data with motif 

prediction algorithms, literature validation and comparison with public domain data, we 

have identified the gene specific to endogenous or exogenous 5-HT in ES cells and TFs 

governing the expression of these genes. The methodology adopted in this study provided 

strong basis for identifying regulatory components that facilitate expression of 5-HT 

responsive genes in ES cells. With this in silico approach, we have identified 44 5-HT 

induced and 29 5-HT suppressed genes. Furthermore, by comparing our dataset with 

published expression profiles in ES cells, we observed a number of common 5-HT 

responsive target genes showing differential expression in ES cells. Both de novo and ab 

initio motif prediction analysis on these identified differentially expressed genes revealed 

that 4 TFs such as TFAP2A, KLF4, INSM1, SP1 and 2 TFs such as TFAP2A, Zfx 

regulate 5-HT induced and 5-HT suppressed genes respectively. Among these TFs, 

TFAP2A play a key role in regulating the expression of 5-HT responsive genes. 

Functional annotation of the 5-HT responsive genes shows the enrichment of gene 

ontology term regulation of translation in response to stress. The enrichment of other 

functional categories such as development of various parts of nervous system in 5-HT 

induced target genes and cell adhesion, apoptosis in 5-HT suppressed genes addresses 

that 5-HT plays a key role in ES cell differentiation. One of the limitations of our study is 

that we identified very a few number of genes after differential gene selection because of 

the stringent conditions and cut off values we implemented in our approach. Even though 

we identified important regulators of 5-HT responsive genes, one useful future direction 
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would be gene set enrichment analysis, and pathway analysis to give more insights for 

understanding biology behind role of 5-HT in ES cells. We also intend to perform 

biological validation of some of the genes identified in our study such as Creb3l1, Gtf2h4 

and Eif2s1 in our further study. Thus, our study implemented new combinatorial 

approach for identifying gene regulatory mechanisms involved in 5-HT responsive genes 

and its role in ES cells, which is the goal of this study. 
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ANUSHA NAGARI 
♦ 4048 Willow Bend Dr, Apt D, Beech Grove - 46107 ♦Ph: 812-371-1214 ♦ 

anagari@umail.iu.edu ♦  
	
  

CAREER	
  PROFILE	
  
A	
  growth-­‐oriented,	
  hard	
  working,	
  motivated	
  and	
  organized	
  professional	
  in	
  bioinformatics	
  
with	
  2	
  years	
  research	
  experience	
  in	
  gene	
  regulation	
  and	
  strong	
  background	
  in	
  
programming	
  and	
  biology	
  
Job	
  Skills:	
  

• Adroit	
  at	
  different	
  Bioinformatics	
  tools	
  usage,	
  PERL	
  scripting,	
  network	
  visualization	
  
softwares,	
  R	
  and	
  Bioconductor	
  

• Proficient	
  in	
  high-­‐throughput	
  data	
  analysis	
  and	
  next	
  generation	
  sequencing	
  analysis	
  
including	
  ChIP-­‐chip	
  data,	
  and	
  ChIP-­‐seq	
  data	
  

• Sound	
  knowledge	
  in	
  various	
  domains	
  of	
  Biology	
  like,	
  Genetics,	
  Cell	
  and	
  Molecular	
  
biology,	
  Microbiology	
  

• Analytical	
  thinking,	
  decision	
  making	
  and	
  problem	
  solving	
  skills	
  
• Excellent	
  communication	
  and	
  interpersonal	
  skills	
  with	
  the	
  ability	
  to	
  quickly	
  learn	
  

new	
  technologies	
  

EDUCATION  
Master of Science, Bio-Informatics                                                                          June 2011                                            

       Indiana University Purdue University Indianapolis, IN                               Current GPA: 3.92 

Bachelor of Engineering, Biotechnology                          June 2009 
	
  	
  	
  	
  	
  	
  	
  Vinayaka	
  Missions	
  University,	
  India	
   	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  GPA:	
  3.9	
  

TECHNICAL SKILL SET 
Transcription Factor Binding Site prediction tools: MEME, Weeder, RSAT, TOUCAN, 
Patser 
Microarray analysis: MeV, SAM, Array track, GSEA, Bioconductor, dChip 
ChIP-seq analysis: MACS, Cis-genome 
Languages: Perl, BioPerl, R, Python, C++ 
Databases: PL/SQL, SQL, Oracle Aqua Data Studio, Oracle SQL Developer 
Platforms: UNIX, Oracle, MS-DOS, Macintosh, Windows XP/vista/2000 

 Statistical packages: R, SPSS, Bioconductor 
       Visualization tools: Cytoscape, MetaCore, Integrated Genome Browser, STAMP 
 Other Bioinformatics tools:  Haploview, ID conversion tools like, David, bioDBnet, Array 

track, Conservation analysis tools like UCSC Genome browser, ECR browser; Gene-ontology 
tools like GOstat, GOmapper, WebGestalt, Weka, Eclipse 
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HONORS 
• Recipient of ‘University Dean’s award at IUPUI’ for the years 2009-2011 
• University Rank holder, Vinayaka Missions University, 2009 
• Received ‘Certificate of Appreciation’ from VMKV Engineering College for academic 

excellence in 2006-2007 
• Honored with ‘Academic Excellence Award’ at VMKV Engineering College for 

academic   excellence, 2005-06 
• Selected for ‘PRATHIBHA’ award (prestigious award given by the Government of 

Andhra Pradesh) for academic excellence in Intermediate Education (secured 96%) in the 
year 2005 

• Received Gold medal for paper presentation on Biomedicines and Uses in National 
Children’s Science Congress, conducted by Government of Andhra Pradesh at Chennai, 
Dec 1998 

	
  

ACTIVITIES 
• Poster	
   presentation	
   on	
   “Co-­‐localization	
   of	
   Stat4-­‐mediated	
   epigenetic	
   and	
  

transcriptional	
   regulatory	
   elements	
   controlling	
   Th1	
   genes”	
   for	
   14th	
   International	
  
Congress	
  Of	
  Immunology,	
  Kobe,	
  Japan	
  2010	
  

• Received	
  first	
  prize	
  in	
  paper	
  presentation	
  on	
  “	
  Recent	
  innovations	
  in	
  Biotechnology”	
  
conducted	
  at	
  VMKV	
  Engineering	
  College,	
  2008-­‐09	
  

• 	
  	
  Poster	
   presentation	
   on	
   “Degradation	
   of	
   Polyamide-­‐6	
   by	
   Lignolytic	
   Fungi	
   -­‐	
  
Bjerkandera	
  Adusta”	
  at	
  Arunai	
  Engineering	
  college,	
  Tamilnadu,	
  India	
  

 


