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INTRODUCTION
The completion of Human Genome Project is seen as a gateway to the discovery of novel drug targets (Jacoby, Schuffenhauer, & Floersheim, 2003).  How much of this information is actually translated into knowledge, e.g., the discovery of novel drug targets, is yet to be seen.  The traditional route of drug discovery has been from target to compound.  Conventional research techniques are focused around studying animal and cellular models which is followed by the development of a chemical concept.  Modern approaches that have evolved as a result of progress in molecular biology and genomics start out with molecular targets which usually originate from the discovery of a new gene .Subsequent target validation to establish suitability as a drug target is followed by high throughput screening assays in order to identify new active chemical entities (Hofbauer, 1997).  In contrast, chemogenomics takes the opposite approach to drug discovery (Jacoby, Schuffenhauer, & Floersheim, 2003).  It puts to the forefront chemical entities as probes to study their effects on biological targets and then links these effects to the genetic pathways of these targets (Figure 1a).  The goal of chemogenomics is to rapidly identify new drug molecules and drug targets by establishing chemical and biological connections.  Just as classical genetic experiments are classified into forward and reverse, experimental chemogenomics methods can be distinguished as forward and reverse depending on the direction of investigative process i.e. from phenotype to target or from target to phenotype respectively (Jacoby, Schuffenhauer, & Floersheim, 2003).  The identification and characterization of protein targets are critical bottlenecks in forward 
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Figure 1a. Homologous proteins are characterized by studying gene families and traditional drug discovery route is from protein targets to drug molecules. Chemogenomics explores the relationship between structure (“chemical genotype”) and biological activity (“chemical phenotype”) and establish genetic connection based on chemical phenotype.





[image: image2]Figure 1b.Cheminformatics techniques are based on structural similarity between molecules while bioinformatics deals with sequence similarity to establish homologous proteins.  Chemogenomics can be used to derive the missing links between compounds and targets as well as genetic connections between two targets.
chemogenomics experiments.  Currently, methods such as affinity matrix purification (Taunton, Hassig, & Schreiber, 1996) and phage display (Sche, McKenzie, White, & Austin, 1999) are used to determine targets for compounds.  None of the current techniques used for target identification after the initial screening are efficient.
In silico methods can provide complementary and efficient ways to predict targets by using chemogenomics databases to obtain information about chemical structures and target activities of compounds.  Annotated chemogenomics databases integrate chemical and biological domains and can provide a powerful tool to predict and validate new targets for compounds with unknown effects (Figure 1b).  A chemogenomics database contains both chemical properties and biological activities associated with a compound.  The MDL Drug Data Report (MDDR) (Molecular Design Ltd., San Leandro, California) is one of the well known and widely used databases that contains chemical structures and corresponding biological activities of drug like compounds.  The relevance and quality of information that can be derived from these databases depends on their annotation schemes as well as the methods that are used for mining this data.  In recent years chemists and biologist have used such databases to carry out similarity searches and lookup biological activities for compounds that are similar to the probe molecules for a given assay.  With the emergence of new chemogenomics databases that follow a well-structured and consistent annotation scheme, new automated target prediction methods are possible that can give insights to the biological world based on structural similarity between compounds.  The usefulness of such databases lies not only in predicting targets, but also in establishing the genetic connections of the targets discovered, as a consequence of the prediction.
The ability to perform automated target prediction relies heavily on a synergy of very recent technologies, which includes:

  i) Highly structured and consistently annotated chemogenomics databases.  Many such databases have surfaced very recently; WOMBAT (Sunset Molecular Discovery LLC, Santa Fe, New Mexico), KinaseChemBioBase (Jubilant Biosys Ltd., Bangalore, India) and StARLITe (Inpharmatica Ltd., London, UK), to name a few.

 ii) Chemical descriptors (Xue & Bajorath, 2000) that capture the structure-activity relationship of the molecules as well as computational techniques (Kitchen, Stahura, & Bajorath, 2004) that are specifically tailored to extract information from these descriptors.  

iii) Data pipelining environments that are fast, integrate multiple computational steps, and support large datasets.
A combination of all these technologies may be employed to bridge the gap between chemical and biological domains which remains a challenge in the pharmaceutical industry.

BACKGROUND

The current trend in drug discovery is to focus on gene families, which makes it possible to work with multiple targets simultaneously, because of their genetic interrelationship.  Chemogenomics seeks to apply this relationship by starting with chemical compounds to find novel targets.  In silico methods can be used to further advance this field.  A number of different in silico approaches are possible, depending on the objective of a particular study.  The most widely used method to make a selection is to carry out similarity searches on a structural compound database with reference molecules (Hert et al., 2004).  Cutoff values derived from similarity metrics like the Tanimoto coefficient (Willett, 2005) can be used to filter uninteresting compounds.  Three-dimensional pharmacophore-based searches can also be used when 3‑D structural information and active ligands are available (Toledo, Lydon, & Elbaum, 1999).

Classification methods are useful to generate focused libraries as well as identify novel compounds from large compound collections.  Genetic algorithms (GA) (Gillet, Willett, & Bradshaw, 1998), neural networks (NN) (Manallack et al., 2002), support vector machines (SVM) (Weinstein et al., 1997), recursive partitioning (RP) (P. Blower, Fligner, Verducci, & Bjoraker, 2002; Rusinko, Farmen, Lambert, Brown, & Young, 1999), naïve Bayes classifier (NB) (Klon, Glick, & Davies, 2004; Xia, Maliski, Gallant, & Rogers, 2004), and standard and partial least square methods (Zhu, Hou, Chen, & Xu, 2001) are some of the classification techniques that have gained popularity among researchers to model structure-activity relationships of compounds.

Clustering methods are also widely used to group compounds with similar bioactivity based on their structural information (Shemetulskis, Dunbar, Dunbar, Moreland, & Humblet, 1995).  A number of hierarchical methods such as Wards and group-average and non hierarchical clustering methods such as Jarvis Patrick were compared in a study conducted by Brown and Martin (Brown & Martin, 1998).  The Wards clustering method is reported to perform best in separating active from inactive compounds in this study.  K-means is another nonhierarchical clustering method that has been reported to perform well in a study to identify ligand binding sites on proteins (Glick, Robinson, Grant, & Richards, 2002).
The performance of a particular similarity search, clustering or classification method in terms of predicting activity for a given compound depends on the dataset as well the choice of descriptors.  Numerous descriptors have been developed to describe molecules: 1‑D descriptors such as molecular weight, Simplified Molecular Input Line Entry Specification (SMILES), and melting point, 2‑D descriptors such as connectivity tables and 2‑D fingerprints, and 3‑D descriptors such as pharmacophore definition triplets (PDTs) (Abrahamian et al., 2003) have been used to represent chemical structures.  2‑D fingerprinting is by far the most commonly used structure abstraction technique. A recent study done by Hert et al. to compare a number of 2‑D fingerprints such as BCI, Daylight, Extended Connectivity fingerprints (ECFPs), Unity and Avalon shows the effectiveness of ECFPs, which are based on circular substructures, over other topological descriptors (Hert et al., 2004).  Also, Klon et al. have reported considerable enrichment in high throughput docking data by using ECFPs in combination with Naïve Bayesian classifier (Klon, Glick, & Davies, 2004).

Modeling biological activities based on chemical structure abstraction for a wide range of compounds has been attempted recently in the form of a computer program, PASS (Lagunin, Stepanchikova, Filimonov, & Poroikov, 2000) that has also been integrated with the National Cancer Institute’s open database browser (Poroikov et al., 2003).  PASS makes use of substructure descriptors called multilevel neighborhoods of atoms (MNA) (Fomenko, Sobolev, Filimonov, & Poroikov, 2003).  After an initial training with known biologically active compounds, it can be used to predict a wide range of biological activities such as mutagenicity, carcinogenicity, and embryotoxicity for test compounds.

The usefulness of annotated chemical libraries, overlaying the ligand-target domains, has been recently recognized.  Studies analyzing ligand-target space (Weinstein et al., 1997) and finding correlation between substructures and gene expression patterns (P. E. Blower et al., 2002) have been reported.  Kohonen self-organizing maps were recently employed in an attempt to classify 20,000 compounds tested against 80 of NCI’s tumor cell lines (Rabow, Shoemaker, Sausville, & Covell, 2002) with very useful results.  In another effort to integrate bio- and cheminformatics domains, annotation schemes for ligands of four target classes (enzymes, G protein-coupled receptors, nuclear receptors and ligand-gated ion channels) have been proposed (Schuffenhauer et al., 2002).
The amalgamation of a robust fingerprinting method and an appropriate computational model trained on a well-annotated chemogenomics database can be an extremely useful tool to discover novel targets for compounds with unknown activities.  Further, the structure-activity relationship homology principle (Frye, 1999) can be applied to discover leads for homologous targets.
Hypothesis

It is possible to predict targets for compounds with unknown activities by training multiple naïve Bayes classifiers on compounds with known biological targets.  The intent of this research is to train multiple Laplacian-modified naïve Bayes models with extended connectivity fingerprints on compound records derived from the WOMBAT database in order to predict targets for test compounds derived from the MDDR database.

METHODS
Extended Connectivity Fingerprints

Extended connectivity fingerprints, developed by SciTegic (SciTegic, San Diego, California), are structure fingerprints based on the Morgan algorithm (Morgan, 1965).  An ECFP feature represents an exact structure with limited and specified attachment points.  Therefore, a substructure search using the fragment para-substituted benzene (a) would return compounds (b, c) while a search with ECFPs would return only (c) (Figure 2a). This is because for ECFPs, (b) does not conatin (a) as there is substitution on the benzene ring at locations other than the specified attachment atoms marked as X.
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Figure 2a Substructure search vs Extended connectivity fingerprint structure search

ECFPs are generated in an iterative fashion.  Initially, each atom is assigned a code that is derived from the number of connections to the atom, element type, charge and mass of the atom which corresponds to ECFP with a neighborhood size of “0”.  In the first iteration, information about each atom’s immediate neighbors is collected and a new code representing the atom and its immediate neighbors is generated. In each iteration, the neighborhood size becomes larger and the updated codes of the atoms from previous iterations are used for assigning new codes.  When the desired neighborhood size is reached, the set of all features is returned as a fingerprint (Figure 2b).
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Figure 2b Extended connectivity fingerprint generation method

ECFPs with a neighborhood size of 6 (i.e., ECFP_6) were used as structural descriptors to train the naïve Bayes classifiers as they represent a fairly large set of features or structural units that are crucial for structural comparison of compounds (Klon, Glick, Thoma, Acklin, & Davies, 2004).
Multiclass Naïve Bayesian Modeling

Naïve Bayes

Naïve Bayes, a statistical classification method, can be efficiently used for large datasets as it scales linearly with the number of molecules.  It is based on Bayes rule of conditional probability (Weisstein) which states that given two events A and B, the probability of occurrence of event A given that event B has already occurred, P(A|B), is given by:

P(A|B) =P(B|A)P(A)/P(B)

where P(A) and P(B) are the probability of occurrence of events A and event B, respectively.

In this study, naïve Bayes is used to classify compounds into actives and inactives against a particular target based on the frequency of occurrence of a given feature, which is encoded by extended connectivity fingerprint bits.  Given an ECFP, the probability of a given compound being active against a particular target that contains ECFP, is given by P(active|ECFP), where event active refers to the event that the compound is active.  Thus,

P(active|ECFP) = P(ECFP|active) P(active)/P(ECFP)

This method is said to be naïve because it naively assumes independence of the features from one another.  Making this assumption, it is valid to multiply the individual feature probabilities.  Given n features or ECFP bits,

P(active|ECFP) = P(ECFP1|active)  X
P(ECFP2|active)  X
P(ECFPn|active)P(active)/P(ECFP)
Laplacian Correction

A Laplacian correction is used as different features are sampled at different frequencies.  If N is the number of compounds in a given dataset, of which M are active, the baseline probability of a compound being active is given by:
P(active) = M/N

The probability of a compound being active given feature F present in B number of compounds of which A are active can be given by

P(active|F) = A/B

As the number of compounds B diminishes, the probability estimate of a feature starts getting biased.  For example if A =1 and B =1 then P(active|F) = 1, which is not true as the feature is undersampled.

To correct for the above anomaly, it is assumed that most of the features have no relationship with activity, i.e., for most Fi, P(active|Fi) = P(active), which is the baseline probability.  If the feature is sampled X additional times, then P(active) X X of those new samples should be active.  Therefore, each feature can be corrected by adding those virtual samples. 

P(active|F) = (A + P(active) X X) / (B + X)

Now, as the number of samples, B, decreases, the feature’s probability contribution converges to P(active).

Relative Estimator

Naïve Bayes as implemented in Pipeline Pilot is a relative estimator which is obtained by dividing the Laplacian-corrected Bayes classifier by P(active).  Thus,

P(active|F) = P(active|F)/P(active)

which implies: 
i) for most features, log P(active|F) ~ 0 
ii) for features more common in actives, log P(active|F) > 0 

iii) for features less common in actives, log P(active|F) < 0.
The Learn Molecular Categories component in Scitegic’s Pipeline Pilot software can build multiple naïve Bayes models in one protocol.  The user needs to specify a “CategoryProperty” property on each data record, in this case target name, which is subsequently used to create different equations for different values of that property.  Once a multiple naïve Bayes model is created, it can be added to another protocol to calculate naïve Bayes scores for multiple targets.  A test compound is passed through each of the equations of this model and scores corresponding to each target name is calculated.  The highest score for a target is taken as most likely target for that compound.  Similarly, the next highest score for a target can be assigned as second most likely target and so on.
Databases and Datasets
WOMBAT

WOMBAT (World of Molecular Bioactivity) is a consistently annotated chemogenomics database.  The version used for this study, WOMBAT 2005.1, contains 117,007 compounds and 104,230 unique SMILES.  230,000 biological activities and 1,021 unique targets are reported for these compounds.  It contains 4,786 different chemical series from 4,773 papers published in medicinal chemistry journals between 1975 and 2004.  The database follows a hierarchical scheme such that it is possible to look up the target family. The target families are based on the functional properties of targets. Targets are usually proteins but can also be DNA or RNA.
For the purpose of this study, compounds with activity threshold, IC50/EC50/Ki/Kb/Kd/MIC/ED50 < 30µm were selected. Thus, a reduced dataset of 103,735 compounds with 964 biological targets was generated.  Also, WOMBAT is organized in a way in which one compound may have more than one target.  The database was preprocessed to associate one target per compound so that there is unique value for the “CategoryProperty” for the Learn molecular component of Pipeline Pilot. As a result, 192,373 compound records were generated because of duplication. This dataset will be referred to henceforth as the WOMBAT database.

MDDR

MDDR contains information about biologically relevant compounds.  Many biological activities reported in MDDR are very generic e.g. antineoplastic, antihypertensive and anti-inflammatory.  It covers information available in patent literature, journal articles, and meetings.  MDDR is updated annually.  The version used for this study contains 159,967 compounds and 761 biological activity classes.

There are 2,789 compounds in MDDR with no structural information.  Since the descriptors used for statistical analysis in this study are based on structural information, these compounds were removed from the dataset and the remaining 156,873 compounds with 659 biological activity classes were kept for the study.

Datasets
We built two separate multiclass Bayes models for the purpose of this study.  The WOMBAT 85% Model has 85% of WOMBAT compound records as training set and the other 15% is used as the test set. Cross validation of WOMBAT database was carried out because there are large number of records available for the study.  There is no duplication of compounds across two sets.  The second model, the WOMBAT model, uses WOMBAT as the training set.  Test sets are derived from ten MDDR specific biological activity classes and ten generic biological activity classes.  Table 1 summarizes the number of compounds and respective databases from which training and test sets are extracted for both models.  Table 2 shows the MDDR activity classes with the total number of compound records corresponding to each class.

	Model Name
	Number of compounds

	
	Training Set
	Test Set

	Wombat85% Model
	162238 

(WOMBAT)
	30135

(WOMBAT)

	Wombat Model
	192373

(WOMBAT)
	53137 

(MDDR)


Table 1.  Datasets used for training and testing the naïve Bayesian models

	MDDR Activity Class
	Number of Compounds

	Phosphodiesterase IV Inhibitor 
	2000

	Cyclooxygenase-1 Inhibitor 
	88

	Cyclooxygenase-2 Inhibitor
	1055

	Acetylcholinesterase Inhibitor 
	810

	Angiotensin II AT1 Antagonist 
	2185

	Angiotensin II AT2 Antagonist 
	53

	ACE Inhibitor 
	570

	Reverse Transcriptase Inhibitor 
	819

	HIV-1 Protease Inhibitor 
	1027

	H+/K+-ATPase Inhibitor
	751

	Antineoplastic
	19621

	Kinases*
	1858

	Anti-inflammatory, Intestinal
	29

	Antihypertensive
	11124

	Anti-arthritic
	11147


Table 2.  MDDR activity classes used for study

*Kinases are derived from six MDDR activity classes viz. Adenosine Kinase Inhibitor, Nucleoside Diphosphate Kinase Inhibitor, Phosphatidylinositol Kinase Inhibitor, Protein Kinase C Inhibitor, Thymidine Kinase Inhibitor and Tyrosine-Specific Protein Kinase Inhibitor 
Software

Scitegic’s Pipeline Pilot™ version 4.5.2 was employed to build the multiclass naïve Bayesian models.
Hardware

The computations were carried out on a Pipeline Pilot server with Intel® Xeon™ 2.7 GHz dual processors and 4 GB of RAM.
Protocol for Building Multiclass Naïve Bayesian Models

Figure 3 shows the components used by the Pipeline Pilot protocol that was used to build multiclass Bayesian models.  The preprocessing steps involved:

a. Reading of the compound library into the protocol

b. Conversion to Pipeline Pilot molecule format from SMILES string

c. Removal of salts if any from the molecule

d. Standardization of stereo-atoms and charges

e. Reformatting of text string contained in target name to remove any occurrences of single quotes

f. Calculation of extended connectivity fingerprints for all molecules
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Figure 3 Pipeline Pilot protocol for building multiclass naïve Bayes models

The protocol generates a new component called Learn Molecular properties. This component can be used in another protocol with test data as input to this component.
Diversity Analysis

Diversity analysis is carried out to ensure that the model is applicable over a wide range of structural classes.  An analysis of structural diversity among the training and test set can thus establish the effectiveness of the computational model.  The chemical diversity was assessed by carrying out Murcko assemblies analysis (Bemis & Murcko, 1996) of WOMBAT and MDDR compounds.  Murcko assemblies are obtained by removing the side chains from the molecule and keeping the core ring system and associated atom type, bond order and hybridization information.  Table 3 shows examples of COX‑2 inhibitors derived from the WOMBAT database, and their corresponding Murcko assemblies.  After generating Murcko assemblies for all the compounds in WOMBAT and MDDR, unique as well as assemblies common to both can be determined.  Based on the number of unique assemblies it can be determined if two datasets differ significantly in terms of chemical diversity.
	Compound Structure
	Murcko Assembly
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Table 3.  Murcko assemblies for COX‑2 inhibitors derived from WOMBAT database.
RESULTS
Diversity Analysis

Figure 4 shows the results of the diversity analysis based on Murcko scaffold analysis.  It shows that there are 65,806 Murcko assemblies unique to MDDR, 24,772 assemblies unique to WOMBAT and 6,395 assemblies common to both datasets.  Also, the figure depicts the frequency of assemblies in the datasets, e.g., the bar region corresponding to blue accounts for Murcko assemblies that occur just once in the complete dataset (singletons).  The red region corresponds to assemblies that occur twice in the dataset, and so on.
The results show that MDDR is more diverse than WOMBAT, as it contains larger number of distinct Murcko fragments, but it cannot be used for effective target prediction simply because it is not highly annotated.  There is a significant overlap between both datasets, but in spite of that there are large numbers of Murcko fragments unique to each database.
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M- MDDR Scaffolds; MC, WC-Common Scaffolds in MDDR & WOMBAT; W-WOMBAT Scaffolds 

Frequency of scaffold occurrence denoted by color; blue: 1 occurrence, red: 2 occurrences, yellow: 3 occurrences, black: 4 occurrences, green: 5 or more occurrences
Figure 4.  Murcko assembly distribution of MDDR and WOMBAT

Method Validation

Wombat 85% Model

The top 3 scores or top 3 targets were evaluated and the results were interpreted in terms of percentage of compounds and rank in which the model predicted the right target.  Figure 5a shows the results of target prediction for the WOMBAT 85% model.  This model predicts the right target on the first guess for 82% of the compounds, on the second guess for 8% of the compounds, and on the third guess for 2% of the compounds.  Also, 8% of the compounds were not correctly predicted in the top 3 guesses.  A further analysis was done to examine predicted target families.  The model predicts the right target family for 89% of the compounds in first guess as shown in, Figure 5b.
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Figure 5a-b.  Percentage of test compounds with order of prediction for WOMBAT85% model

WOMBAT Model

Figure 6a shows the percentage of compounds predicted with the correct target in the top three predictions, as well as compounds for which the model failed to predict the correct target.  Figure 6b correspondingly depicts the percentage of compounds that were predicted in the correct target family, as well as the unsuccessful predictions for the target family.  On average, 77% of the compounds were predicted with correct targets and 79% of the compounds were predicted with the correct family in top three predictions.
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Figure 6a-b Percentage of test compounds derived from ten MDDR activity classes with order of prediction for WOMBAT model

Qualitative Analysis
Top targets predicted for five generic activity classes, viz. Antineoplastic, Kinase, Antiarthritic, Antihypertensive and Anti-inflammatory, Intestinal, derived from MDDR were examined.  The results were binned on target frequencies and interpreted in terms of the type of targets assigned to the generic activities by naïve Bayes Models.  Figures 7a-e show the distributions of targets for five generic activity classes.  Verification with the scientific literature available on corresponding targets revealed that the predicted target with maximum frequency of compounds was associated with the corresponding generic activity.

Antineoplastics have tubulin, a well known antineoplastic target, as the biggest target (8%) (Figure 7a) (Hadfield, Ducki, Hirst, & McGown, 2003).  Tubulin is essential to many vital processes such as cell division and movement of materials within a cell.  Drugs such as Taxol® bind to tubulin and cause the protein to lose its flexibility, which prevents cell division.
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Figure 7a.  Target Distribution: Top targets predicted for generic MDDR activity class Antineoplastic.
Unregulated kinase activity is a frequent cause of cancer where kinases regulate aspects that control cell growth, movement and death (Melnikova & Golden, 2004).  Therefore many kinases are anticancer targets, which is evident by the target distribution for Antineoplastics.

Kinases have epidermal growth factor receptor (EGFR), which is a tyrosine protein kinase (Mendelsohn & Baselga, 2003), as the biggest target (27%) (Figure 7b).  These receptors exist on the cell surface and are involved in initiating a signal transduction cascade which ultimately leads to DNA synthesis and cell proliferation.
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Figure 7b Target Distribution: Top targets predicted for MDDR Kinases*
The Anti-inflammatory, Intestinal activity class has NK1 as the biggest target (Figure 7c).  NK1 is a tachykinin receptor.  Tachykinin receptor antagonists have been strongly implicated for the treatment of at least 6 major disease groups which includes CNS disorders, pain and emesis, airway disease, urinary incontinence and intestinal dysfunction (Khawaja & Rogers, 1996).
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Figure 7c Target Distribution: Top targets predicted for MDDR activity class Anti-inflammatory, Intestinal
Antihypertensives have Angiotensin II type 1 (AT1) receptor as their biggest target (Figure 7d).  AT1 receptor has a well established role in maintaining blood pressure, and water and electrolyte homeostasis (Wexler et al., 1992).  AT1 antagonists work as antihypertensive agents by causing either arterial or mixed arterial and venous dilation.
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Figure 7d Target Distribution: Top targets predicted for MDDR activity class Antihypertensive
The Antiarthritic class of compounds has COX‑2 as the biggest target (14%).  COX‑2 is an enzyme responsible for mediating pain and inflammation (Figure 7e).  COX‑2 inhibitors are often used to treat arthritis (Hochberg, 2005).
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Figure 7e Target Distribution: Top targets predicted for MDDR activity class Antiarthritic

Table 4 summarizes the biggest assigned target for each activity class along with binning frequency and respective the target families.

	MDDR Activity Class
	Binning Frequency 
	Biggest Target
	Target Family

	Antineoplastic
	50
	Tubulin
	Tubulin

	Kinases*
	10
	EGFR
	Tyrosine protein Kinase

	Anti-inflammatory, Intestinal
	Not Binned
	NK1
	GPCR

	Antihypertensive
	50
	AT1
	GPCR

	Antiarthritic
	50
	COX-2
	Prostaglandin G/H synthase, oxidoreductase, peroxidase, dioxygenase


Table 4.  Biggest target as predicted by naïve Bayes Models for MDDR generic activity classes

Examples of compounds with right prediction

Histone Deacytlase (HDAC) inhibitors have been recently recognized as anticancer agents due to their role in the regulation of transcription (Vigushin & Coombes, 2002).  HDAC, when inhibited, stops differentiation and induces cell cycle arrest.

For nearly 2% of MDDR compounds with antineoplastic activity, HDACs are predicted as top targets by naïve Bayesian Models (Figure 7a) though MDDR contains no information on specific targets for these compounds.  I here report three such compounds which have high structural similarity to the known HDAC inhibitors.
i) N-(2-aminophenyl)-4-(3-hydroxypropanamido) benzamide (Figure 8a) MDDR Extreg 142057 is predicted as a HDAC inhibitor.  This compound is a substructure in several other compounds that have antineoplastic activity.  Also, one of these compounds belongs to a class of compounds known as N-aryl benzamides which are synthetic HDAC inhibitors (D. F. Schuppan, 2003).  Figure 8c shows the Markush representation of the entire class and example of a compound belonging to that class.

ii) N-(2-aminophenyl)-4-isobutyramidobenzmide (Figure 8b) MDDR Extreg 142055 is an analogue of N-(2-aminophenyl)-4-(3-hydroxypropanamido) benzamide and occurs as a substructure in various compounds with anticancer activity.  HDAC is predicted as the top target for this compound. 
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Figure 8a N-(2-aminophenyl)-4-(3-hydroxypropanamido) benzamide
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Figure 8b N-(2-aminophenyl)-4-isobutyramidobenzmide
[image: image24.png]A-X-Q-(CHyn. Ry

NV




Figure 8c N-aryl benzamide class
iii) MDDR Extreg 286017: Trichostatin D (Figure 9a) is listed as an Antineoplastic in MDDR with no reported literature on a specific target.  The top target for this compound as predicted by naïve Bayes Models was HDAC. Trichostatin A (Figure 9b) is a known natural HDAC inhibitor (Vigushin et al., 2001).  It can be seen that both compounds have the same chemotypes except for the extra sugar ring in Trichostatin D.  A further discussion with a chemist working on HDAC inhibitors in Novartis revealed that the compound can be very likely a prodrug. A prodrug is a pharmacological compound which is administered in an inactive form and is metabolized into an active form in the body.  The sugar ring would be cleaved off in vivo resulting in a hydroxamic acid group as present in Trichostatin A.
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Figure 9a.  Trichostatin D

7-(4-dimethylaminophenyl)-4,6-dimethyl-7-oxo-N-3,4,5-trihydroxy-6- (hydroxymethyl) tetrahydro-2H-pyran-2-yloxy) hepta-2,4-dienamide
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Figure 9b.  Trichostatin A

7-(4-dimethylaminophenyl)-4,6-dimethyl-7-oxo-hepta-2,4-dienehydroxamic acid

DISCUSSION
Naïve Bayesian modeling in conjunction with extended connected fingerprints has been shown to perform well in identifying actives in comparison to other substructure based searching methods (Klon, Glick, & Davies, 2004).  I here investigated the application of the Multicategory Naïve Bayes Model in predicting targets for compounds with unknown or little known activity information.  The method is applicable over a wide range of activity classes and 77% of the test compound sets used for validation are predicted with correct targets.  The method also performs well while correlating targets with the generic activities.

The training of the Multicategory Naïve Bayes Model with a dataset of ~190,000 compound records with 964 targets takes nearly six hours.  The subsequent target prediction rate is about 100 minutes for 100,000 compounds.  Thus, it can be efficiently used as a complementary tool for target prediction for a big library of compounds.

Data mining algorithms are largely dependent on the training datasets.  First, the structural diversity among underlying compounds is essential to the success of such algorithms.  In this study, COX‑1 inhibitors have the lowest correct prediction percentage.  Only ~27% of the COX‑1 inhibitors are successfully predicted by the algorithm.  To account for such a low prediction, I carried out a closest Tanimoto similarity analysis between the test set (COX‑1 compound sets derived from MDDR) and training set (COX‑1 compound sets derived from WOMBAT).  Figure 10 shows the percentage of MDDR compounds with a given Tanimoto Similarity coefficient value with WOMBAT compounds.  Nearly 95% of the MDDR compounds have a Tanimoto value <0.4 with WOMBAT COX‑1 compounds.
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Figure 10.  Closest Tanimoto similarity distribution for MDDR COX‑1 compounds

This implies that WOMBAT COX-1 compounds do not have sufficient structural diversity. The use of a structurally diverse dataset for training would thus result in better predictions.

Second, high similarity between compounds in training and test sets can lead to good predictions.  Further analysis of the kinases derived from MDDR was conducted to check how well the Bayes classifier works when there is low similarity between test and training sets.  Figure 11 is a plot of Tanimoto similarity vs. the order of prediction for MDDR kinases.  For a high similarity between the MDDR and WOMBAT, the first prediction is almost always correct.  There is a decrease in correct prediction percentage with decrease in similarity but even for a low similarity score of 0.2-0.5, correct predictions are made by naïve Bayes classifier.  This shows that Bayes can classify data even at low similarity values. 
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Not Predicted as Kinase in top 10 predictions
Figure 11.  Tanimoto similarity coefficient and the order of correct prediction for MDDR kinases

Third, the consistency and quality of annotation in chemogenomics database is of prime importance when it comes to deriving meaningful and reliable conclusions from the predictions.  The information contained in such databases is derived from research data published in medicinal chemistry journals, patents, and other such sources.  There is a constant need for updating such databases as information about new targets and compounds becomes available.

Conclusion

Naive Bayes models trained on a well-annotated chemogenomics database can be used to predict targets for compounds with unknown activities and ascertain genetic connections between targets.  Structural diversity among compounds used for building models plays an important role in automated target prediction methods.  Therefore, using a structurally diverse chemogenomics database as training set would result in better predictions.  The use of in silico techniques in abstracting the structure activity relationship is valid as long as underlying information is correct and up-to-date.  As new discoveries are made in the biological and chemical world, new information should be incorporated as it becomes available.
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