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Abstract

Fixing a continuous observable and using thermodynamic formalism and the method of convex

analysis, we obtain upper and lower bounds for the exponential decay rate of periodic measures far

from a given invariant measure in the two-side symbolic system.

1 Preliminaries

One branch of large deviation theory concerns the exponential decay rate of the periodic measures keeping
away from some given measure. For a continuous self map f : M → M of some domain M, let m be an
f -invariant measure on M and ϕ : M → R be a observable function, given δ > 0, let Bn(δ, f) := {x ∈
Fix(fn) | | 1n

∑n−1
i=0 ϕ(f ix) − ∫

ϕdm| ≥ δ} and Cn(δ, f) := {x ∈ Fix(fn) | | 1n
∑n−1

i=0 ϕ(f ix) − ∫
ϕdm| >

δ}, where Fix(fn) denotes the set of periodic points with period n. People are interested in how to
describe the exponential decay rate of ]Bn or ]Cn, where ]A denotes the cardinality of set A, by certain
characteristics of dynamical systems. The research in this branch could be traced back to the work of
Kifer [3], which is recovered by Pollicott in [4]. In their work, the system is assumed to be a uniformly
hyperbolic flow φt : Λ → Λ on a flow-invariant set Λ, and the invariant measures they concerned are those
supported on the periodic orbits. They gave an upper bound of the exponential decay rate with a given
weight function G of the meausures contained in a closed subset of the flow-invariant measures; and gave
a lower bound of the exponential decay rate with the weight function G of the measures contained in an
open subset.

Here we consider a two-side symbolic system T : X → X. By a classical result of Sigmund [6], any
T -invariant measure could be approximated by periodic measures. Inspired by this, in the ”opposite
researching direction”, we consider the deviation property of the periodic measures far from a given T -
invariant measure. We get two results in this direction for symbolic systems. The first one, Theorem 1.1,
states that in such system the exponential decay rate of ]Bn(δ, T ) could be controlled from top by the
supremum of the measure theoretic entropy on a closed subset of the T -invariant measures. The second
one Theorem 1.2, states that the exponential decay rate of ]Cn(δ, T ) could be controlled from bottom
by the supremum of measure theoretic entropy on an open subset of the T -invariant measures.

We employ two main tools in our approaches. The first is the general entropy in the measure sense
introduced by Gelfert and Wolf in their paper\, see Definition 2.1. The second is the method of convex
analysis, see Lemma 3.3, which plays an important role in the present paper. Kifer [3] first introduced
this method to the large deviation field, and it is also referred in paper of Gelfert and Wolf \. In the
present paper, we give a more concise version of this method for our case.
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Let Y = {1, 2, . . . , k} and X =
∏+∞
−∞ Y and consider T : X → X, T : (xi)+∞−∞ 7→ (xi+1)+∞−∞. As

usual, we call (X, T ) two-side symbolic system. The metric d(·, ·) : X × X → R is given by d(x, y) :=∑+∞
−∞

|xi−yi|
2|n| , where x = (xi)+∞−∞, y = (yi)+∞−∞ ∈ X. T is expansive, that is, there exists a constant ξ,

expansive constant, such that d(Tnx, Tny) ≤ ξ for any n ∈ Z implies x = y. We denote by Minv(X, T )
the set of all the T -invariant probability measures on X, and denote ωx := 1

l

∑l−1
i=0 δfix for x ∈ Fix(f l).

Theorem 1.1. Let T : X → X be a two-side symbolic system preserving a probability measure µ. Then
given ϕ ∈ C(X) and δ > 0, we have

lim sup
l→+∞

1
l

log ]{x ∈ Fix(T l) |
∫

ϕdωx −
∫

ϕdµ| ≥ δ} ≤ sup{hν(T ) | |
∫

ϕdν −
∫

ϕdµ| ≥ δ}.

Theorem 1.2. Let T : X → X be a two-side symbolic system preserving a probability measure µ. Then
given ϕ ∈ C(X) and δ > 0, we have

lim inf
l→+∞

1
l

log ]{x ∈ Fix(T l) |
∫

ϕdωx −
∫

ϕdµ| > δ} ≥ sup{hν(T ) | |
∫

ϕdν −
∫

ϕdµ| > δ}.

We prove Theorem 1.1 and Theorem 1.2 in Section 2 and Section 3 respectively.

2 Proof of Theorem 1.1

In this section, we start from introducing the generalized measure theoretic entropy.

Definition 2.1. Let f : M → M be a homomorphism on the compact manifold. Given ν ∈Minv(M, f),
we call

ĥν(f) := inf
ψ∈C(M)

(P (ψ)−
∫

ψdν)

the generalized entropy of f with respect to ν, where P (ψ) denotes the topological pressure of ψ.

Remark 2.2. For our case, it is easy to see that hν(T ) ≤ ĥν(T ) ≤ htop(T ) < +∞, ∀ν ∈ Minv(X, T ),
where htop(T ) denotes the topological entropy of T.

Remark 2.3. From the definition, it is standard to check that the function ĥ·(f) : Minv(M, f) → R ∪
{+∞} is concave, i.e., for any non-negetive a1, a2 with a1 + a2 = 1 and ν1, ν2 ∈ Minv(M, f), it holds
that ĥa1ν1+a2ν2(f) ≥ a1ĥν1(f) + a2ĥν2(f).

Remark 2.4. The generalized measure theoretic entropy satisfies the variation principle, i.e., P (ψ) =
supν∈Minv(M,f)(ĥν(M)+

∫
ψdν). Indeed, by Definition 2.1, ĥν(T )+

∫
ψdν ≤ P (ψ) for any ψ ∈ C(X) and

ν ∈Minv(M, f), which means that supν∈Minv(M,f)(ĥν(M)+
∫

ψdν) ≤ P (ψ). And the opposite direction
of this equality follows from the fact that hν(T ) ≤ ĥν(T ).

Remark 2.5. ĥν(f) = hν(f) if and only if the entropy map h·(f) : Minv(M, f) → R ∪ {+∞} is upper
semi-continuous at ν, see Theorem 9.12 in[7]. In our case, when T is expansive, the upper semi-continuity
property follows by, see, Theorem 8.2 in [7]. Thus, ĥν(T ) and hν(T ) coincide.

Remark 2.6. Recall that for a system f : M → M and a continuous function ϕ ∈ C(M), we say
ν ∈ Minv(M, f) is an equilibrium state of ϕ, if hν(f) +

∫
ϕdν = P (ϕ). Thus, for our case, suppose

φ ∈ C(X), then by Remark 2.5, ν ∈ Minv(X, T ) is said to be an equilibrium state of φ, whenever ν

satisfies ĥν(T ) +
∫

φdν = P (ϕ).

To get the first main result,Theorem 1.1, we prove a more general proposition.

Proposition 2.7. Let T : X → X be a two-side symbolic system, let V be a closed subset of Minv(X, T )
and ψ ∈ C(X). Then

lim sup
l→+∞

1
l

log
∑

x∈Fix(T l),ωx∈V
exp(Slψ(x)) ≤ sup

ν∈V
(ĥν(T ) +

∫
ψdν).
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Proof. By Definition 2.1 together with Remark 2.2, ĥν(T ) = infϕ∈C(X)(P (ϕ)− ∫
ϕdν) < +∞. Then

for each ν ∈Minv(X, T ) and ε > 0, there is a φν ∈ C(X) such that

P (ψ + φν)−
∫

(ψ + φν)dν < ĥν(T ) + ε. (2.1)

Notice that ψ, ψ + φν ∈ C(X), which means that the maps ν 7→ ∫
ψdν and ν 7→ ∫

(ψ + φν)dν are
continuous in Minv(X, T ), then there exists an open neighborhood Vν of ν, such that

|
∫

ψdτ −
∫

ψdν| ≤ ε and |
∫

(ψ + φν)dτ −
∫

(ψ + φν)dν| ≤ ε, for any τ ∈ Vν . (2.2)

Combine (2.1) and (2.2), it follows that

ĥν(T ) +
∫

(ψ + φν)dτ − P (ψ + φν) + 2ε > 0, for any τ ∈ Vν . (2.3)

Until now, we have shown that for each ν ∈Minv(M, f), there exist φν ∈ C(X) and a open neighborhood
Vν satisfying (2.3). Clearly, the union

⋃
ν∈V Vν forms an open cover of V. By the compactness of V,

we could choose a finite open subcover V1,V2, . . . ,Vr such that
⋃r

i=1 Vi ⊇ V. And for each Vi there
exist νi ∈ Vi and φi ∈ C(X) such that | ∫ ψdτ − ∫

ψdνi| ≤ ε, | ∫ (ψ + φi)dτ − ∫
(ψ + φi)dνi| ≤ ε and

ĥνi(T ) +
∫

(ψ + φi)dτ − Ptop(ψ + φi) + 2ε > 0 hold for any τ ∈ Vi, which means that

exp(l · (ĥνi
(T ) +

∫
(ψ + φi)dτ − Ptop(ψ + φi) + 2ε)) > 1, holds for any l ∈ N. (2.4)

According to above argument, it follows that

lim sup
l→+∞

1
l

log
∑

x∈Fix(T l),ωx∈V
exp(Slψ(x))

≤ lim sup
l→+∞

1
l

log
r∑

i=1

∑

x∈Fix(T l),ωx∈Vνi

exp(Slψ(x) exp(l · (
∫

(ψ + φi)dωx + ĥνi(T )− P (ψ + φi) + 2ε))

= lim sup
l→+∞

1
l

log
r∑

i=1

∑

x∈Fix(T l),ωx∈Vνi

exp(Sl(ψ + φi)(x)) exp(l · (
∫

ψdωx + ĥνi
(T )− P (ψ + φi) + 2ε))

≤ lim sup
l→+∞

1
l

log
r∑

i=1

∑

x∈Fix(T l),ωx∈Vνi

exp(Sl(ψ + φi)(x)) exp(l · (
∫

ψdνi + ĥνi
(T )− P (ψ + φi) + 3ε))

≤ lim sup
l→+∞

1
l

log
r∑

i=1

∑

x∈Fix(T l),ωx∈Vνi

exp(Sl(ψ + φi)(x)− l · P (ψ + φi)) exp l · (
∫

ψdνi + ĥνi
(T ) + 3ε)

≤ sup
ν∈V

(ĥν(T ) +
∫

ψdν) + 3ε + lim sup
l→+∞

1
l

log
r∑

i=1

∑

x∈Fix(T l),ωx∈Vνi

exp(Sl(ψ + φi)(x)− l · P (ψ + φi)).

Now quoting a classical result of Ruelle [5] saying that

lim
l→+∞

1
l

log
∑

x∈Fix(T l)

exp(Sl(ϕ)(x)) = P (ϕ)

for any ϕ ∈ C(X), we get

lim sup
l→+∞

1
l

log
∑

x∈Fix(T l),ωx∈Vνi

exp(Sl(ψ + φi)(x)− l · P (ψ + φi)) ≤ 0, for any 1 ≤ i ≤ r,
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and thus

lim sup
l→+∞

1
l

log
r∑

i=1

∑

x∈Fix(T l),ωx∈Vνi

exp(Sl(ψ + φi)(x)− l · P (ψ + φi)) ≤ 0. (2.5)

Applying (2.5) to the above argument, we have that

lim sup
l→+∞

1
l

log
∑

x∈Fix(T l),ωx∈V
exp(Slψ(x)) ≤ sup

ν∈V
(ĥν(T ) +

∫
ψdν) + 3ε.

Notice that ε is taken arbitrarily, let ε → 0, then it holds that

lim sup
l→+∞

1
l

log
∑

x∈Fix(T l),ωx∈V
exp(Slψ(x)) ≤ sup

ν∈V
(ĥν(T ) +

∫
ψdν),

which finishes our proof.

Proof of Theorem 1.1 For given ϕ ∈ C(X), δ > 0 and µ ∈ Minv(X, T ), let V := {ν ∈
Minv(X, T ) | | ∫ ϕdν − ∫

ϕdµ| ≥ δ} and take ψ ≡ 0, then by Proposition 2.7, we get that

lim sup
l→+∞

1
l

log ]{x ∈ Fix(T l) | |
∫

ϕdωx −
∫

ϕdµ| ≥ δ} ≤ sup
ν∈V

ĥν(T ). (2.6)

By Remark 2.5, ĥν(T ) = hν(T ), which together with (2.6) gives rise to Theorem 1.1

3 Proof of Theorem 1.2

Suppose α > 0, a function ϕ ∈ C(X) is said to be α-hölder continuous if there exists C > 0 such that
|ϕ(x) − ϕ(y)| ≤ Cd(x, y)α, ∀x, y ∈ X. In this section, we start from the subset Cα(X) consisting of
α-hölder functions on X. It is a well known result for the symbolic system that each α-hölder continuous
function has a unique equilibrium state, see [2], which is a critical property in our proof. Since Cα(X)
is dense in C(X), we could find a countable subfamily of α-hölder continuous functions dense in C(X),
denoted by {ϕi}∞i=1 ⊆ Cα(X). Recall that {ϕi}+∞i=1 could induce a metric ρ : Minv(X, T )×Minv(X, T ) →
R as following:

ρ(µ, ν) :=
+∞∑

i=1

| ∫ ϕidµ− ∫
ϕidν|

2i‖ϕi‖ ,

for any µ, ν ∈Minv(X, T ), where the norm ‖·‖ is given by ‖ϕ‖ = supx∈X |ϕ(x)|. This metric is compatible
with the weak∗ topology of Minv(X, T ).

In the following, we fix n ∈ N and consider the subspace {∑n
i=1 aiϕi | ai ∈ R, 1 ≤ i ≤ n}, denoted

by C0
n(X). We will give some new denotations. We say ν is equivalent to ν′, denoted by ν ∼n ν′,

if and only if
∫

φdν =
∫

φdν′ for any φ ∈ C0
n(X). This equivalent relation induces a quotient space

Minv(X, T )/ ∼n, denoted by Mn
inv(X, T ). Thus, the sequence {ϕi}n

i=1 could also induce a metric ρn :
Mn

inv(X, T )×Mn
inv(X, T ) → R as following:

ρn(µ, ν) :=
n∑

i=1

| ∫ ϕidµ− ∫
ϕidν|

2i ‖ϕi‖ .

Obviously, ρn(µ, ν) ≤ ρ(µ, ν) ≤ ρn(µ, ν) + 2−(n−1), ∀µ, ν ∈ Mn
inv(X, T ). The new metric ρn induces

a topology of Mn
inv(X, T ), we call it the ρn-topology in the following. Here, we point out that for

ν ∈ Minv(X, T ), the set {ν′ ∈ Minv(X, T ) | ν′ ∼n ν} is closed in the weak∗-topology. Then, we define a
function ĥn

· (T ) : Minv(X, T ) → R as ĥn
ν (T ) := supν∼nν′ ĥν′(T ). Clearly, ĥn

ν (T ) = ĥn
ν′(T ) holds for any

ν ∼n ν′. Moreover, we note that for each ν, there exists some ν̃ ∼n ν satisfying ĥν̃(T ) = ĥn
ν (T ), because

ĥ·(T ) : Minv(X, T ) → R is upper semi-continuous and {ν′ ∈ Minv(X, T ) | ν′ ∼n ν} is closed. Then we
conclude that:
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Claim 3.1. Given n ∈ N, then for each ν ∈Minv(X, T ) and φ ∈ C0
n(X), it holds that

P (φ) = sup
ν∈Minv(X,T )

(
∫

φdν + ĥn
ν (T )).

Proof. By Remark 2.4, it holds that

P (φ) = sup
ν∈Minv(X,T )

(ĥν(T ) +
∫

φdν)

= sup
ν∈Minv(X,T )

sup
ν′∼nν

(ĥν′(T ) +
∫

φdν′).

Notice that φ ∈ C0
n(X) implies

∫
φdν =

∫
φdν′ for any ν′ ∼n ν, then

P (φ) = sup
ν∈Minv(X,T )

sup
ν′∼nν

(ĥν′(T ) +
∫

φdν′)

= sup
ν∈Minv(X,T )

( sup
ν′∼nν

(ĥν′(T )) +
∫

φdν)

= sup
ν∈Minv(X,T )

(ĥn
ν (T ) +

∫
φdν).

Claim 3.2. The function −ĥn
· (T ) : Minv(X, T ) → R is convex and lower semi-continuous in the ρn-

topology.

Proof. By the definition of ĥν(T ), for any non-negative real numbers a1, a2 with a1 +a2 = 1, it holds
that

ĥn
a1ν1+a2ν2

(T ) = sup
ν′∼n(a1ν1+a2ν2)

ĥν′(T )

≥ sup
ν′1∼nν1,ν′2∼nν2

ĥa1ν′1+a2ν′2(T )

≥ sup
ν′1∼nν1,ν′2∼nν2

(a1ĥν′1(T ) + a2ĥν′2(T )) (by Remark 2.3)

= a1 sup
ν′1∼nν1

ĥν′1(T ) + a2 sup
ν′2∼nν2

ĥν′2(T )

= a1ĥ
n
ν1

(T ) + a2ĥ
n
ν2

(T ).

Then the convexity of −ĥn
· (T ) follows. To get the lower semi-continuity of −ĥn

· (T ) in the ρn-topology,
we show that the function ĥn

· (T ) : Minv(X, T ) → R is upper semi-continuous, i.e., for arbitrarily ε > 0
and ν ∈ Minv(X, T ), there exists δ = δ(ε, ν) > 0 such that ĥn

µ(T ) < ĥn
ν (T ) + ε holds for any µ with

ρn(ν, µ) < δ. Otherwise, there exists ν ∈ Minv(X, T ) and ε > 0 such that for each k ∈ N there is a µk

satisfying ρn(µk, ν) < 1
k and ĥn

µk
(T ) ≥ ĥn

ν (T )+ε. Recall that for each µk, there exists µ̃k ∼n µk satisfying
that ĥn

µk
(T ) = ĥµ̃k

(T ), thus, let µ be a accumulation point of the sequence {µ̃k}+∞k=1 in the weak∗-topology,
it is clear that ρn(µ, ν) = 0, i.e., µ ∼n ν. By the the upper semi-continuity of ĥ·(T ) : Minv(X, T ) → R,

it follows that
ĥn

ν (T ) ≥ ĥµ(T ) ≥ lim sup
k→+∞

ĥµ̃k
(T ) = lim sup

k→+∞
ĥn

µk
(T ) ≥ ĥn

ν (T ) + ε,

a contradiction. This gives rise to our claim.
Now we give the following lemma that
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Lemma 3.3. Given n ∈ N, then for each interior point ν of Minv(X, T ), there exists a φ ∈ C0
n(X) and

ν′ ∼n ν such that ν′ is the unique equilibrium state of φ.

To get Lemma 3.3, we need some basic concepts from convex analysis and an element result Lemma
3.4 below. Let X be a Bananch space and X∗ be the dual space of X. We say V : X → R ∪ {+∞} is
a proper function if there exists x ∈ X such that V (x) < +∞. Let V : X → R ∪ {+∞} be a proper
function. The function V ∗ : X∗ → R ∪ {+∞} defined by V ∗(p) := supx∈X(〈p, x〉 − V (x)) is called the
conjugate function of V. Similarly, we define V ∗∗ : X → R∪{+∞} as V ∗∗(x) := supp∈X∗(〈p, x〉−V ∗(x)).

Lemma 3.4. Let V : X → R ∪ {+∞} is a proper, convex and lower semi-continuous function. If x is
an interior point of {x |V (x) < +∞}, then the set {p ∈ X∗ | 〈p, x〉 = V (x) + V ∗(p)} is nonempty.

The proof could be found in [1], see Theorem 17, p199 and Proposition 3, p202.
Proof of Lemma 3.3. Define Fn : Minv(X, T ) → Rn as Fn(ν) := (

∫
ϕ1dν,

∫
ϕ2dν, · · · ,

∫
ϕndν). It

is easy to see that for α = (a1, a2, · · · , an) and φ =
∑n

i=1 aiϕi, it holds that
∫

φdν =
∑n

i=1 ai

∫
ϕidν =

〈α, Fn(ν)〉, where 〈·, ·〉 denotes the general inner product on Rn. Moreover, note thatMinv(X, T ) is closed
and convex, the map Fn is a linear isomorphism from Minv(X, T ) (with respect to the ρn-topology) to
its image, then Fn(Minv(X, T )) is also closed and convex in Rn. We define function A : Rn → R∪{+∞}
as

A(α) :=

{
−ĥn

ν (T ), α = Fn(ν) for some ν ∈Minv(X, T )
+∞, α ∈ Rn \ Fn(Minv(X, T ))

By the definition of ĥn
ν (T ), ĥn

ν (T ) = ĥn
ν′(T ) for any ν ∼n ν′, which implies that the function A : Rn →

R∪{+∞} is well defined. We define function B : Rn → R as following. For each α = (a1, a2, · · · , an) ∈ Rn,

set B(α) := P (
∑n

i=1 aiϕi). Denote φ :=
∑n

i=1 aiϕi, then by Claim 3.1, it holds that

B(α) = P (φ) = sup
ν∈Minv(X,T )

(
∫

φdν + ĥn
ν (T ))

= sup
ν∈Minv(X,T )

(〈α, Fn(ν)〉 −A(Fn(ν))).

Note that A(α) = +∞ for any α ∈ Rn \ Fn(Minv(X, T )), then

B(α) = sup
β∈Rn

(〈α, β〉 −A(β)), (3.7)

which means that B = A∗. To apply Lemma 3.4, it suffices to show that A : Rn → R is convex and lower
semi-continuous. By Claim 3.2, the map −ĥn

· (T ) : Minv(X, T ) → R is convex and lower semi-continuous.
And recall that Fn is an isomorphism from Minv(X, T ) (with respect to the ρn topology) to its image,
then it is standard to check that A|Fn(Minv(X,T )) = −ĥ·(T ) ◦ F−1

n : Fn(Minv(X, T )) → R is also convex
and lower semi-continuous. The function A : Rn → R could be seen as an extension of A|Fn(Minv(X,T ))

by setting A(α) = +∞ for α ∈ Rn \ Fn(Minv(X, T )), then the convexity and lower semi-continuity of A

follows from that of A|Fn(Minv(X,T )).

Recall that Fn(Minv(X, T )) = {α ∈ Rn |A(α) < +∞}, then by Lemma 3.4, for each interior point α

of Fn(Minv(X, T )) there exists a β ∈ Rn, satisfying 〈α, β〉 = A(α) + B(β). Consequently, we have that
for each interior point ν ∈Minv(X, T ), there exists φν =

∑n
i=1 biϕi ∈ Cα(X) such that

P (φν) =
∫

φνdν + ĥn
ν (T ). (3.8)

Note that the function ĥn
· (T ) : Minv(X, T ) → R is upper semi-continuous and the subset {ν′ ∈

Minv(X, T ) | ν′ ∼n ν} is closed in the weak∗ topology, then there exists a ν′ ∼n ν satisfying that

ĥν′(T ) = sup
ν′∼nν

ĥν′(T ) = ĥn
ν (T ). (3.9)
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And notice that the φν in (3.8) belongs to C0
n(X) and ν′ ∼n ν, then

∫
φνdν =

∫
φνdν′. This together

with (3.8) (3.9) gives that ν′ is an equilibrium state of φν . Moreover, the fact φν ∈ Cα(X) implies that
ν′ is the unique equilibrium state of φν .

To get Proposition 3.6 below (which is a key proposition for Theorem 1.2), we also need the following
fact that

Lemma 3.5. Let {al}+∞l=1 and {bl}+∞l=1 be two sequences of positive real numbers. Suppose that

lim
l→+∞

1
l

log(al + bl) = c and lim sup
l→+∞

1
l

log bl < c. (3.10)

Then it holds that
lim inf
l→+∞

1
l

log al = c.

This is a salient fact. For convenience of readers, we give its proof in below.
Proof. Otherwise, notice bl > 0, it follows that lim inf l→+∞ 1

l log al < c. Without loss of generality,
we set

a := lim inf
l→+∞

1
l

log al and b := lim sup
l→+∞

1
l

log bl,

and according to our assumptions, a, b < c. Thus, for any ε > 0, there exist N = N(ε) and an increasing
subsequence of natural numbers {li}+∞i=1 such that as long as i ≥ N, we have that

ali ≤ eli(a+ε) and bli ≤ eli(b+ε).

Consequently,

lim sup
i→+∞

1
li

log(ali + bli) ≤ lim sup
i→+∞

1
li

log(eli(a+ε) + eli(b+ε)) ≤ lim
i→+∞

1
li

log 2eli(max{a,b}+ε) ≤ max{a, b}+ ε.

(3.11)
Take ε > 0 small enough to satisfy that max{a, b}+ ε < c, then

lim
i→+∞

1
li

log(ali + bli) < c,

which contradicts to our assumption (3.10). This argument gives rise to our lemma.

Proposition 3.6. Let T : X → X be a two-side symbolic system, let U be an open subset of Minv(X, T )
and ψ ∈ C(X). Then

lim inf
l→+∞

1
l

log
∑

x∈Fix(T l),ωx∈U
exp(Slψ(x)) ≥ sup

ν∈U
(ĥν(T ) +

∫
ψdν).

Proof. Given ε > 0, there exists νε ∈ U satisfying

sup
ν∈U

(ĥν(T ) +
∫

ψdν)− ε ≤ ĥνε
(T ) +

∫
ψdνε ≤ sup

ν∈U
(ĥν(T ) +

∫
ψdν).

For any η > 0, we denote B(νε, η) := {τ ∈ Minv(X, T ) | ρ(τ, νε) < η}. Since U is open, there exists an
η0 > 0 such that B(νε, η0) ⊂ U and

|
∫

ψdτ −
∫

ψdνε| ≤ ε

holds for each τ ∈ B(νε, η0). Moreover, for any η > 0 and n ∈ N, we denote Bn(νε, η) := {τ ∈
Minv(X, T ) | ρn(τ, νε) < η}. It is standard to check that Bn(νε, η) is open in the weak∗ topology. Here,
recall that ρn(µ, ν) ≤ ρ(µ, ν) ≤ ρn(µ, ν) + 2−(n−1), for any µ, ν ∈ Minv(X, T ). Thus, let the natural
number n satisfy 2−(n−1) ≤ η0/4 and let η1 ≤ η0/4, then it is easy to check that Bn(νε, η1) ⊂ B(νε, η0).
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Notice that νε is clearly an interior point of Minv(X, T ), applying Lemma 3.3, it follows that there
exist ν′ε ∼n νε and ψ + φε ∈ C0

n(X) such that ν′ε is the unique equilibrium state of ψ + φε. Obviously,
ν′ε ∈ Bn(νε, η1). Moreover, since ψ + φε ∈ C0

n(X) has been fixed, we could modify η1, if necessary, to
ensure that

|
∫

(ψ + φε)dτ −
∫

(ψ + φε)dνε| ≤ ε

holds for any τ ∈ Bn(νε, η1).
Then

lim inf
l→+∞

1
l

log
∑

x∈Fix(T l),ωx∈U
exp(Slψ(x))

≥ lim inf
l→+∞

1
l

log
∑

x∈Fix(T l),ωx∈Bn(νε,η1)

exp(Slψ(x))

≥ lim inf
l→+∞

1
l

log
∑

x∈Fix(T l),ωx∈Bn(νε,η1)

exp(Slψ(x)) exp(l · (ĥνε
(T ) +

∫
(ψ + φε)dνε − P (ψ + φε)))

≥ lim inf
l→+∞

1
l

log
∑

x∈Fix(T l),ωx∈Bn(νε,η1)

exp(Slψ(x)) exp(l · (ĥνε
(T ) +

∫
(ψ + φε)dωx − ε− P (ψ + φε)))

≥ lim inf
l→+∞

1
l

log
∑

x∈Fix(T l),ωx∈Bn(νε,η1)

exp(Slψ(x)) exp(l · (ĥνε
(T ) +

∫
ψdνε − ε +

∫
φεdωx − ε− P (ψ + φε)))

= lim inf
l→+∞

1
l

log
∑

x∈Fix(T l),ωx∈Bn(νε,η1)

exp(l · (ĥνε
(T ) +

∫
ψdνε − 2ε)) exp(Slψ(x) + l · (

∫
φεdωx − P (ψ + φε)))

≥ lim inf
l→+∞

1
l

log
∑

x∈Fix(T l),ωx∈Bn(νε,η1)

exp(l · (ĥνε(T ) +
∫

ψdνε − 2ε)) exp(l · (
∫

(ψ + φε)dωx − P (ψ + φε)))

= ĥνε(T ) +
∫

ψdνε − 2ε + lim inf
l→+∞

1
l

log
∑

x∈Fix(T l),ωx∈Bn(νε,η1)

exp(Sl(ψ + φε)(x)− l · P (ψ + φε))

≥ sup
ν∈U

(ĥν(T ) +
∫

ψdν)− 3ε + lim inf
l→+∞

1
l

log
∑

x∈Fix(T l),ωx∈Bn(νε,η1)

exp(Sl(ψ + φε)(x)− l · P (ψ + φε))

It remains to show that

lim inf
l→+∞

1
l

log
∑

x∈Fix(T l),ωx∈Bn(νε,η1)

exp(Sl(ψ + φε)(x)− l · P (ψ + φε)) = 0. (3.12)

For the sake of simplicity, we denote c := P (ψ + φε),

al :=
∑

x∈Fix(T l),ωx∈Bn(νε,η1)

exp(Sl(ψ + φε)(x) and bl :=
∑

x∈Fix(T l),ωx∈M(X,T )\Bn(νε,η1)

exp(Sl(ψ + φε)(x).

Consequently,

lim
l→+∞

1
l

log(al + bl) = lim
l→+∞

1
l

log
∑

x∈Fix(T l)

exp(Sl(ψ + φε)(x) = P (ψ + φε) = c. (3.13)

To apply Lemma 3.5, it suffices to show lim supl→+∞
1
l log bl < c, i.e.,

lim sup
l→+∞

1
l

log
∑

x∈Fix(T l),ωx∈M(X,T )\Bn(νε,η1)

exp(Sl(ψ + φε)(x) < P (ψ + φε). (3.14)

If (3.14) does not hold, then it follows that

lim sup
l→+∞

1
l

log
∑

x∈Fix(T l),ωx∈M(X,T )\Bn(νε,η1)

exp(Sl(ψ + φε)(x) = P (ψ + φε). (3.15)
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By Proposition 2.7, we get that

lim sup
l→+∞

1
l

log
∑

x∈Fix(T l),ωx∈Minv(X,T )\Bn(νε,η1)

exp(Sl(ψ + φε)(x)

≤ sup
ν∈M(X,T )\Bn(νε,η1)

(ĥν(T ) +
∫

(ψ + φε)dν).

This together with (3.15) gives that

sup
ν∈M(X,T )\Bn(νε,η1)

(ĥν(T ) +
∫

(ψ + φε)dν) = P (ψ + φε).

Recall that ĥ·(T ) : Minv(X, T ) → R is upper semi-continuous, then it could take its supremum on the
closed subset Minv(X, T ) \Bn(νε, η1), i.e., there exists τ ∈Minv(X, T ) \Bn(νε, η1) satisfying

ĥτ (T ) +
∫

(ψ + φε)dτ = P (ψ + φε).

Notice that ĥτ (T ) = hτ (T ) for our case, then τ is also an equilibrium state of ψ + φε, which contradicts
to the uniqueness of ν′ε. This contradiction gives rise to (3.14). Combining (3.13)(3.14) and applying
Lemma 3.5, it follows

lim inf
l→+∞

1
l

log
∑

x∈Fix(T l),ωx∈Bn(νε,η′)

exp(Sl(ψ + φε)(x)) = lim inf
l→+∞

1
l

log al = c = P (ψ + φε).

Thus, (3.12) holds. Now, we have that

lim inf
l→+∞

1
l

log
∑

x∈Fix(T l),ωx∈U
exp(Slψ(x)) ≥ sup

ν∈U
(ĥν(T ) +

∫
ψdν)− 3ε.

Recall that ε > 0 is taken arbitrarily, then let ε → 0, it follows that

lim inf
l→+∞

1
l

log
∑

x∈Fix(T l),ωx∈U
exp(Slψ(x)) ≥ sup

ν∈U
(ĥν(T ) +

∫
ψdν),

which finishes our proof.

Proof of Theorem 1.2 For given ϕ ∈ C(X), δ > 0 and µ ∈ Minv(X, T ), let U := {ν ∈
Minv(X, T ) | | ∫ ϕdν − ∫

ϕdµ| > δ} and take ψ ≡ 0, then by Proposition 3.6, we get that

lim sup
l→+∞

1
l

log ]{x ∈ Fix(T l) | |
∫

ϕdωx −
∫

ϕdµ| δ} ≤ sup
ν∈U

ĥν(T ). (3.16)

By Remark 2.5, ĥν(T ) = hν(T ), which together with (3.16) gives rise to Theorem 1.2
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