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Abstract. In this paper we prove the existence and uniqueness of both renormalized
solutions and entropy solutions for nonlinear parabolic equations with variable exponents

and L1 data. And moreover, we obtain the equivalence of renormalized solutions and

entropy solutions.

1. Introduction

Suppose that Ω is a bounded open domain of RN with Lipschitz boundary ∂Ω, T is a
positive number. In this paper we study the following nonlinear parabolic problem


∂u

∂t
− div

(
|∇u|p(x)−2∇u

)
= f in Q ≡ Ω× (0, T ),

u = 0 on Γ ≡ ∂Ω× (0, T ),

u(x, 0) = u0(x) on Ω,

(1.1)

where the variable exponent p : Ω̄ → (1,+∞) is a continuous function, f ∈ L1(Q) and
u0 ∈ L1(Ω).

The study of differential equations and variational problems with nonstandard growth
conditions arouses much interest with the development of elastic mechanics, electro-rheological
fluid dynamics and image processing, etc. We refer the readers to [32, 33, 37, 15] and
references therein. p(x)-growth conditions can be regarded as a very important class of
nonstandard (p, q)-growth conditions. There are already numerous results for such kind of
problems (see [1, 2, 3, 19, 20, 18, 5]). The functional spaces to deal with these problems
are the generalized Lebesgue spaces Lp(x)(Ω) and the generalized Lebesgue-Sobolev spaces
W k,p(x)(Ω).

Under our assumptions, it is reasonable to work with entropy solutions or renormalized
solutions, which need less regularity than the usual weak solutions. The notion of renormal-
ized solutions was first introduced by DiPerna and Lions [17] for the study of Boltzmann
equation. It was then adapted to the study of some nonlinear elliptic or parabolic problems
and evolution problems in fluid mechanics. We refer to [14, 16, 8, 10, 9, 27] for details. At
the same time the notion of entropy solutions has been proposed by Bénilan et al. in [7]
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for the nonlinear elliptic problems. This framework was extended to related problems with
constant p in [13, 31, 11, 4, 29].

Recently, Sanchón and Urbano in [34] studied a Dirichlet problem of p(x)-Laplace equa-
tion and obtained the existence and uniqueness of entropy solutions for L1 data, as well as
integrability results for the solution and its gradient. The proofs rely crucially on a pri-
ori estimates in Marcinkiewicz spaces with variable exponents. Besides, Bendahmane and
Wittbold in [6] proved the existence and uniqueness of renormalized solutions to nonlinear
elliptic equations with variable exponents and L1 data.

The aim of this paper is to extend the results in [34, 6] to the case of parabolic equations.
As far as we know, there are no papers concerned with the nonlinear parabolic equations
involving variable exponents and L1 data. Inspired by [30] and [31], we develop a refined
method. The advantage of our method is that we can not only obtain the existence and
uniqueness of renormalized solutions for problem (1.1), but also find that the renormalized
solution is equivalent to the entropy solution for problem (1.1). We first employ the dif-
ference and variation methods to prove the existence and uniqueness of weak solutions for
the approximate problem of (1.1) under appropriate assumptions. Then we construct an
approximate solution sequence and establish some a priori estimates. Next, we draw a sub-
sequence to obtain a limit function, and prove this function is a renormalized solution. Based
on the strong convergence of the truncations of approximate solutions, we obtain that the
renormalized solution of problem (1.1) is also an entropy solution, which leads to an equality
in the entropy formulation. By choosing suitable test functions, we prove the uniqueness
of renormalized solutions and entropy solutions, and thus the equivalence of renormalized
solutions and entropy solutions.

For the convenience of the readers, we recall some definitions and basic properties of the
generalized Lebesgue spaces Lp(x)(Ω) and generalized Lebesgue-Sobolev spaces W k,p(x)(Ω).

Set C+(Ω̄) = {h ∈ C(Ω̄) : minx∈Ω̄ h(x) > 1}. For any h ∈ C+(Ω̄) we define

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).

For any p ∈ C+(Ω̄), we introduce the variable exponent Lebesgue space Lp(·)(Ω) to consist
of all measurable functions such that∫

Ω

|u(x)|p(x) dx <∞,

endowed with the Luxemburg norm

|u|p(·) = inf
{
λ > 0 :

∫
Ω

∣∣∣u(x)
λ

∣∣∣p(x)

dx ≤ 1
}
,

which is a separable and reflexive Banach space. The dual space of Lp(x)(Ω) is Lp′(x)(Ω),
where 1/p(x) + 1/p′(x) = 1. If p(x) is a constant function, then the variable exponent
Lebesgue space coincides with the classical Lebesgue space. The variable exponent Lebesgue
spaces is a special case of Orlicz-Musielak spaces treated by Musielak in [28].

For any positive integer k, denote

W k,p(x)(Ω) = {u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), |α| ≤ k},

where the norm is defined as

‖u‖W k,p(x) =
∑
|α|≤k

|Dαu|p(x).
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W k,p(x)(Ω) is called generalized Lebesgue-Sobolev space, which is a special generalized
Orlicz-Sobolev space. An interesting feature of a generalized Lebesgue-Sobolev space is that
smooth functions are not dense in it without additional assumptions on the exponent p(x).
This was observed by Zhikov [36] in connection with Lavrentiev phenomenon. However,
when the exponent p(x) is log-Hölder continuous, i.e., there is a constant C such that

|p(x)− p(y)| ≤ C

− log |x− y|
(1.2)

for every x, y ∈ Ω with |x − y| ≤ 1
2 , then smooth functions are dense in variable exponent

Sobolev spaces and there is no confusion in defining the Sobolev space with zero boundary
values, W 1,p(·)

0 (Ω), as the completion of C∞0 (Ω) with respect to the norm ‖u‖W 1,p(·) (see
[21]).

Throughout this paper we assume that p(x) ∈ C+(Ω̄) satisfies the log-Hölder continuity
condition (1.2). Let Tk denote the truncation function at height k ≥ 0:

Tk(r) = min{k,max{r,−k}} =

 k if r ≥ k,
r if |r| < k,
−k if r ≤ −k,

and its primitive Θk : R → R+ by

Θk(r) =
∫ r

0

Tk(s) ds =

{
r2

2 if |r| ≤ k,

k|r| − k2

2 if |r| ≥ k.

It is obvious that Θk(r) ≥ 0 and Θk(r) ≤ k|r|.
We denote

T 1,p(·)
0 (Q) = {u : Ω̄× (0, T ] → R is measurable |Tk(u) ∈ Lp−

(
0, T ;W 1,p(·)

0 (Ω)
)

with ∇Tk(u) ∈ (Lp(·)(Q))N , for every k > 0}.

Next we define the very weak gradient for every measurable function u ∈ T 1,p(·)
0 (Q). The

proof follows from Lemma 2.1 of [7] due to the fact that W 1,p(·)
0 (Ω) ⊂W

1,p−
0 (Ω).

Proposition 1.1. For a measurable function u ∈ T 1,p(·)
0 (Q), there exists a unique measur-

able function v : Q → RN , which we call the very weak gradient of u and denote v = ∇u,
such that

∇Tk(u) = vχ{|u|<k}, almost everywhere in Q and for every k > 0,

where χE denotes the characteristic function of a measurable set E. Moreover, if u belongs
to L1(0, T ;W 1,1

0 (Ω)), then v coincides with the weak gradient of u.

The notion of the very weak gradient allows us to give the following definitions of renor-
malized solutions and entropy solutions for problem (1.1).

Definition 1.1. A function u ∈ T 1,p(·)
0 (Q) ∩ C([0, T ];L1(Ω)) is a renormalized solution to

problem (1.1) if the following conditions are satisfied:

(i) lim
n→∞

∫
{(x,t)∈Q:n≤|u(x,t)|≤n+1}

|∇u|p(x) dxdt = 0;
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(ii) For every function ϕ ∈ C1(Q̄) with ϕ(·, T ) = 0 and S ∈ W 2,∞(R) satisfying that S′

has a compact support,

−
∫

Ω

S(u0)ϕ(x, 0) dx−
∫ T

0

∫
Ω

S(u)
∂ϕ

∂t
dxdt

+
∫ T

0

∫
Ω

[S′(u)|∇u|p(x)−2∇u · ∇ϕ+ S′′(u)|∇u|p(x)ϕ] dxdt

=
∫ T

0

∫
Ω

fS′(u)ϕdxdt (1.3)

holds.

Definition 1.2. A function u ∈ T 1,p(·)
0 (Q) ∩ C([0, T ];L1(Ω)) is an entropy solution to

problem (1.1) if∫
Ω

Θk(u− φ)(T ) dx−
∫

Ω

Θk(u0 − φ(0)) dx+
∫ T

0

〈φt, Tk(u− φ)〉 dt

+
∫

Q

|∇u|p(x)−2∇u · ∇Tk(u− φ) dxdt =
∫

Q

fTk(u− φ) dxdt, (1.4)

for all k > 0 and φ ∈ C1(Q̄) with φ|Γ = 0.

Now we state our main results.

Theorem 1.1. Assume that condition (1.2) holds. Then there exists a unique renormalized
solution for problem (1.1).

Theorem 1.2. Assume that condition (1.2) holds. Then the renormalized solution u in
Theorem 1.1 is also an entropy solution for problem (1.1). And the entropy solution is
unique.

Remark 1.1. The renormalized solution for problem (1.1) is equivalent to the entropy
solution for problem (1.1).

The rest of this paper is organized as follows. In Section 2, we state some basic results
that will be used later. We will prove the main results in Section 3. In the following sections
C will represent a generic constant that may change from line to line even if in the same
inequality.

2. Preliminaries

In this section, we first state some elementary results for the generalized Lebesgue spaces
Lp(x)(Ω) and the generalized Lebesgue-Sobolev spaces W k,p(x)(Ω). The basic properties
of these spaces can be found from [23], and many of these properties were independently
established in [20].

Lemma 2.1. ([20, 23]) (1) The space Lp(·)(Ω) is a separable, uniform convex Banach space,
and its conjugate space is Lp′(·)(Ω) where 1/p(x) + 1/p′(x) = 1. For any u ∈ Lp(·)(Ω) and
v ∈ Lp′(·)(Ω), we have∣∣∣ ∫

Ω

uv dx
∣∣∣ ≤ ( 1

p−
+

1
(p−)′

)
|u|p(x)|v|p′(x) ≤ 2|u|p(x)|v|p′(x);



RENORMALIZED AND ENTROPY SOLUTIONS 5

(2) If p1, p2 ∈ C+(Ω̄), p1(x) ≤ p2(x) for any x ∈ Ω, then there exists the continuous
embedding Lp2(x)(Ω) ↪→ Lp1(x)(Ω), whose norm does not exceed |Ω|+ 1.

Lemma 2.2. ([20]) If we denote

ρ(u) =
∫

Ω

|u|p(x) dx, ∀u ∈ Lp(x)(Ω),

then
min{|u|p−p(x), |u|

p+

p(x)} ≤ ρ(u) ≤ max{|u|p−p(x), |u|
p+

p(x)}.

Lemma 2.3. ([20]) W k,p(x)(Ω) is a separable and reflexive Banach space.

Lemma 2.4. ([22, 23]) Let p ∈ C+(Ω̄) satisfy the log-Hölder continuity condition (1.2).
Then, for u ∈W 1,p(·)

0 (Ω), the p(·)-Poincaré inequality

|u|p(x) ≤ C|∇u|p(x)

holds, where the positive constant C depends on p and Ω.

Lemma 2.5. Assume that u0 ∈ L2(Ω) and f ∈ L(p−)′(0, T ;Lp′(x)(Ω)). Then the following
problem 

∂u

∂t
− div

(
|∇u|p(x)−2∇u

)
= f in Q,

u = 0 on Γ,

u(x, 0) = u0 on Ω,

admits a unique weak solution u ∈ Lp−
(
0, T ;W 1,p(·)

0 (Ω)
)
∩ C([0, T ];L2(Ω)) with ∇u ∈

(Lp(·)(Q))N such that for any ϕ ∈ C1(Q̄) with ϕ(·, T ) = 0,

−
∫

Ω

u0(x)ϕ(x, 0) dx+
∫ T

0

∫
Ω

[−uϕt + |∇u|p(x)−2∇u · ∇ϕ] dxdt

=
∫ T

0

∫
Ω

fϕ dxdt

holds.

Proof. By employing the difference and variation methods (see [35]), we give a sketched
proof.

Let n be a positive integer. Denote h = T/n. We first consider the following time-discrete
problem 

uk − uk−1

h
− div(|∇uk|p(x)−2∇uk) = [f ]h((k − 1)h)),

uk|∂Ω = 0, k = 1, 2, . . . , n,
(2.1)

where [f ]h denotes the Steklov average of f defined by

[f ]h(x, t) =
1
h

∫ t+h

t

f(x, τ) dτ.

It is easy to see that [f ]h(·) ∈ Lp′(·)(Ω).
For k = 1, we introduce the variational problem

min{J(u)|u ∈W},
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where
W =

{
u ∈W 1,p(x)

0 (Ω) ∩ L2(Ω)
}

and functional J is

J(u) =
1
2h

∫
Ω

u2 dx+
∫

Ω

1
p(x)

|∇u|p(x) dx− 1
h

∫
Ω

u0u dx−
∫

Ω

[f ]h(0)u dx.

We will establish that J(u) has a minimizer u1(x) in W .
By Lemma 2.1, Lemma 2.4, Young’s inequality and Lemma 2.2, we have∣∣∣ ∫

Ω

[f ]h(0)u dx
∣∣∣ ≤ 2|[f ]h(0)|p′(x)|u|p(x)

≤ C|[f ]h(0)|p′(x)|∇u|p(x)

≤ ε|∇u|p−p(x) + C(ε)|[f ]h(0)|(p−)′

p′(x)

≤ ε
( ∫

Ω

|∇u|p(x) dx
)βp−

+ C(ε)|[f ]h(0)|(p−)′

p′(x)

≤ ε
( ∫

Ω

|∇u|p(x) dx+ 1
)

+ C(ε)|[f ]h(0)|(p−)′

p′(x) ,

where ε is a small positive number and

β =

{ 1
p−

if |∇u|p(·) ≥ 1,
1

p+
if |∇u|p(·) ≤ 1.

Choosing ε sufficiently small and using Young’s inequality, we obtain

J(u) ≥ 1
2p+

∫
Ω

|∇u|p(x) dx+
1
4h

∫
Ω

u2 dx− C
( ∫

Ω

u2
0 dx+ |[f ]h(0)|(p−)′

p′(x) + 1
)
,

and thus J(u) is lower bounded and coercive on W . On the other hand, J(u) is weakly
lower semicontinuous on W . Therefore, there exists a function u1 ∈W such that

J(u1) = inf
u∈W

J(u).

Thus the function u1 is a weak solution of the corresponding Euler-Lagrange equation of
J(u), which is (2.1) in the case k = 1. And it is unique.

Following the same procedures, we find weak solutions uk of (2.1) for k = 2, . . . , n. It
follows that, for every ϕ ∈W ,∫

Ω

uk − uk−1

h
ϕdx+

∫
Ω

|∇uk|p(x)−2∇uk · ∇ϕdx =
∫

Ω

[f ]h((k − 1)h)ϕdx. (2.2)

For every h = T/n, we define the approximate solutions

uh(x, t) =



u0(x), t = 0,
u1(x), 0 < t ≤ h,
· · · · · · , · · · · · · ,
uj(x), (j − 1)h < t ≤ jh,
· · · · · · , · · · · · · ,
un(x), (n− 1)h < t ≤ nh = T.

Taking ϕ = uk in (2.2), we can obtain an a priori estimate∫
Ω

u2
h(x, t) dx+

∫ T

0

∫
Ω

|∇uh(x, t)|p(x) dxdt ≤
∫

Ω

u2
0 dx+ C

∫ T

0

|f |(p−)′

p′(x) dt,
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which implies from Lemma 2.2 that∫ T

0

min{|∇uh|p+

p(x), |∇uh|p−p(x)} dt ≤
∫ T

0

∫
Ω

|∇uh|p(x) dxdt ≤ C

and

‖uh‖L∞(0,T ;L2(Ω)) + |∇uh|p(x),Q + ‖uh‖Lp− (0,T ;W
1,p(x)
0 (Ω))

≤ C.

Thus we may choose a subsequence (we also denote it by the original sequence for simplicity)
such that

uh ⇀ u, weakly-* in L∞(0, T ;L2(Ω)),

uh ⇀ u, weakly in Lp−
(
0, T ;W 1,p(x)

0 (Ω)
)
,

|∇uh|p(x)−2∇uh ⇀ ξ, weakly in (Lp′(x)(Q))N .

Following the arguments in [35] with necessary changes in detail, we use the mono-
tonicity method to show that ξ = |∇u|p(x)−2∇u a.e. in Q. Recalling the fact that u ∈
Lp−(0, T ;W 1,p(x)

0 (Ω)) ∩L∞(0, T ;L2(Ω)) and ut ∈ L(p−)′(0, T ;W−1,p′(x)(Ω)) from the equa-
tion, we conclude that u belongs to C([0, T ];L2(Ω)). Therefore, we obtain the existence of
weak solutions.

For uniqueness, suppose there exist two weak solutions u and v of problem (1.1). Then
w = u− v satisfies the following problem

∂w

∂t
− div

(
|∇u|p(x)−2∇u− |∇v|p(x)−2∇v

)
= 0 in Q,

w = 0 on Γ,

w(x, 0) = 0 on Ω.

Choosing w as a test function in the above problem, we have, for almost every t ∈ (0, T ),

1
2

∫
Ω

w2(t) dx+
∫ t

0

∫
Ω

[|∇u|p(x)−2∇u− |∇v|p(x)−2∇v] · ∇(u− v) dxds = 0.

Since the two terms on the left-hand side are nonnegative, we have u = v a.e. in Q. This
finishes the proof. �

3. The proofs of main results

Now we are ready to prove the main results. Some of the reasoning is based on the ideas
developed in [30] and [31] for the constant exponent case. First we prove the existence and
uniqueness of renormalized solutions for problem (1.1).

Proof of Theorem 1.1.
(1) Existence of renormalized solutions.
We first introduce the approximate problems. Find two sequences of functions {fn} ⊂

C∞0 (Q) and {u0n} ⊂ C∞0 (Ω) strongly converging respectively to f in L1(Q) and to u0 in
L1(Ω) such that

‖fn‖L1(Q) ≤ ‖f‖L1(Q), ‖u0n‖L1(Ω) ≤ ‖u0‖L1(Ω). (3.1)
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Then we consider the approximate problem of (1.1)
∂un

∂t
− div

(
|∇un|p(x)−2∇un

)
= fn in Q,

un = 0 on Γ,

un(x, 0) = u0n on Ω.

(3.2)

By Lemma 2.5, we can find a weak solution un ∈ Lp−
(
0, T ;W 1,p(·)

0 (Ω)
)

with ∇un ∈
(Lp(·)(Q))N for problem (3.2). Our aim is to prove that a subsequence of these approximate
solutions {un} converges to a measurable function u, which is a renormalized solution of
problem (1.1). We will divide the proof into several steps. Although some of the arguments
are not new, we present a self-contained proof for the sake of clarity and readability.

Step 1. Prove the convergence of {un} in C([0, T ];L1(Ω)) and find its subsequence which
is almost everywhere convergent in Q.

Let m and n be two integers, then from (3.2) we can write the weak form as∫ T

0

〈(un − um)t, φ〉 dt

+
∫ T

0

∫
Ω

[|∇un|p(x)−2∇un − |∇um|p(x)−2∇um] · ∇φdxdt

=
∫ T

0

∫
Ω

(fn − fm)φdxdt,

for all φ ∈ Lp−(0, T ;W 1,p(·)
0 (Ω)) ∩ L∞(Q) with ∇φ ∈ (Lp(·)(Q))N . Choosing φ = T1(un −

um)χ(0,t) with t ≤ T and discarding the positive term, we get∫
Ω

Θ1(un − um)(t) dx ≤
∫

Ω

Θ1(u0n − u0m) dx+ ‖fn − fm‖L1(Q)

≤ ‖u0n − u0m‖L1(Ω) + ‖fn − fm‖L1(Q) := an,m.

Therefore, we conclude that∫
{|un−um|<1}

|un − um|2(t)
2

dx+
∫
{|un−um|≥1}

|un − um|(t)
2

dx

≤
∫

Ω

[Θ1(un − um)](t) dx ≤ an,m.

It follows that∫
Ω

|un − um|(t) dx =
∫
{|un−um|<1}

|un − um|(t) dx

+
∫
{|un−um|≥1}

|un − um|(t) dx

≤
( ∫

{|un−um|<1}
|un − um|2(t) dx

) 1
2
meas(Ω)

1
2 + 2an,m

≤ (2meas(Ω))
1
2 a

1
2
n,m + 2an,m.

Since {fn} and {u0n} are convergent in L1, we have an,m → 0 for n,m→ +∞. Thus {un}
is a Cauchy sequence in C([0, T ];L1(Ω)) and un converges to u in C([0, T ];L1(Ω)). Then
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we find an a.e. convergent subsequence (still denoted by {un}) in Q such that

un → u a.e. in Q. (3.3)

Step 2. Prove ∇Tk(un) strongly converges to ∇Tk(u) in (Lp(·)(Q))N , for every k > 0.
Choosing Tk(un) as a test function in (3.2), we have∫

Ω

Θk(un)(T ) dx−
∫

Ω

Θk(u0n) dx

+
∫ T

0

∫
Ω

|∇Tk(un)|p(x) dxdt =
∫ T

0

∫
Ω

fnTk(un) dxdt.

It follows from the definition of Θk(r) and (3.1) that∫ T

0

∫
Ω

|∇Tk(un)|p(x) dxdt ≤ k
(
‖fn‖L1(Q) + ‖u0n‖L1(Ω)

)
≤ k

(
‖f‖L1(Q) + ‖u0‖L1(Ω)

)
. (3.4)

Combining (3.4) with Lemma 2.2, we deduce that∫ T

0

min{|∇Tk(un)|p+

p(x), |∇Tk(un)|p−p(x)} dt ≤
∫ T

0

ρ(∇Tk(un)) dt ≤ C,

that is Tk(un) is bounded in Lp−
(
0, T ;W 1,p(x)

0 (Ω)
)
.

For every k, h > 0, using the boundedness of∇Tk(un) and∇T2k(un−Th(un)) in (Lp(·)(Q))N ,
we draw a subsequence (still denoted by {un}) from {un} such that

∇Tk(un) ⇀ ∇Tk(u) weakly in (Lp(·)(Q))N , (3.5)

∇T2k(un − Th(un)) ⇀ ∇T2k(u− Th(u)) weakly in (Lp(·)(Q))N . (3.6)

In order to deal with the time derivative of truncations, we will use the regularization
method of Landes [24] and use the sequence (Tk(u))µ as approximation of Tk(u). For µ > 0,
we define the regularization in time of the function Tk(u) given by(

Tk(u)
)
µ
(x, t) := µ

∫ t

−∞
eµ(s−t)Tk(u(x, s)) ds,

extending Tk(u) by 0 for s < 0. Observe that (Tk(u))µ ∈ Lp−(0, T ;W 1,p(·)
0 (Ω)) ∩ L∞(Q)

with ∇(Tk(u))µ ∈ (Lp(·)(Q))N , it is differentiable for a.e. t ∈ (0, T ) with

|(Tk(u)
)
µ
(x, t)| ≤ k(1− e−µt) < k a.e. in Q,

∂(Tk(u))µ

∂t
= µ

(
Tk(u)− (Tk(u))µ

)
.

After computation, we can get

∇(Tk(u))µ → ∇Tk(u) strongly in (Lp(·)(Q))N .

Let us take now a sequence {ψj} of C∞0 (Ω) functions that strongly converge to u0 in
L1(Ω), and set

ηµ,j(u) ≡ (Tk(u))µ + e−µtTk(ψj).
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The definition of ηµ,j , which is a smooth approximation of Tk(u), is needed to deal with a
nonzero initial datum (see also [30]). Note that this function has the following properties:

(ηµ,j(u))t = µ(Tk(u)− ηµ,j(u)),
ηµ,j(u)(0) = Tk(ψj),
|ηµ,j(u)| ≤ k,

∇ηµ,j(u) → ∇Tk(u) strongly in (Lp(·)(Q))N , as µ→ +∞.

(3.7)

Fix a positive number k. Let h > k. We choose

wn = T2k

(
un − Th(un) + Tk(un)− ηµ,j(u)

)
as a test function in (3.2). The use of wn as a test function to prove the strong convergence
of truncations was first introduced in the elliptic case in [25], then adapted to parabolic
equations in [30]. If we set M = 4k+h, then it is easy to see that ∇wn = 0 where |un| > M .
Therefore, we may write the weak form of (3.2) as∫ T

0

〈∂un

∂t
, wn

〉
dt+

∫ T

0

∫
Ω

|∇TM (un)|p(x)−2∇TM (un) · ∇wn dxdt

=
∫ T

0

∫
Ω

fnwn dxdt.

In the following, denote w(n, µ, j, h) all quantities such that

lim
h→+∞

lim
j→+∞

lim
µ→+∞

lim
n→+∞

w(n, µ, j, h) = 0.

First as far as the first term is concerned, that is∫ T

0

〈∂un

∂t
, wn

〉
dt.

Since |ηµ,j(u)| ≤ k, wn can be written as

wn = Th+k(un − ηµ,j(u))− Th−k(un − Tk(un)).

Applying Lemma 2.1 in [30], we can obtain that∫ T

0

〈∂un

∂t
, wn

〉
dt ≥ w(n, j, h).

From the above estimate, we have∫ T

0

∫
Ω

|∇TM (un)|p(x)−2∇TM (un) · ∇wn dxdt ≤
∫ T

0

∫
Ω

fnwn dxdt+ w(n, j, h).

Splitting the integral in the left-hand side on the sets where |un| ≤ k and where |un| > k
and discarding some nonnegative terms, we find∫ T

0

∫
Ω

|∇TM (un)|p(x)−2∇TM (un) · ∇T2k(un − Th(un) + Tk(un)− ηµ,j(u)) dxdt

≥
∫ T

0

∫
Ω

|∇Tk(un)|p(x)−2∇Tk(un) · ∇(Tk(un)− ηµ,j(u)) dxdt

−
∫
{|un|>k}

∣∣|∇TM (un)|p(x)−2∇TM (un)
∣∣|∇ηµ,j(u)| dxdt.
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It follows from the above inequality that∫ T

0

∫
Ω

|∇Tk(un)|p(x)−2∇Tk(un) · ∇(Tk(un)− ηµ,j(u)) dxdt

≤
∫
{|un|>k}

∣∣|∇TM (un)|p(x)−2∇TM (un)
∣∣|∇ηµ,j(u)| dxdt

+
∫ T

0

∫
Ω

fnwn dxdt+ w(n, µ, j, h).

Using the fact that ∇ηµ,j(u) → ∇Tk(u) strongly in (Lp(·)(Q))N as µ → +∞, we conclude
that ∫ T

0

∫
Ω

|∇Tk(un)|p(x)−2∇Tk(un) · ∇(Tk(un)− Tk(u)) dxdt

≤
∫
{|un|>k}

∣∣|∇TM (un)|p(x)−2∇TM (un)
∣∣|∇ηµ,j(u)| dxdt

+
∫ T

0

∫
Ω

fnwn dxdt+ w(n, µ, j, h).

Furthermore, we have∫ T

0

∫
Ω

(|∇Tk(un)|p(x)−2∇Tk(un)− |∇Tk(u)|p(x)−2∇Tk(u))

·∇(Tk(un)− Tk(u)) dxdt

≤
∫
{|un|>k}

∣∣|∇TM (un)|p(x)−2∇TM (un)
∣∣|∇ηµ,j(u)| dxdt

+
∫ T

0

∫
Ω

fnT2k(un − Th(un) + Tk(un)− ηµ,j(u)) dxdt

−
∫ T

0

∫
Ω

|∇Tk(u)|p(x)−2∇Tk(u) · ∇(Tk(un)− Tk(u)) dxdt+ w(n, µ, j, h)

= I1 + I2 + I3 + w(n, µ, j, h). (3.8)

Now we show the limits of I1, I2 and I3 are zeros when n, µ and then h tend to infinity
respectively.

Limit of I1. We observe that |∇TM (un)|p(x)−2∇TM (un) is bounded in Lp′(x)(Q), and by
the dominated convergence theorem χ{|un|>k}|∇ηµ,j(u)| converges strongly in Lp(x)(Q) to
χ{|u|>k}|∇Tk(u)|, which is zero, as n and µ tends to infinity. Thus we obtain

lim
µ→+∞

lim
n→+∞

I1

= lim
µ→+∞

lim
n→+∞

∫
{|un|>k}

∣∣|∇TM (un)|p(x)−2∇TM (un)
∣∣|∇Tk(u)| dxdt

= 0. (3.9)

Limit of I2. Notice that

I2 ≤
∫ T

0

∫
Ω

|fn − f ||T2k(un − Th(un) + Tk(un)− ηµ,j(u))| dxdt
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+
∫ T

0

∫
Ω

|fT2k(un − Th(un) + Tk(un)− ηµ,j(u))| dxdt

≤ 2k
∫ T

0

∫
Ω

|fn − f | dx

+
∫ T

0

∫
Ω

|fT2k(un − Th(un) + Tk(un)− ηµ,j(u))| dxdt.

Since fn is strongly compact in L1(Q), using (3.3), the definition of ηµ,j and the Lebesgue
dominated convergence theorem, we have

lim
h→+∞

lim
µ→+∞

lim
n→+∞

|I2| ≤ lim
h→+∞

∫ T

0

∫
Ω

|fT2k(u− Th(u))| dxdt = 0. (3.10)

Limit of I3. Recalling (3.5), we have

lim
n→+∞

I3 = 0. (3.11)

Therefore, passing to the limits in (3.8) as n, µ, j, and then h tend to infinity, by means
of (3.9), (3.10) and (3.11), we deduce that

lim
n→+∞

E(n) = 0,

where

E(n) =
∫ T

0

∫
Ω

(
|∇Tk(un)|p(x)−2∇Tk(un)− |∇Tk(u)|p(x)−2∇Tk(u)

)
·∇(Tk(un)− Tk(u)) dxdt.

We recall the following well-known inequalities: for any two real vectors a, b ∈ RN ,

(a|a|p−2 − b|b|p−2)(a− b) ≥ c(p)|a− b|p, if p ≥ 2

and for every ε ∈ (0, 1],

|a− b|p ≤ c(p)ε(p−2)/p(a|a|p−2 − b|b|p−2)(a− b) + ε|b|p, if 1 < p < 2,

where c(p) = 21−p

p−1 when p ≥ 2 and c(p) = 32−p

p−1 when 1 < p < 2.
Therefore, we have∫

{(x,t)∈Q:p(x)≥2}
|∇Tk(un)−∇Tk(u)|p(x) dxdt ≤ 2p+−1(p+ − 1)E(n) (3.12)

and ∫
{(x,t)∈Q:1<p(x)<2}

|∇Tk(un)−∇Tk(u)|p(x) dxdt

≤ 32−p−

p− − 1
· ε(p−−2)/p−E(n) + ε

∫ T

0

∫
Ω

|∇Tk(u)|p(x) dxdt. (3.13)

Since E(n) → 0 as n→ +∞, then using the arbitrariness of ε and ∇Tk(u) is bounded in
(Lp(·)(Q))N , we conclude that

lim
n→+∞

∫ T

0

∫
Ω

|∇Tk(un)−∇Tk(u)|p(x) dxdt = 0,

which implies that, for every k > 0,

∇Tk(un) → ∇Tk(u) strongly in (Lp(·)(Q))N (3.14)
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and
|∇Tk(un)|p(x)−2∇Tk(un) → |∇Tk(u)|p(x)−2∇Tk(u) in (Lp′(·)(Q))N . (3.15)

Thanks to Lemma 2.2, we know that

Tk(un) → Tk(u) strongly in Lp−
(
0, T ;W 1,p(·)

0 (Ω)
)
.

Step 3. Show that u is a renormalized solution.
For given a, k > 0, define the function Tk,a(s) = Ta(s− Tk(s)) as

Tk,a(s) =

 s− k sign(s) if k ≤ |s| < k + a,
a sign(s) if |s| ≥ k + a,
0 if |s| ≤ k.

Using Tk,a(un) as a test function in (3.2), we find∫
{|un|>k}

Θa(un ∓ k)(T ) dx−
∫
{|u0n|>k}

Θa(u0n ∓ k) dx

+
∫
{k≤|un|≤k+a}

|∇un|p(x)−2∇un · ∇un dxdt ≤
∫

Ω

fnTk,a(un) dxdt,

which yields that∫
{k≤|un|≤k+a}

|∇un|p(x) dxdt ≤ a
( ∫

{|un|>k}
|fn| dxdt+

∫
{|u0n|>k}

|u0n| dx
)
.

Recalling the convergence of {un} in C([0, T ];L1(Ω)), we have

lim
k→+∞

meas{(x, t) ∈ Q : |un| > k} = 0 uniformly with respect to n.

Therefore, passing to the limit first in n then in k, we conclude that

lim
k→+∞

∫
{(x,t)∈Q:k≤|u(x,t)|≤k+a}

|∇u|p(x) dxdt = 0.

Choosing a = 1, we obtain the renormalized condition, i.e.,

lim
k→+∞

∫
{(x,t)∈Q:k≤|u(x,t)|≤k+1}

|∇u|p(x) dxdt = 0.

Let S ∈W 2,∞(R) be such that suppS′ ⊂ [−M,M ] for someM > 0. For every ϕ ∈ C∞(Q̄)
with ϕ(x, T ) = 0, S′(un)ϕ is a test function in (3.2). It yields∫ T

0

∫
Ω

∂S(un)
∂t

ϕ dxdt+
∫ T

0

∫
Ω

[S′(un)|∇un|p(x)−2∇un · ∇ϕ

+S′′(un)|∇un|p(x)ϕ] dxdt =
∫ T

0

∫
Ω

fnS
′(un)ϕdxdt. (3.16)

First we consider the first term on the left-hand side of (3.16). Since S is bounded and
continuous, (3.3) implies that S(un) converges to S(u) a.e. in Q and weakly-* in L∞(Q) .
Then ∂S(un)

∂t converges to ∂S(u)
∂t in D′(Q) as n→ +∞, that is∫ T

0

∫
Ω

∂S(un)
∂t

ϕ dxdt→
∫ T

0

∫
Ω

∂S(u)
∂t

ϕ dxdt.

For the other terms on the left-hand side of (3.16), because of suppS′ ⊂ [−M,M ] we
know

S′(un)|∇un|p(x)−2∇un = S′(un)|∇TM (un)|p(x)−2∇TM (un)
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and
S′′(un)|∇un|p(x) = S′′(un)|∇TM (un)|p(x).

Using (3.3), (3.14) and (3.15), we have

S′(un)|∇TM (un)|p(x)−2∇TM (un) → S′(u)|∇TM (u)|p(x)−2∇TM (u) in (Lp′(·)(Q))N

and
S′′(un)|∇TM (un)|p(x) → S′′(u)|∇TM (u)|p(x) in L1(Q).

Noting that

S′(u)|∇TM (u)|p(x)−2∇TM (u) = S′(u)|∇u|p(x)−2∇u,
S′′(u)|∇TM (u)|p(x) = S′′(u)|∇u|p(x),

we deduce

S′(un)|∇un|p(x)−2∇un → S′(u)|∇u|p(x)−2∇u in (Lp′(·)(Q))N

and
S′′(un)|∇un|p(x) → S′′(u)|∇u|p(x) in L1(Q).

For the right-hand side of (3.16), thanks to the strong convergence of fn, it is easy to
pass to the limits. Therefore, we obtain

−
∫

Ω

S(u0)ϕ(x, 0) dx−
∫ T

0

∫
Ω

S(u)
∂ϕ

∂t
dxdt

+
∫ T

0

∫
Ω

[S′(u)|∇u|p(x)−2∇u · ∇ϕ+ S′′(u)|∇u|p(x)ϕ] dxdt

=
∫ T

0

∫
Ω

fS′(u)ϕdxdt.

This completes the proof of the existence of renormalized solutions.

(2) Uniqueness of renormalized solutions.
Now we prove the uniqueness of renormalized solutions for problem (1.1) by choosing

an appropriate test function motivated by [9] and [6]. Let u and v be two renormalized
solutions for problem (1.1). Fix a positive number k. For σ > 0, let Sσ be the function
defined by 

Sσ(r) = r if |r| < σ,

Sσ(r) = (σ +
1
2
)∓ 1

2
(r ∓ (σ + 1))2 if σ ≤ ±r ≤ σ + 1,

Sσ(r) = ±(σ +
1
2
) if ± r > σ + 1.

(3.17)

It is obvious that 
S′σ(r) = 1 if |r| < σ,

S′σ(r) = σ + 1− |r| if σ ≤ |r| ≤ σ + 1,

S′σ(r) = 0 if |r| > σ + 1.

It is easy to check Sσ ∈ W 2,∞(R) with suppS′σ ⊂ [−σ − 1, σ + 1] and suppS′′σ ⊂ [σ, σ +
1] ∪ [−σ − 1,−σ]. Therefore, we may take S = Sσ in (1.3) to have∫ T

0

∫
Ω

∂Sσ(u)
∂t

ϕ dxdt+
∫ T

0

∫
Ω

[S′σ(u)|∇u|p(x)−2∇u · ∇ϕ
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+S′′σ(u)|∇u|p(x)ϕ] dxdt =
∫ T

0

∫
Ω

fS′σ(u)ϕdxdt

and ∫ T

0

∫
Ω

∂Sσ(v)
∂t

ϕ dxdt+
∫ T

0

∫
Ω

[S′σ(v)|∇v|p(x)−2∇v · ∇ϕ

+S′′σ(v)|∇v|p(x)ϕ] dxdt =
∫ T

0

∫
Ω

fS′σ(v)ϕdxdt.

We plug ϕ = Tk(Sσ(u) − Sσ(v)) as a test function in the above equalities and subtract
them to obtain that

J0 + J1 + J2 = J3, (3.18)

where

J0 =
∫ T

0

〈∂(Sσ(u)− Sσ(v))
∂t

, Tk(Sσ(u)− Sσ(v))
〉
dt,

J1 =
∫ T

0

∫
Ω

(
S′σ(u)|∇u|p(x)−2∇u− S′σ(v)|∇v|p(x)−2∇v

)
·∇Tk(Sσ(u)− Sσ(v)) dxdt,

J2 =
∫ T

0

∫
Ω

[S′′σ(u)|∇u|p(x) − S′′σ(v)|∇v|p(x)]Tk(Sσ(u)− Sσ(v)) dxdt,

J3 =
∫ T

0

∫
Ω

f(S′σ(u)− S′σ(v))Tk(Sσ(u)− Sσ(v)) dxdt.

We estimate J0, J1, J2 and J3 one by one. Recalling the definition of Θk(r), J0 can be
written as

J0 =
∫

Ω

Θk(Sσ(u)− Sσ(v))(T ) dx−
∫

Ω

Θk(Sσ(u)− Sσ(v))(0) dx.

Due to the same initial condition for u and v, and the properties of Θk, we get

J0 =
∫

Ω

Θk(Sσ(u)− Sσ(v))(T ) dx ≥ 0.

Writing

J1 =
∫ T

0

∫
Ω

[
|∇Sσ(u)|p(x)−2∇Sσ(u)− |∇Sσ(v)|p(x)−2∇Sσ(v)

]
·∇Tk(Sσ(u)− Sσ(v)) dxdt

+
∫ T

0

∫
Ω

[
S′σ(u)− S′σ(u)|S′σ(u)|p(x)−2

]
|∇u|p(x)−2∇u

·∇Tk(Sσ(u)− Sσ(v)) dxdt

−
∫ T

0

∫
Ω

[
S′σ(v)− S′σ(v)|S′σ(v)|p(x)−2

]
|∇v|p(x)−2∇v

·∇Tk(Sσ(u)− Sσ(v)) dxdt
:= J1

1 + J2
1 + J3

1 ,
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and setting σ ≥ k, we have

J1
1 ≥

∫
{|u−v|≤k}∩{|u|,|v|≤k}

(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v) · ∇(u− v) dxdt. (3.19)

Recalling suppS′σ ⊂ [−σ − 1, σ + 1] and suppS′′σ ⊂ [σ, σ + 1] ∪ [−σ − 1,−σ], we obtain

|J2
1 | ≤ 2

( ∫
{σ≤|u|≤σ+1}

|∇u|p(x) dxdt

+
∫
{σ≤|u|≤σ+1}∩{|v|≤σ+1}∩{|Sσ(u)−Sσ(v)|≤k}

|∇u|p(x)−1|∇v| dxdt
)

≤ 2
( ∫

{σ≤|u|≤σ+1}
|∇u|p(x) dxdt+

∫
{σ≤|u|≤σ+1}∩{σ−k≤|v|≤σ+1}

|∇u|p(x)−1|∇v| dxdt
)

≤ C
( ∫

{σ≤|u|≤σ+1}
|∇u|p(x) dxdt+

∫
{σ−k≤|v|≤σ+1}

|∇v|p(x) dxdt
)
.

And we may get the similar estimate for J3
1 . Furthermore, we have

|J2| ≤ C
( ∫

{σ≤|u|≤σ+1}
|∇u|p(x) dxdt+

∫
{σ≤|v|≤σ+1}

|∇v|p(x) dxdt
)
.

From the above estimates and (i) in Definition 1.1, we obtain

lim
σ→+∞

(|J2
1 |+ |J3

1 |+ |J2|) = 0.

Observing

f(S′σ(u)− S′σ(v)) → 0 strongly in L1(Q)

as σ → +∞ and using the Lebesgue dominated convergence theorem, we deduce that

lim
σ→+∞

|J3| = 0.

Therefore, sending σ → +∞ in (3.18) and recalling (3.19), we have∫
{|u|≤ k

2 ,|v|≤ k
2 }

(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v) · ∇(u− v) dxdt = 0,

which implies ∇u = ∇v a.e. on the set
{
|u| ≤ k

2
, |v| ≤ k

2
}
. Since k is arbitrary, we

conclude that ∇u = ∇v a.e. in Q. Then, set ξn = T1(Tn+1(u) − Tn+1(v)). We have
ξn ∈ Lp−(0, T ;W 1,p(x)

0 (Ω)) and

∇ξn =

 0 on {|u| ≤ n+ 1, |v| ≤ n+ 1},
∇uχ{|u−Tn+1(v)|≤1} on {|u| ≤ n+ 1, |v| > n+ 1},
−∇vχ{|Tn+1(u)−v|≤1} on {|u| > n+ 1, |v| ≤ n+ 1},

such that∫
Q

|∇ξn|p(x) dxdt ≤
∫
{n≤|u|≤n+1}

|∇u|p(x) dxdt+
∫
{n≤|v|≤n+1}

|∇v|p(x) dxdt.

Thanks to Lemma 2.2 and (i) in Definition 1.1, we deduce that ξn → 0 strongly in Lp−(0, T ;W 1,p(x)
0 (Ω)).

Since ξn → T1(u − v) a.e. in Q, we conclude that T1(u − v) = 0, hence u = v a.e. in Q.
Therefore we obtain the uniqueness of renormalized solutions. This completes the proof of
Theorem 1.1. �
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Next, we prove that the renormalized solution u is also an entropy solution of problem
(1.1) and the entropy solution of problem (1.1) is unique.

Proof of Theorem 1.2.
(1) The renormalized solution is an entropy solution.
Now we choose vn = Tk(un − φ) as a test function in (3.2) for k > 0 and φ ∈ C1(Q̄) with

φ|Γ = 0. We note that, if L = k + ‖φ‖L∞(Q) and n > L, then∫ T

0

∫
Ω

|∇un|p(x)−2∇un · ∇Tk(un − φ) dxdt

=
∫ T

0

∫
Ω

|∇TL(un)|p(x)−2∇TL(un) · ∇Tk(TL(un)− φ) dxdt

and ∫ T

0

〈(un)t, Tk(un − φ)〉 dt

+
∫ T

0

∫
Ω

|∇TL(un)|p(x)−2∇TL(un) · ∇Tk(TL(un)− φ) dxdt

=
∫ T

0

∫
Ω

fnTk(un − φ) dxdt.

Since (un)t = (un − φ)t + φt, we have∫ T

0

〈(un)t, Tk(un − φ)〉 dt

=
∫

Ω

Θk(un − φ)(T ) dx−
∫

Ω

Θk(un − φ)(0) dx+
∫ T

0

〈φt, Tk(un − φ)〉 dt,

which yields that∫
Ω

Θk(un − φ)(T ) dx−
∫

Ω

Θk(un − φ)(0) dx+
∫ T

0

〈φt, Tk(TL(un)− φ)〉 dt

+
∫ T

0

∫
Ω

|∇TL(un)|p(x)−2∇TL(un) · ∇Tk(TL(un)− φ) dxdt

=
∫ T

0

∫
Ω

fnTk(un − φ) dxdt. (3.20)

Recalling un converges to u in C([0, T ];L1(Ω)), hence ∀ t ≤ T, un(t) → u(t) in L1(Ω).
Since Θk is Lipschitz continuous, we get∫

Ω

Θk(un − φ)(T ) dx→
∫

Ω

Θk(u− φ)(T ) dx

and ∫
Ω

Θk(un − φ)(0) dx→
∫

Ω

Θk(u0 − φ(0)) dx,

as n→ +∞.
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Using the strong convergence of fn, (3.5) and (3.15), we can pass to the limits as n tends
to infinity for the other terms to conclude∫

Ω

Θk(u− φ)(T ) dx−
∫

Ω

Θk(u0 − φ(0)) dx+
∫ T

0

〈φt, Tk(u− φ)〉 dt

+
∫ T

0

∫
Ω

|∇u|p(x)−2∇u · ∇Tk(u− φ) dx =
∫

Ω

fTk(u− φ) dx,

for all k > 0 and φ ∈ C1(Q̄) with φ|Γ = 0. Therefore, we finish the proof of the existence of
entropy solutions.

(2) Uniqueness of entropy solutions.
Suppose that u and v are two entropy solutions of problem (1.1). Let {un} be a sequence

constructed in (3.2), which satisfies ∇Tk(un) strongly converges to ∇Tk(u) in (Lp(·)(Q))N ,
for every k > 0. Choosing Sσ(un) as a test function in (1.4) for entropy solution v, we have∫

Ω

Θk(v − Sσ(un))(T ) dx−
∫

Ω

Θk(u0 − Sσ(u0n)) dx

+
∫ T

0

〈(un)t, S
′
σ(un)Tk(v − Sσ(un)〉 dt

+
∫ T

0

∫
Ω

|∇v|p(x)−2∇v · ∇Tk(v − Sσ(un)) dxdt

=
∫ T

0

∫
Ω

fTk(v − Sσ(un)) dxdt. (3.21)

In order to deal with the third term on the left-hand side of (3.21), we take S′σ(un)Ψ with
Ψ = Tk(v − Sσ(un)) as a test function for problem (3.2) to obtain∫ T

0

〈(un)t, S
′
σ(un)Ψ〉 dt+

∫ T

0

∫
Ω

S′′σ(un)Ψ|∇un|p(x) dxdt

+
∫ T

0

∫
Ω

S′σ(un)|∇un|p(x)−2∇un · ∇Ψ dxdt

=
∫ T

0

∫
Ω

fnS
′
σ(un)Ψ dxdt. (3.22)

Thus we deduce from (3.21) and (3.22) that∫
Ω

Θk(v − Sσ(un))(T ) dx−
∫

Ω

Θk(u0 − Sσ(u0n)) dx

−
∫ T

0

∫
Ω

S′′σ(un)Tk(v − Sσ(un))|∇un|p(x) dxdt

−
∫ T

0

∫
Ω

S′σ(un)|∇un|p(x)−2∇un · ∇Tk(v − Sσ(un)) dxdt

+
∫ T

0

∫
Ω

|∇v|p(x)−2∇v · ∇Tk(v − Sσ(un)) dxdt

=
∫ T

0

∫
Ω

fTk(v − Sσ(un)) dxdt−
∫ T

0

∫
Ω

fnS
′
σ(un)Tk(v − Sσ(un)) dxdt.
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We will pass to the limit as n → +∞ and σ → +∞ successively. Let us denote A3

for the third term on the left-hand side of the above equality for simplicity. Recalling
suppS′′σ ⊂ [σ, σ + 1] ∪ [−σ − 1,−σ], we have

|A3| ≤ k
( ∫

{σ≤|un|≤σ+1}
|∇un|p(x) dxdt

)
.

Observe that S′σ(un)|∇un|p(x)−2∇un = S′σ(un)|∇Tσ+1(un)|p(x)−2∇Tσ+1(un), then we get∫
Ω

Θk(v − Sσ(un))(T ) dx−
∫

Ω

Θk(u0 − Sσ(u0n)) dx

+
∫ T

0

∫
Ω

(|∇v|p(x)−2∇v − S′σ(un)|∇Tσ+1(un)|p(x)−2∇Tσ+1(un))

·∇Tk(v − Sσ(un)) dxdt

≤
∫ T

0

∫
Ω

(f − fnS
′
σ(un))Tk(v − Sσ(un)) dxdt

+k
( ∫

{σ≤|un|≤σ+1}
|∇un|p(x) dxdt

)
.

Thanks to the fact that ∇Tk(un) → ∇Tk(u) strongly in (Lp(·)(Q))N and the Lebesgue
dominated convergence theorem, letting n→ +∞, we obtain∫

Ω

Θk(v − Sσ(u))(T ) dx−
∫

Ω

Θk(u0 − Sσ(u0)) dx

+
∫ T

0

∫
Ω

(|∇v|p(x)−2∇v − S′σ(u)|∇Tσ+1(u)|p(x)−2∇Tσ+1(u))

·∇Tk(v − Sσ(u)) dxdt

≤
∫ T

0

∫
Ω

f(1− S′σ(u))Tk(v − Sσ(u)) dxdt

+k
( ∫

{σ≤|u|≤σ+1}
|∇u|p(x) dxdt

)
. (3.23)

Let us denote A′3 for the third term on the left-hand side of (3.23). Then we can write A′3
as

A′3 =
∫ T

0

∫
Ω

(|∇v|p(x)−2∇v − S′σ(u)|∇u|p(x)−2∇u) · ∇Tk(v − Sσ(u)) dxdt

=
∫ T

0

∫
Ω

(|∇v|p(x)−2∇v − |∇Sσ(u)|p(x)−2∇Sσ(u)) · ∇Tk(v − Sσ(u)) dxdt

+
∫ T

0

∫
Ω

[|S′σ(u)|p(x)−2S′σ(u)− S′σ(u)]|∇u|p(x)−2∇u

·∇Tk(v − Sσ(u)) dxdt
= I1 + I2.

Recalling the definition of Sσ, we have

|I2| ≤ 2
( ∫

{σ≤|u|≤σ+1}
|∇u|p(x) dxdt+

∫
{σ≤|u|≤σ+1}∩{|v−Sσ(u)|≤k}

|∇u|p(x)−1∇v dxdt
)
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≤ 2
( ∫

{σ≤|u|≤σ+1}
|∇u|p(x) dxdt+

∫
{σ≤|u|≤σ+1}∩{σ−k≤|v|≤σ+k+1}

|∇u|p(x)−1∇v dxdt
)

≤ C
( ∫

{σ≤|u|≤σ+1}
|∇u|p(x) dxdt+

∫
{σ−k≤|v|≤σ+k+1}

|∇v|p(x) dxdt
)
. (3.24)

Now we let σ → +∞. Since

|Θk(v − Sσ(u))(T )| ≤ k(|v(T )|+ |u(T )|), |Θk(u0 − Sσ(u0))| ≤ k|u0|,
by the Lebesgue dominated convergence theorem, we have∫

Ω

Θk(u0 − Sσ(u0)) dx→ 0,
∫

Ω

Θk(v − Sσ(u))(T ) dx→
∫

Ω

Θk(v − u)(T ) dx.

According to the fact that

lim
k→+∞

∫
{(x,t)∈Q:k≤|u(x,t)|≤k+1}

|∇u|p(x) dxdt = 0

and Fatou’s lemma, we deduce from (3.23) and (3.24) that∫
Ω

Θk(v − u)(T ) dx

+
∫
{|u|≤ k

2 ,|v|≤ k
2 }

(|∇v|p(x)−2∇v − |∇u|p(x)−2∇u) · ∇(v − u) dxdt ≤ 0.

Using the positivity of Θk, we have ∇u = ∇v a.e. in Q, for all k. Similar to the case
of renormalized solutions, we conclude that u = v a.e. in Q. Therefore we obtain the
uniqueness of entropy solutions. This completes the proof of Theorem 1.2. �

Remark 3.1. Furthermore, we may improve the integrability of the renormalized solution
or entropy solution u for problem (1.1) by assuming that p− > 2− 1

N+1 . Then we can prove
that

‖u‖Lq(0,T ;W 1,q
0 (Ω)) ≤ C,

with

1 ≤ q <
p−(N + 1)−N

N + 1
.

Recalling (i) in Definition 1.1, Lp(·)(Q) ↪→ Lp−(Q) and Lemma 2.2, we get

‖∇u‖p−,Bm
= |∇u|p−,Bm

≤ C|∇u|p(·),Bm

≤ Cmax
{( ∫

Bm

|∇u|p(x) dxdt
)1/p−

,
( ∫

Bm

|∇u|p(x) dxdt
)1/p+

}
≤ C,

where
Bm = {(x, t) ∈ Q : m ≤ |u(x, t)| < m+ 1}.

Following the arguments in [12] and u ∈ C([0, T ];L1(Ω)), we can conclude that

‖u‖Lq(0,T ;W 1,q
0 (Ω)) ≤ C.
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[14] L. Boccardo, D. Giachetti, J. I. Diaz, F. Murat, Existence and regularity of renormalized solutions

for some elliptic problems involving derivations of nonlinear terms, J. Differential Equations 106 (1993)

215–237.
[15] Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM

J. Appl. Math. 66 (2006) 1383–1406.

[16] G. Dal Maso, F. Murat, L. Orsina, A. Prignet, Renormalized solutions of elliptic equations with general
measure data, Ann. Sc. Norm. Super. Pisa Cl. Sci. 12 (4) (1999) 741–808.

[17] R. J. DiPerna, P. L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and

weak stability, Ann. Math. 130 (1989) 321–366.
[18] X. Fan, Global C1,α regularity for variable exponent elliptic equations in divergence form, J. Differential

Equations 235 (2007) 397–417.

[19] X. Fan, J. Shen, D. Zhao, Sobolev embedding theorems for spaces W k,p(x)(Ω), J. Math. Anal. Appl.
262 (2001) 749–760.

[20] X. Fan, D. Zhao, On the spaces Lp(x)(Ω) and W m,p(x)(Ω), J. Math. Anal. Appl. 263 (2001) 424–446.

[21] P. Harjulehto, Variable exponent Sobolev spaces with zero boundary values, Math. Bohem. 132 (2007)
125–136.
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