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Abstract. In this paper we prove the existence and uniqueness of entropy solutions for

the initial-boundary value problem of a non-uniformly parabolic equation. Moreover, we
establish a comparison result. Some well-known parabolic equations are the special cases

of this equation.

1. Introduction

Suppose that Ω is a bounded domain of RN (N ≥ 2) with Lipschitz boundary ∂Ω, and T
is a positive number. Denote ΩT = Ω× (0, T ],Σ = ∂Ω× (0, T ]. In this paper we study the
following non-uniformly parabolic initial-boundary value problem

ut − div
(
DξΦ(∇u)

)
= f in ΩT ,

u(x, t) = 0 on Σ,

u(x, 0) = u0(x) on Ω,

(1.1)

where Φ : RN 7→ R+ is a C1 nonnegative, strictly convex function, DξΦ : RN → R represents
the gradient of Φ(ξ) with respect to ξ and ∇u represents the gradient with respect to the
spatial variables x. Without loss of generality we may assume that Φ(0) = 0.

Our main assumptions are that Φ(ξ) satisfies the super-linear condition (or 1-coercive
condition, see [15], Chapter E)

lim
|ξ|→∞

Φ(ξ)
|ξ|

= ∞, (1.2)

and the symmetric condition: there exists a positive number C > 0 such that

Φ(−ξ) ≤ CΦ(ξ), ξ ∈ RN . (1.3)

In this paper we assume that

u0 ∈ L1(Ω) and f ∈ L1(ΩT ). (1.4)

Under our assumptions, it is reasonable to work with entropy solutions or renormalized
solutions, which need less regularity than the usual weak solutions. The notion of entropy
solutions was first proposed by Bénilan et al. in [2] for the nonlinear elliptic problems. It
was then adapted to the study of some nonlinear elliptic and parabolic problems. We refer
to [4, 3, 1, 19] for details.

There are numerous examples of Φ(ξ) satisfying structure assumptions (1.2) and (1.3).
The well-known are listed as follows.
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Example 1

Φ(ξ) =
1
p
|ξ|p, p > 1.

Example 2

Φ(ξ) =
1
p1
|ξ1|p1 +

1
p2
|ξ2|p2 + · · ·+ 1

pN
|ξN |pN , pi > 1, i = 1, 2, . . . , N,

where ξ = (ξ1, ξ2, . . . , ξN ). (See [17], Chapter 2.)
Example 3

Φ(ξ) = |ξ| log(1 + |ξ|)
(See [12] and [6], Chapter 4.)

Example 4
Φ(ξ) = |ξ|Lk(|ξ|),

where Li(s) = log(1 + Li−1(s)) (i = 1, 2, . . . , k) and L0(s) = log(1 + s) for s ≥ 0 (See [14].)
Example 5

Φ(ξ) = e
|ξ|2
2 − 1.

(See [18], [9] and [16].)

Let Tk denote the truncation function at height k ≥ 0:

Tk(r) = min{k,max{r,−k}} =


k if r ≥ k,

r if |r| < k,

−k if r ≤ −k,

and its primitive Θk : R → R+ by

Θk(r) =
∫ r

0

Tk(s) ds =

{
r2

2 if |r| ≤ k,

k|r| − k2

2 if |r| ≥ k.

It is obvious that Θk(r) ≥ 0 and Θk(r) ≤ k|r|.
Next we define the very weak gradient of a measurable function u with Tk(u) ∈ L1(0, T ;W 1,1

0 (Ω)).
As a matter of the fact, working as in Lemma 2.1 of [2] we can prove the following result:

Proposition 1.1. For every measurable function u on ΩT such that Tk(u) belongs to
L1(0, T ;W 1,1

0 (Ω)) for every k > 0, there exists a unique measurable function v : ΩT → RN ,
such that

∇Tk(u) = vχ{|u|<k}, almost everywhere in ΩT and for every k > 0,

where χE denotes the characteristic function of a measurable set E. Moreover, if u belongs
to L1(0, T ;W 1,1

0 (Ω)), then v coincides with the weak gradient of u.

From the above Proposition, we denote v = ∇u, which is called the very weak gradient of
u. The notion of the very weak gradient allows us to give the following definition of entropy
solutions for problem (1.1). Denote z = (x, t), dz = dxdt.

Definition 1.2. A function u ∈ C([0, T ];L1(Ω)) with Tk(u) ∈ L1(0, T ;W 1,1
0 (Ω)) is an

entropy solution to problem (1.1) if the following conditions are satisfied:

(i)
∫

ΩT

DξΦ(∇Tk(u)) · ∇Tk(u) dz < +∞;
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(ii) For every k > 0 and every function φ ∈ C1(Ω̄T ) with φ|Σ = 0,∫
Ω

Θk(u− φ)(T ) dx−
∫

Ω

Θk(u0 − φ(0)) dx +
∫ T

0

〈φt, Tk(u− φ)〉 dt

+
∫

ΩT

Dξ(Φ(∇u)) · ∇Tk(u− φ) dz ≤
∫

ΩT

fTk(u− φ) dz (1.5)

holds.

Now we state our main results. The first theorem is about the existence and uniqueness
of entropy solutions. The second one is about the comparison principle.

Theorem 1.3. Under structure assumptions (1.2), (1.3) and integrability condition (1.4),
there exists a unique entropy solution for problem (1.1).

Theorem 1.4. Let u0, v0 ∈ L1(Ω), f, g ∈ L1(ΩT ) such that u0 ≤ v0 and f ≤ g. If u is the
entropy solution of problem (1.1) and v is the entropy solution of problem (1.1) with u0, f
being replaced by v0, g, then u ≤ v a.e. in ΩT .

The rest of this paper is organized as follows. In Section 2, we state some basic results
that will be used later. We will prove the main results in Section 3. In the following sections
C will represent a generic constant that may change from line to line even if in the same
inequality.

2. Preliminaries

Let Φ(ξ) be a nonnegative convex function. We define the polar function of Φ(ξ) as

Ψ(η) = sup
ξ∈RN

{η · ξ − Φ(ξ)}, (2.1)

which is also known as the Legendre transform of Φ(ξ). It is obvious that Ψ(η) is a convex
function. In the following we will list several lemmas.

Definition 2.1. (See [15], Definition 4.1.3) Let C ⊂ RN be convex. The mapping F : C →
RN is said to be monotone [rest. strictly monotone] on C when, for all x and x′ in C,

〈F (x)− F (x′), x− x′〉 ≥ 0,

[resp. 〈F (x)− F (x′), x− x′ > 0〉 whenever x 6= x′].

Lemma 2.2. (See [15], Theorem 4.1.4) Let f be a function differentiable on an open set
Ω ⊂ RN and let C be a convex subset of Ω. Then, f is convex [resp. strictly convex] on C
if and only if its gradient ∇f is monotone [resp. strictly monotone] on C.

Lemma 2.3. Suppose that Φ(ξ) is a convex C1 function with Φ(0) = 0. Then we have, for
all ξ, ζ ∈ RN ,

Φ(ξ) ≤ ξ ·DΦ(ξ), (2.2)
(DΦ(ξ)−DΦ(ζ)) · (ξ − ζ) ≥ 0. (2.3)

Lemma 2.4. ([5]) Suppose that Φ(ξ) is a nonnegative convex C1 function and Ψ(η) is its
polar function. Then we have, for ξ, η, ζ ∈ RN ,

ξ · η ≤ Φ(ξ) + Ψ(η), (2.4)
Ψ(DΦ(ζ)) + Φ(ζ) = DΦ(ζ) · ζ. (2.5)
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Lemma 2.5. (See [13], Chapter 3) Suppose that Φ(ξ) is a nonnegative convex function with
Φ(0) = 0, which satisfies (1.2). Then its polar function Ψ(η) in (2.1) is a well-defined,
nonnegative function in RN , which also satisfies (1.2).

Lemma 2.6. (See [20], Chapter 4) Let D ⊂ RN be measurable with finite Lebesgue measure
and fk ∈ L1(D) and gk ∈ L1(D) (k = 1, 2, . . . ), and

|fk(x)| ≤ gk(x), a.e. x ∈ D, k = 1, 2, . . . .

If
lim

k→∞
fk(x) = f(x), lim

k→∞
gk(x) = g(x), a.e. x ∈ D,

and
lim

k→∞

∫
D

gk(x) dx =
∫

D

g(x) dx < +∞,

then we have
lim

k→∞

∫
D

fk(x) dx =
∫

D

f(x) dx.

Lemma 2.7. Let D ⊂ RN be measurable with finite Lebesgue measure, and let {fn} be a
sequence of functions in Lp(D)(p ≥ 1) such that

fn ⇀ f weakly in Lp(D),
fn → g a.e. in D.

Then f = g a.e. in D.

Proof. The result can be found in ([10], Proposition 9.1c). Here we give a slightly different
proof.

Since fn → g a.e. in D, we have |fn|p → |g|p a.e. in D. It follows from Fatou’s lemma
that ∫

D

|g|p dx ≤ lim inf
n→∞

∫
D

|fn|p dx < +∞.

Denote hn = fn − g. Then we know that

hn → 0 a.e. in D, (2.6)
hn ⇀ h = f − g weakly in Lp(D). (2.7)

We will show that h = 0 a.e. in D. For every ε > 0, from (2.6) and Egorov theorem, there
exists a subset Eε ⊂ D such that |D\Eε| < ε and hn → 0 uniformly in Eε. Then there
exists N > 0 such that

|hn| < ε in Eε, for all n > N.

Recalling (2.7), we get∫
Eε

hnφdx =
∫

D

hnφχEε
dx →

∫
Eε

hφ dx,

for any φ ∈ Lq(D) with 1/p + 1/q = 1. On the other hand, the Lebesgue dominated
convergence theorem implies that ∫

Eε

hnφ dx → 0.

Therefore, we obtain ∫
Eε

hφ dx = 0.
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By choosing φ = |h|p−1, if p > 1 and φ = sgn(h), if p = 1, we get h = 0 a.e. in Eε, for all
ε > 0. This finishes the proof. �

Lemma 2.8. (See [8], Chapter 3 and [21]) Suppose that Φ(ξ) is a nonnegative convex
function satisfying (1.2). Let D ⊂ RN be a measurable with finite Lebesgue measure |D| and
let {fk} ⊂ L1(D; RN ) be a sequence satisfying that∫

D

Φ(fk) dx ≤ C, (2.8)

where C is a positive constant. Then there exist a subsequence {fkj} ⊂ {fk} and a function
f ∈ L1(D; RN ) such that

fkj
⇀ f weakly in L1(D; RN ) as j →∞ (2.9)

and ∫
D

Φ(f) dx ≤ lim inf
j→∞

∫
D

Φ(fkj ) dx ≤ C. (2.10)

For the convenience of the readers, let us recall the definition of weak solutions for problem
(1.1) and the main results in [5].

Definition 2.9. A function u : Ω̄ × [0, T ] → R is a weak solution of problem (1.1) if the
following conditions are satisfied:

(i) u ∈ C([0, T ];L2(Ω)) ∩ L1(0, T ;W 1,1
0 (Ω)) with∫

ΩT

DξΦ(∇u) · ∇u dz < +∞;

(ii) For any ϕ ∈ C1(Ω̄T ) with ϕ(·, T ) = 0 and ϕ(·, t)|∂Ω = 0, we have

−
∫

Ω

u0(x)ϕ(x, 0) dx +
∫

ΩT

[
− uϕt + DξΦ(∇u) · ∇ϕ

]
dz =

∫
ΩT

fϕ dz. (2.11)

Lemma 2.10. (See [5], Theorem 1.2) Let the structure assumptions (1.2) and (1.3) be
satisfied. If u0 ∈ L2(Ω) and f = 0, then there exists a unique weak solution for the initial-
boundary value problem (1.1).

Remark 2.11. If we assume f ∈ L2(ΩT ) the existence and uniqueness of weak solutions of
problem (1.1) can be obtained working as in the proof of Lemma 2.10.

Remark 2.12. Let u be a weak solution in Definition 2.9. By using the approximation
technique (see [7], Chapter 3 or [11], Chapter 2) we have, for every ϕ ∈ C1(Ω̄T ) with
ϕ(·, t)|∂Ω = 0, each t ∈ [0, T ],∫

Ω

uϕ dx
∣∣∣t
0

+
∫ t

0

∫
Ω

[
− uϕt + DξΦ(∇u) · ∇ϕ

]
dxdτ =

∫ t

0

∫
Ω

fϕ dxdτ. (2.12)

Remark 2.13. Let u be a weak solution in Definition 2.9 with f = 0. We can formally
choose u as a test function in (2.12) to obtain an energy type estimate. That is, for a.e.
t ∈ [0, T ],

1
2
‖u(t)‖2

L2(Ω) +
∫ t

0

∫
Ω

DξΦ(∇u) · ∇u dxdτ =
1
2
‖u0‖2

L2(Ω).
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This can be done by an approximation argument. Indeed, we first extend solution u(x, t)
to the initial value u0(x) when t < 0. We next mollify u in the spatial directions to have an
approximation C∞ sequence uε, then introduce the time average of uε(x, t),

φε,h =
1
2h

∫ t+h

t−h

uε(x, τ) dτ.

As u ∈ C([0, T ];L2(Ω)) ∩ L1(0, T ;W 1,1
0 (Ω)) in Definition 2.9, we know that φε,h(x, t) ∈

C1(Ω̄T ) with φε,h(·, t)|∂Ω = 0, and may choose it as a test function ϕ in (2.12). Sending
first ε → 0, and then h → 0, by a careful calculation we conclude that, for a.e. t ∈ [0, T ],∫

Ω

uφε,h dx
∣∣∣t
0
−

∫ t

0

∫
Ω

u[φε,h]t dxdτ → 1
2

∫
Ω

|u(x, t)|2 dx− 1
2

∫
Ω

|u0(x)|2 dx,∫ t

0

∫
Ω

DξΦ(∇u) · ∇φε,h dxdτ →
∫ t

0

∫
Ω

DξΦ(∇u) · ∇u dxdτ.

We refer to the proof of Corollary 1.4 in [5] for more details.

3. The proofs of main results

Now we are ready to prove the main results. First we prove the existence and uniqueness
of entropy solutions for problem (1.1). Some of the reasoning is based on the ideas developed
in [2] and [19].

Proof of Theorem 1.3.
(1) Existence of entropy solutions.
We first introduce the approximate problems. Let {fn} ⊂ C∞

0 (ΩT ) and {u0n} ⊂ C∞
0 (Ω)

be two sequences of functions strongly convergent respectively to f in L1(ΩT ) and to u0 in
L1(Ω) such that

‖fn‖L1(ΩT ) ≤ ‖f‖L1(ΩT ), ‖u0n‖L1(Ω) ≤ ‖u0‖L1(Ω). (3.1)

Let us consider the approximate problems
(un)t − div

(
DξΦ(∇un)

)
= fn in ΩT ,

un = 0 on Σ,

un(x, 0) = u0n on Ω.

(3.2)

By virtue of Lemma 2.10 (see also Remark 2.11) we can find un ∈ C([0, T ];L2(Ω)) ∩
L1(0, T ;W 1,1

0 (Ω)), that is a weak solution of problem (3.2) in the sense of Definition 2.9.
Moreover, (un)t ∈ L1(0, T ;W−1,1(Ω)) + L2(ΩT ) and∫

ΩT

DξΦ(∇un) · ∇un dz < +∞. (3.3)

Our aim is to prove that a subsequence of these approximate solutions {un} converges to
a measurable function u, which is an entropy solution of problem (1.1). We will divide
the proof into several steps. Although some of the arguments are not new, we present a
self-contained proof for the sake of clarity and readability.
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Using an approximation argument as in Remark 2.12 and Remark 2.13, we can choose
Tk(un)χ(0,t) as a test function in (3.2) to have∫

Ω

Θk(un)(t) dx−
∫

Ω

Θk(u0n) dx

+
∫ t

0

∫
Ω

DξΦ(∇Tk(un)) · ∇Tk(un) dxds =
∫ t

0

∫
Ω

fnTk(un) dxds. (3.4)

It follows from the definition of Θk(r) and (3.1) that∫ t

0

∫
Ω

DξΦ(∇Tk(un)) · ∇Tk(un) dxds +
∫

Ω

Θk(un)(t) dx

≤ k
(
‖fn‖L1(ΩT ) + ‖u0n‖L1(Ω)

)
≤ k

(
‖f‖L1(ΩT ) + ‖u0‖L1(Ω)

)
. (3.5)

Recalling (2.2), we have∫
ΩT

Φ(∇Tk(un)) dz ≤
∫

ΩT

DξΦ(Tk(∇un)) · ∇Tk(un) dz ≤ Ck, (3.6)

which implies from (1.2) that ∫
ΩT

|∇Tk(un)| dz ≤ C(k + 1), (3.7)

that is Tk(un) is bounded in L1
(
0, T ;W 1,1

0 (Ω)
)
.

If we choose k = 1 in the inequality (3.5), then for a.e. t ∈ [0, T ],∫
Ω

Θ1(un(t)) dx ≤ ‖f‖L1(ΩT ) + ‖u0‖L1(Ω).

Moreover, ∫
Ω

|un(t)| dx ≤meas(Ω) + ‖f‖L1(ΩT ) + ‖u0‖L1(Ω).

Thus we obtain
‖un‖L∞(0,T ;L1(Ω)) ≤ C. (3.8)

Step 1. We shall prove that {un} converges in C([0, T ];L1(Ω)) and we shall find a
subsequence which is almost everywhere convergent in ΩT .

Let m and n be two integers, then from (3.2) we can write the weak form as∫ T

0

〈(un − um)t, φ〉 dt +
∫

ΩT

[DξΦ(∇un)−DξΦ(∇um)] · ∇φdz

=
∫

ΩT

(fn − fm)φdz, (3.9)

for all φ ∈ C1
0 (Ω̄T ). Recalling (2.4), (2.5), (1.3) and (3.3), we observe that

|DξΦ(∇un) · ∇um| ≤ Φ(∇um) + Φ(−∇um) + Ψ(DξΦ(∇un))

≤ (C + 1)Φ(∇um) + DξΦ(∇un) · ∇un

≤ (C + 1)DξΦ(∇um) · ∇um + DξΦ(∇un) · ∇un ∈ L1(ΩT ).

Denote
αn,m =

∫
ΩT

|fn − fm| dz +
∫

Ω

|u0n − u0m| dx. (3.10)
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We know that
lim

n,m→∞
αn,m = 0.

Using an approximation argument as above, we conclude that w = T1(un − um)χ(0,t) with
t ≤ T can be a test function in (3.9). From (2.3), discarding the positive term we get∫

Ω

Θ1(un − um)(t) dx ≤
∫

Ω

Θ1(u0n − u0m) dx + ‖fn − fm‖L1(ΩT )

≤ ‖u0n − u0m‖L1(Ω) + ‖fn − fm‖L1(ΩT ) = αn,m.

Therefore, we conclude that∫
{|un−um|<1}

|un − um|2(t)
2

dx +
∫
{|un−um|≥1}

|un − um|(t)
2

dx

≤
∫

Ω

[Θ1(un − um)](t) dx ≤ αn,m.

It follows that∫
Ω

|un − um|(t) dx =
∫
{|un−um|<1}

|un − um|(t) dx +
∫
{|un−um|≥1}

|un − um|(t) dx

≤
( ∫

{|un−um|<1}
|un − um|2(t) dx

) 1
2
meas(Ω)

1
2 + 2αn,m

≤ (2meas(Ω))
1
2 α

1
2
n,m + 2αn,m.

Thus we get
‖un − um‖C([0,T ];L1(Ω)) → 0 as n, m → +∞,

i.e., {un} is a Cauchy sequence in C([0, T ];L1(Ω)). Then un converges to u in C([0, T ];L1(Ω)).
We find an a.e. convergent subsequence (still denoted by {un}) in ΩT such that

un → u a.e. in ΩT . (3.11)

Recalling (3.6) and Lemma 2.8, we may draw a subsequence (we also denote it by the
original sequence for simplicity) such that

∇Tk(un) ⇀ ηk, weakly in L1(ΩT )

and ∫
ΩT

Φ(ηk) dz ≤ Ck.

In view of (3.11), we conclude that ηk = ∇Tk(u) a.e. in ΩT .
Step 2. We shall prove that the sequence {∇un} converges almost everywhere in ΩT to

∇u (up to a subsequence).
We first claim that {∇un} is a Cauchy sequence in measure. Let δ > 0, and denote

E1 := {(x, t) ∈ ΩT : |∇un| > h} ∪ {|∇um| > h},
E2 := {(x, t) ∈ ΩT : |un − um| > 1}

and

E3 := {(x, t) ∈ ΩT : |∇un| ≤ h, |∇um| ≤ h, |un − um| ≤ 1, |∇un −∇um| > δ},
where h will be chosen later. It is obvious that

{(x, t) ∈ ΩT : |∇un −∇um| > δ} ⊂ E1 ∪ E2 ∪ E3.
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For k ≥ 0, we can write

{(x, t) ∈ ΩT : |∇un| ≥ h}
⊂ {(x, t) ∈ ΩT : |un| ≥ k} ∪ {(x, t) ∈ ΩT : |∇Tk(un)| ≥ h}.

Thus, applying (3.8), (1.2) and (3.7), there exist constants C > 0 such that

meas{(x, t) ∈ ΩT : |∇un| ≥ h} ≤ C

k
+

Ck

h
,

when h is large appropriately. By choosing k = Ch
1
2 , we deduce that

meas{(x, t) ∈ ΩT : |∇un| ≥ h} ≤ Ch−
1
2 .

Let ε > 0. We may let h = h(ε) large enough such that

meas(E1) ≤ ε/3, for all n, m ≥ 0. (3.12)

On the other hand, by Step 1, we know that {un} is a Cauchy sequence in L1(ΩT ). Then
there exists N1(ε) ∈ N such that

meas(E2) ≤ ε/3, for all n, m ≥ N1(ε). (3.13)

Moreover, since Φ is C1 and strictly convex, then from Lemma 2.2 and Definition 2.1,
there exists a real valued function m(h, δ) > 0 such that

(DΦ(ξ)−DΦ(ζ)) · (ξ − ζ) ≥ m(h, δ) > 0, (3.14)

for all ξ, ζ ∈ RN with |ξ|, |ζ| ≤ h, |ξ − ζ| ≥ δ. By taking T1(un − um) as a test function in
(3.9), we obtain

m(h, δ)meas(E3) ≤
∫

E3

[DξΦ(∇un)−DξΦ(∇um)] · (∇un −∇um) dz

≤
∫

ΩT

[DξΦ(∇un)−DξΦ(∇um)] · ∇T1(un − um) dz

≤
∫

ΩT

|fn − fm| dz +
∫

Ω

|u0n − u0m| dx = αn,m,

which implies that

meas(E3) ≤
αn,m

m(h, δ)
≤ ε/3,

for all n, m ≥ N2(ε, δ). It follows from (3.12) and (3.13) that

meas{(x, t) ∈ ΩT : |∇un −∇um| > δ} ≤ ε, for all n, m ≥ max{N1, N2},

that is {∇un} is a Cauchy sequence in measure. Then we may choose a subsequence (denote
it by the original sequence) such that

∇un → v a.e. in ΩT .

Thus, from Proposition 1.1 and ∇Tk(un) ⇀ ∇Tk(u) weakly in L1(ΩT ), we deduce from
Lemma 2.7 that v coincides with the very weak gradient of u. Therefore, we have

∇un → ∇u a.e. in ΩT . (3.15)

Step 3. We shall prove that u is an entropy solution.
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Now we choose vn = Tk(un − φ) as a test function in (3.2) for k > 0 and φ ∈ C1(Ω̄T )
with φ|Σ = 0. We note that, if L = k + ‖φ‖L∞(ΩT ), then∫

ΩT

DξΦ(∇un) · ∇Tk(un − φ) dz

=
∫

ΩT

DξΦ(∇TL(un)) · ∇Tk(TL(un)− φ) dz

and ∫ T

0

〈(un)t, Tk(un − φ)〉 dt +
∫

ΩT

DξΦ(∇TL(un)) · ∇Tk(TL(un)− φ) dz

=
∫

ΩT

fnTk(un − φ) dz.

Since (un)t = (un − φ)t + φt, we have∫ T

0

〈(un)t, Tk(un − φ)〉 dt =
∫

Ω

Θk(un − φ)(T ) dx−
∫

Ω

Θk(un − φ)(0) dx

+
∫ T

0

〈φt, Tk(un − φ)〉 dt,

which yields that∫
Ω

Θk(un − φ)(T ) dx−
∫

Ω

Θk(un − φ)(0) dx +
∫ T

0

〈φt, Tk(un − φ)〉 dt

+
∫

ΩT

DξΦ(∇TL(un)) · ∇Tk(TL(un)− φ) dz =
∫

ΩT

fnTk(un − φ) dz. (3.16)

Recalling un converges to u in C([0, T ];L1(Ω)), we have un(t) → u(t) in L1(Ω), for all
t ≤ T . Since Θk is Lipschitz continuous, we get∫

Ω

Θk(un − φ)(T ) dx →
∫

Ω

Θk(u− φ)(T ) dx

and ∫
Ω

Θk(un − φ)(0) dx →
∫

Ω

Θk(u0 − φ(0)) dx,

as n → +∞.
The fourth term on the left hand side of (3.16) can be written as∫

ΩT

DξΦ(∇TL(un)) · ∇Tk(TL(un)− φ) dz

=
∫
{|TL(un)−φ|≤k}

DξΦ(∇TL(un)) · ∇TL(un) dz

−
∫
{|TL(un)−φ|≤k}

DξΦ(∇TL(un)) · ∇φ dz.

From (2.2), we have
DξΦ(∇TL(un)) · ∇TL(un) ≥ 0,

it follows from Fatou’s lemma and (3.15) that∫
{|TL(u)−φ|≤k}

DξΦ(∇TL(u)) · ∇TL(u) dz
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≤ lim inf
n→∞

∫
{|TL(un)−φ|≤k}

DξΦ(∇TL(un)) · ∇TL(un) dz.

In view of (3.5) and (2.5), we know that∫
ΩT

Ψ(DξΦ(∇TL(un))) dz ≤ C. (3.17)

Applying Lemma 2.5, Lemma 2.8 and (3.15), we conclude that (up to a subsequence)

DξΦ(∇TL(un)) ⇀ DξΦ(∇TL(u)) weakly in L1(ΩT ). (3.18)

Denote
ξn = DξΦ(∇TL(un)), En = {(x, t) ∈ ΩT : |TL(un)− φ| ≤ k}

and
E = {(x, t) ∈ ΩT : |TL(u)− φ| ≤ k}

for simplicity. We can write∫
En

ξn · ∇φ dz =
∫

E

ξn · ∇φdz +
∫

En\E
ξn · ∇φ dz := I1 + I2.

From (3.18), we have

lim
n→∞

I1 =
∫
{|TL(u)−φ|≤k}

DξΦ(∇TL(u)) · ∇φdz.

Recalling Lemma 2.5, we know that Ψ also satisfies the super-linear condition (1.2). Then
for every ε > 0, there exists a constant M > 0 such that

|s| ≤ εΨ(s), for all |s| > M.

It follows that from (3.17) that

|I2| ≤ C(‖∇φ‖L∞(ΩT ))
∫

ΩT

|ξn|χEn\E dz

= C
( ∫

{|ξn|≤M}
|ξn|χEn\E dz +

∫
{|ξn|≥M}

|ξn|χEn\E dz
)

≤ C
(
Mmeas(En\E) + ε

∫
ΩT

Ψ(ξn) dz
)

≤ CMmeas(En\E) + Cε.

Moreover, by the arbitrariness of ε, we get

lim
n→∞

|I2| = 0.

Thus we obtain∫
{|TL(un)−φ|≤k}

DξΦ(∇TL(un)) · ∇φ dz →
∫
{|TL(u)−φ|≤k}

DξΦ(∇TL(u)) · ∇φdz.

Using the strong convergence of fn, (3.11) and the Lebesgue dominated convergence
theorem, we can pass to the limits as n →∞ in the other terms of (3.16) to conclude∫

Ω

Θk(u− φ)(T ) dx−
∫

Ω

Θk(u0 − φ(0)) dx +
∫ T

0

〈φt, Tk(u− φ)〉 dt

+
∫

ΩT

DξΦ(∇u) · ∇Tk(u− φ) dz ≤
∫

ΩT

fTk(u− φ) dz,
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for all k > 0 and φ ∈ C1(Ω̄T ) with φ|Σ = 0. Therefore, we finish the proof of the existence
of entropy solutions.

(2) Uniqueness of entropy solutions.
Now we prove the uniqueness of entropy solutions for problem (1.1) by choosing appro-

priate test functions. Suppose that v is another entropy solution of problem (1.1), we will
show that u = v a.e. in ΩT . For σ > 0, 0 < ε ≤ 1, define the function Sσ,ε in W 2,∞(R) by

Sσ,ε(r) = r if |r| ≤ σ,

Sσ,ε(r) = (σ +
ε

2
)− r

|r|
1
2ε

(
r − r

|r|
(σ + ε)

)2 if σ < |r| < σ + ε,

Sσ,ε(r) =
r

|r|
(σ +

ε

2
) if |r| ≥ σ + ε.

It is obvious that 
S′σ,ε(r) = 1 if |r| ≤ σ,

S′σ,ε(r) =
1
ε
(σ + ε− |r|) if σ < |r| < σ + ε,

S′σ,ε(r) = 0 if |r| ≥ σ + ε.

Choosing φ = Sσ,ε(un)χ(0,t) as a test function in (1.5) for entropy solution v, we have∫
Ω

Θk(v − Sσ,ε(un))(t) dx−
∫

Ω

Θk(u0 − Sσ,ε(u0n)) dx

+
∫ t

0

〈(un)t, S
′
σ,ε(un)Tk(v − Sσ,ε(un))〉 ds

+
∫ t

0

∫
Ω

DξΦ(∇v) · ∇Tk(v − Sσ,ε(un)) dxds

≤
∫ t

0

∫
Ω

fTk(v − Sσ,ε(un)) dxds. (3.19)

In order to deal with the third term of (3.19), we take S′σ,ε(un)Tk(v − Sσ,ε(un))χ(0,t) as
a test function for problem (3.2) to have∫ t

0

〈(un)t, S
′
σ,ε(un)Tk(v − Sσ,ε(un))〉 ds

+
∫ t

0

∫
Ω

S′′σ,ε(un)Tk(v − Sσ,ε(un))DξΦ(∇un) · ∇un dxds

+
∫ t

0

∫
Ω

S′σ,εDξΦ(∇un) · ∇Tk(v − Sσ,ε(un)) dxds

=
∫ t

0

∫
Ω

fnS′σ,ε(un)Tk(v − Sσ,ε(un)) dxds. (3.20)

Combining (3.19) and (3.20), we get∫
Ω

Θk(v − Sσ,ε(un))(t) dx−
∫

Ω

Θk(u0 − Sσ,ε(u0n)) dx

−
∫ t

0

∫
Ω

S′′σ,ε(un)Tk(v − Sσ,ε(un))DξΦ(∇un) · ∇un dxds
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−
∫ t

0

∫
Ω

S′σ,ε(un)DξΦ(∇un) · ∇Tk(v − Sσ,ε(un)) dxds

+
∫ t

0

∫
Ω

DξΦ(∇v) · ∇Tk(v − Sσ,ε(un)) dxds

≤
∫ t

0

∫
Ω

fTk(v − Sσ,ε(un)) dxds

−
∫ t

0

∫
Ω

fnS′σ,ε(un)Tk(v − Sσ,ε(un)) dxds.

We will pass to the limits as ε → 0, n → ∞ and σ → ∞ successively. We begin with
ε → 0. Let us denote A1 to A7 these seven terms, then we get

A1 + A2 + A4 + A5 ≤ A6 + A7 + |A3|. (3.21)

Since |Θk(v − Sσ,ε(un))(t)| ≤ k(|v| + |Tσ+1(un)|)(t), S′σ,ε(r) ≤ T ′σ+1(r) and |∇Tk(v −
Sσ,ε(un))| ≤ [|∇Tσ+k+1(v)|+ |∇Tσ+1(un)|], the four terms of the left hand side and the two
terms of the right hand side in (3.21) pass to the limit for ε → 0 by the Lebesgue dominated
convergence theorem.

Now we estimate |A3|. Let Rσ,ε be an even function such that Rσ,ε(r) = r − Sσ,ε(r) for
r ≥ 0. Then we choose R′

σ,ε(un)χ(0,t) as a test function in (3.2) to have∫
Ω

Rσ,ε(un)(t) dx−
∫

Ω

Rσ,ε(u0n) dx

+
∫ t

0

∫
Ω

R′′
σ,ε(un)DξΦ(∇un) · ∇un dxds =

∫ t

0

∫
Ω

fnR′
σ,ε(un) dxds.

Since Rσ,ε(r) ≥ 0, Rσ,ε(r) ≤ |r| on the set {|r| > σ} and |S′′σ,ε(r)| = R′′
σ,ε(r), we obtain that∫ t

0

∫
Ω

|S′′σ,ε(un)|DξΦ(∇un) · ∇un dxds =
∫ t

0

∫
Ω

R′′
σ,ε(un)DξΦ(∇un) · ∇un dxds

≤
∫
{|un|>σ}

|fn|dz +
∫
{|u0n|>σ}

|u0n|dx.

Thus

|A3| ≤ k
( ∫

{|un|>σ}
|fn|dz+ ≤

∫
{|u0n|>σ}

|u0n|dx
)
.

Recalling that Φ is a C1 nonnegative convex function and 0 is the minimum point, we
conclude that DΦ(0) = 0 and T ′σ(un)DξΦ(∇un) = DξΦ(∇Tσ(un)). Then by letting ε → 0
in (3.21), we obtain∫

Ω

Θk(v − Tσ(un))(t) dx−
∫

Ω

Θk(u0 − Tσ(u0n)) dx

+
∫ t

0

∫
Ω

(DξΦ(∇v)−DξΦ(∇Tσ(un))) · ∇Tk(v − Tσ(un)) dxds

≤
∫ t

0

∫
Ω

(f − fnT ′σ(un))Tk(v − Tσ(un)) dxds

+k
( ∫

{|un|>σ}
|fn| dxdt +

∫
{|u0n|>σ}

|u0n| dx
)
.
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Thanks to the fact that ∇Tσ(un) → ∇Tσ(u) a.e. in ΩT as n →∞, Fatou’s Lemma and the
Lebesgue dominated convergence theorem, sending n →∞ in the above inequality, we have∫

Ω

Θk(v − Tσ(u))(t) dx−
∫

Ω

Θk(u0 − Tσ(u0)) dx

+
∫ t

0

∫
Ω

(DξΦ(∇v)−DξΦ(∇Tσ(u)) · ∇Tk(v − Tσ(u)) dxds

≤
∫ t

0

∫
Ω

f(1− T ′σ(u))Tk(v − Tσ(u)) dxds

+k
( ∫

{|u|>σ}
|f | dz +

∫
{|u0|>σ}

|u0| dx
)
.

Now we let σ →∞. Since

|Θk(v − Tσ(u))(t)| ≤ k(|v(t)|+ |u(t)|), |Θk(u0 − Tσ(u0))| ≤ k|u0|,
by the Lebesgue dominated convergence theorem, we obtain∫

Ω

Θk(u0 − Tσ(u0)) dx → 0,

∫
Ω

Θk(v − Tσ(u))(t) dx →
∫

Ω

Θk(v − u)(t) dx

and ∫
{|u|>σ}

|f | dz +
∫
{|u0|>σ}

|u0| dx → 0.

Therefore, we deduce that∫
Ω

Θk(v − u)(t) dx +
∫ t

0

∫
Ω

(DξΦ(∇v)−DξΦ(∇u)) · ∇Tk(v − u) dxds ≤ 0,

which implies that∫
Ω

Θk(v − u)(t) dx +
∫
{|u|≤ k

2 ,|v|≤ k
2 }

(DξΦ(∇v)−DξΦ(∇u)) · ∇(v − u) dxds ≤ 0.

Using the nonnegativity of the two terms in the above inequality, we conclude that u = v
a.e. in ΩT . Therefore we obtain the uniqueness of entropy solutions. This completes the
proof of Theorem 1.3. �

Next, we begin to prove the comparison result.

Proof of Theorem 1.4. First, we suppose that u0, v0 ∈ L2(Ω) and f, g ∈ L2(ΩT ). Then
we use an approximation argument. By Remark 2.11, we can obtain two weak solutions u
and v under Definition 2.9 for problems (1.1) and

vt − div
(
DξΦ(∇v)

)
= g in ΩT ,

v = 0 on Σ,

v(x, 0) = v0(x) on Ω.

(3.22)

Making use of the approximation argument, we choose (u− v)+χ(0,t) as a test function and
subtract the resulting equalities to get∫ t

0

∫
Ω

(u− v)t(u− v)+ dxds +
∫ t

0

∫
Ω

(DξΦ(∇u)−DξΦ(∇v)) · ∇(u− v)+ dxds

=
∫ t

0

∫
Ω

(f − g)(u− v)+ dxds ≤ 0.
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Moreover, from (2.3) we have

1
2

∫ t

0

∫
Ω

d

dt
[(u− v)+]2 dxds =

1
2

∫
Ω

[(u− v)+]2(t) dx− 1
2

∫
Ω

[(u0 − v0)+]2 dx ≤ 0.

Recalling u0 ≤ v0, we conclude that

(u− v)+ = 0 a.e. in ΩT .

Thus we obtain u ≤ v a.e. in ΩT .
Now we consider u and v as the entropy solution of problems (1.1) and (3.22) with L1

data. Find four sequences of functions {fn}, {gn} ⊂ C∞
0 (ΩT ) and {u0n}, {v0n} ⊂ C∞

0 (Ω)
strongly converging respectively to f, g in L1(ΩT ) and to u0, v0 in L1(Ω) such that

fn ≤ gn, u0n ≤ v0n,

‖fn‖L1(ΩT ) ≤ ‖f‖L1(ΩT ), ‖gn‖L1(ΩT ) ≤ ‖g‖L1(ΩT ),

‖u0n‖L1(Ω) ≤ ‖u0‖L1(Ω), ‖v0n‖L1(Ω) ≤ ‖v0‖L1(Ω).

Thus we use Theorem 1.3 to construct two approximation sequences {un} and {vn} of
entropy solutions u and v, and apply the comparison result above to obtain un ≤ vn a.e. in
ΩT . Moreover, by the uniqueness of entropy solutions, we know un → u and vn → v a.e. in
ΩT . Therefore, we conclude that u ≤ v a.e. in ΩT . This completes the proof of Theorem
1.4. �
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