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Abstract  
In this paper a family of scoring systems for tennis doubles for 
testing the hypothesis that pair A is better than pair B versus the 
alternative hypothesis that pair B is better than A, is established. 
This family or benchmark of scoring systems can be used as a 
benchmark against which the efficiency of any doubles scoring 
system can be assessed. Thus, the formula for the efficiency of 
any doubles scoring system is derived. As in tennis singles, one 
scoring system based on the play-the-loser structure is shown to 
be more efficient than the benchmark systems. An expression 
for the relative efficiency of two doubles scoring systems is 
derived. Thus, the relative efficiency of the various scoring 
systems presently used in doubles can be assessed. The methods 
of this paper can be extended to a match between two teams of 
2, 4, 8, …doubles pairs, so that it is possible to establish a meas-
ure for the relative efficiency of the various systems used for 
tennis contests between teams of players. 
 
Key words: Efficiency of tennis scoring systems, play-the-loser, 
play-the-winner, volleyball, team tennis. 

 
 
Introduction 
 
In a very elegant paper, Miles (1984) noted the link be-
tween sports scoring systems and sequential statistical 
hypothesis testing, and the following few paragraphs 
outline the essential features of his contribution to scoring 
systems in that paper. One important characteristic of a 
scoring system is its efficiency. (Other important charac-
teristics include the mean, the variance, and the skewness 
of the number of points played, and the probability that 
the better player or better team wins when that scoring 
system is used.) If two scoring systems SS1 and SS2 have 
the same probability of correctly identifying the better 
player, SS1 is said to be more efficient than SS2 if it has a 
smaller expected number of points played. Here we iden-
tify how the efficiency (a simple numerical value) of a 
scoring system can be determined. 

 
Unipoints 
Many sports consist of playing a sequence of points each 
of which is won by either player A or player B. If there is 
only one type of point in the match, we have unipoints in 
which p (q) is the probability player A wins (loses) each 
point (p + q = 1). Player A is the better player if p > 0.5. 
Miles, 1984 considered fair scoring systems possessing 
sensible regularity conditions and only one type of point, 
which he called uniformats. 

 
For testing the hypothesis H0: Player A better than 
player B,  versus  the  alternative  hypothesis H1: Player 

B better than player A,  
 

he applied the result of Wald and Wolfowitz (1948) to 
conclude that there is a unique class of optimally efficient 
uniformats, given by the Sequential Probability Ratio 
Test, and that it is {Wn} (n = 1,2,3,…) where Wn is the 
uniformat in which the winner is the first player to 
achieve a lead of n points over his opponent. The key 
characteristics of Wn are given by 

)/( nnn
n qppP +=  

)/()( qpQPn nnn −−=µ  
and the efficiency of a general uniformat with key charac-
teristics P and µ is given by 

))/ln()(/())/ln()(( qpqpQPQP −−= µρ  
 

Bipoints 
If there are two types of points (a-points when player A 
serves, and b-points when player B serves), we have bi-
points. The probability player A wins a point on service is 
pa, and the probability player B wins a point on service is 
pb. Player A is the better player if pa > pb. For the bipoints 
situation, Miles, 1984 considered fair scoring systems 
with sensible regularity conditions, which he called bi-
formats. 

Noting that Wald (1947) had recommended the use 
of paired trials for comparing two binomial probabilities 
(H0: pa > pb Vs H1: pb > pa), Miles (1984) set up 
{Wn(point-pairs)}, where n = 1, 2, 3, …, as the standard 
biformat family of scoring systems (with unit efficiency) 
against which the efficiency of any tennis singles scoring 
system could be measured. An example of this is given by 
Pollard and Noble (2004). Here, point-pairs represent the 
playing of pairs of points consisting of an a-point and a b-
point. 

Miles (1984) showed that the efficiency of a bi-
points scoring system with mean µ and probability P that 
the better player wins, is given by 

))/ln()(/())/ln()(2(
a

qpqpppQPQP bbaba −−= µρ  
where Q = 1 – P, qa = 1 - pa and qb = 1 - pb. He also set up what 
he called the reversal biformat W1(WnALa, WnALb), where the su-
perscript represents the first type of point played, and AL repre-
sents alternating point types played (e.g. ababab…), and (WnALa, 
WnALb), operating like a point-pair, results in a win by player A, a 
draw, or a loss by player A. Pollard, 1992 showed that W1(WnALa, 
WnALb) was stochastically equivalent to the scoring system 
Wn(point-pairs). Note that in both of these scoring systems, P and 
µ do not depend on the type of the first point played. 

 
Using the play-the-loser mechanism (PL) in which 

a win by player A (B) is followed by a b- (a-) point, Miles 
(1984) showed that the family of reversal biformats 
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{W1(WnPLa,WnPLb)} (n = 2, 3, 4, …) was slightly more 
efficient than {Wn(point-pairs)} (n = 1, 2, 3, …) when pa 
+ pb > 1, which is the tennis context. Pollard (1992) 
showed that this PL family of scoring systems was not 
only more efficient than the AL or point-pairs family of 
systems, but that it (and its stochastic equivalent, for ex-
ample, one based on PL generalized point-pairs) was the 
most efficient possible. (Note that when using PL general-
ized point-pairs, a win to A (AA) is followed by a (b, b) 
point-pair, a draw (AB) is followed by an (a, b) point-
pair, and a loss to A (BB) is followed by an (a, a) point-
pair.) He showed correspondingly that the family of play-
the-winner (PW) reversal biformats 
{W1(WnPWa,WnPWb)} (n = 2, 3, 4, …) is optimally effi-
cient when pa + pb < 1 (which is the volleyball situation). 

If Pk (Qk) denotes the probability that player A 
wins (loses) in k points, then a scoring system is said to 
have the constant probability ratio property (c.p.r.) if 
Pk/Qk is constant for all k for which Qk > 0. Pollard 
(1992) showed that the above families of AL, PL and PW 
scoring systems possessed the c.p.r. property. 

 
Quadpoints 
In tennis doubles, we have four probabilities, pa1, pa2, pb1 
and pb2 where pa1 is player A1’s probability of winning a 
point on service, pa2 is player A2’s probability of winning 
a point on service, pb1 is player B1’s probability of win-
ning a point on service, and pb2 is player B2’s probability 
of winning a point on service. Thus, it is natural to call 
this situation quadpoints. Using these four probabilities, 
Pollard, 2005 showed that a first to six games rule for a 
set of tennis could be unfair in some doubles situations, as 
could the present ‘first to seven’ and ‘first to ten’ tiebreak 
games rules. Also, Pollard (1990) carried out research on 
the asymptotic efficiencies of some quadpoints Wn sys-
tems (for large n). He noted that some complex Wn sys-
tems could be decomposed into smaller independent 
components called modules, which could in turn be ana-
lyzed to produce approximate asymptotic values for P, µ 
and ρ for the whole system. In a natural extension of 
point-pairs, he set up a basic module consisting of the 4 
points {a1, b1, a2, b2}, which we call ‘point-quads’. He 
also considered a second module, called PLteams, using PL 
and generalized point-pairs in the following way. The first 
section of the PLteams module starts with an (a1, b1) point-
pair, and the PL mechanism operates in the following 
way. A point-pair win to pair A, (AA), is followed by a 
(b1, b2) point-pair whilst a point-pair win to pair B, (BB), 
is followed by an (a1, a2) point-pair. The first section of 
the module finishes as soon as a draw, (AB), occurs, and 
the second section of the module begins with a point-pair 
(a2, b2), and proceeds in the same manner as above until 
a draw occurs, thus completing the whole module. He 
showed that, provided the modulus of (pa1 - pa2) equals the 
modulus of (pb1 - pb2), PLteams (PWteams) modules used in 
conjunction with Wn systems (n large) are asymptotically 
more efficient than the {Wn(point-quads)} (n large) sys-
tem when ((pa1+pa2)/2 + (pb1+pb2)/2) is greater (less) than 
1. Note that the situation when ((pa1+pa2)/2 + (pb1+pb2)/2) 
is greater than 1 is referred to as the ‘tennis context’ since 
it corresponds to the typical advantage of serving (rather 
than receiving) in tennis. 

In this paper some quadpoints results are estab-
lished for non-asymptotic cases. 
 
Methods 
 
It was noted above that in doubles we have four service 
probabilities pa1, pa2, pb1 and pb2. In order to establish the 
efficiency of a doubles scoring system we need to set up 
an appropriate structure so that P and µ do not depend on 
the order of the four points being played. This suggests 
setting up the family of scoring systems 
{Wn(W1(W2AL(a1, b1), W2AL(a2, b2)), W1(W2AL(a1, 
b2), W2AL(a2, b1)))} (n = 1, 2, 3, …) as the standard 
scoring system against which the efficiency of any dou-
bles scoring system can be measured. Here, for example, 
AL(a1, b1) represents the playing of alternating a1 and b1 
points. Note that AL(a1, b1) is stochastically equivalent to 
(a1, b1) point-pairs when used with Wn (n even). 

An expression for the efficiency of a doubles scor-
ing system is now derived. Firstly we note that the above 
scoring system has four components, each with an AL 
structure. The component listed first, W2AL(a1, b1) has 
characteristics P1, µ1 and Q1 given by 

)/()( 1111111 abbaba qpqpqpP +=  
)/())(2( 11111 ba ppQP −−=µ  

11 1 PQ −=  
where P1 is the probability pair A wins this first component, and µ1 
is the mean duration of (or the expected number of points played 
in) this first component. 

 
It is noted that W2AL(a1, b1) has the c.p.r. prop-

erty, and that µ1 is equal to the mean number of points 
conditional on pair A winning, and is also equal to the 
mean number of points conditional on pair A losing (Pol-
lard, 1992). This fact is used in the following analysis. 

Corresponding expressions for P2, Q2 and µ2 for the 
second component can be written down. 

The first half of the above scoring system, 
W1(W2AL(a1, b1), W2AL(a2, b2)), is now analysed. This 
first half of the scoring system amounts to playing 
W2AL(a1, b1) and W2AL(a2, b2) until one pair wins both 
components. If these two components are won by differ-
ent pairs, the process is repeated until one pair wins both. 
It can be shown that W1(W2AL(a1, b1), W2AL(a2, b2)) 
has the c.p.r. property. The probability pair A wins this 
half of the above scoring system is given by 

)/()( 2121212,1 QQPPPPP +=  
 
and the expected duration of this first half is given by 

)1/()( 2,1212,1 R−+= µµµ
 

where R1,2 is the probability that the pairs each win one 
component of this half, and is given by 

)(1 21212,1 QQPPR +−=  
 
The second half of the above scoring system can be 

analyzed similarly giving corresponding results. The 
subscipts 3 and 4 are used for this second half. Combining 
the results for the two halves of the scoring system, we 
have 
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)))(/(()(1 43432121432143214,3,2,1 QQPPQQPPQQQQPPPPR +++=−  

where P1,2,3,4 is the probability player A wins under this scoring 
system (when n = 1), and µ1,2,3,4 is the expected number of points 
played. 
 

Thus, for the complete scoring system (general n), 
which also possesses the c.p.r. property, the probability 
pair A wins, Pn, and the mean number of points played, µn 
, satisfy the equations 

n
nn QPQP )/(/ 4,3,2,14,3,2,1=  

4,3,2,14,3,2,14,3,2,1 ))/()(( µµ QPQPn nnn −−=  
The efficiency of a doubles scoring system with 

mean µ and probability pair A wins equal to P, is now 
considered. The efficiency is equal to µn/µ where µn is the 
mean of the above standard scoring system with the same 
P value (i.e. P = Pn). Noting 

)/ln(/)/ln(2 21212121 aabbbbaann qqppqqppQPn =  
 
and the above expression for µn , the efficiency ρ of a 
doubles scoring system with probability P and mean µ is 
given by 
 

))/ln(
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Expressing µ1,2,3,4 and (P1,2,3,4 – Q1,2,3,4) as functions 

of pa1, pa2, pb1 and pb2, we have, after some algebra, 
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This is the general expression for the efficiency of a dou-
bles scoring system. Note that when pa1 = pa2 = pa and pb1 
= pb2 = pb, this expression is equal to the expression given 
in the introduction for the efficiency of tennis singles 
scoring systems. 

Thus, it can be seen that when comparing two dou-
bles scoring systems, we simply need to compare their 
respective values for the expression ((P – Q)*ln(P/Q))/µ, 
known as the relative efficiency, as the rest of the expres-
sion for ρ above is simply a function of the parameters for 
the players. Thus, interestingly, this result for unipoints 
and bipoints carries over to the quadpoints situation. 
 
The efficiency of {Wn(a1, a2, b1, b2)} 
The efficiency of the Wn systems using sets of the four 
points at a time, called point-quads, is considered. (Note 
that this system involves playing sets of 4 points, and then 
making a decision as to whether pair A has won or lost, or 
the match continues). This system is a natural extension 
of point-pairs to the quadpoints case, and we might expect 
it to have unit efficiency, as in the point-pairs case. As in 
the paper by Pollard, 1990, this set of four points is called 

a module. The independent modules effectively become 
the steps of a general one-dimensional walk in discrete 
time. Using the approach and notation of Cox and Miller, 
1965, the steps in the random walk, Zi , are mutually 
independent random variables on the integers …, -2, -1, 0, 
1, 2,… and the moment generating function (m.g.f.) of Zi 
is defined by 

)()exp()(* jZPjf i
j

=−= ∑
∞

−∞=

θθ  

If P(Q) represent the probability of absorption in 
states [a, infinity) ((-infinity, -b]), and E(N) is the ex-
pected number of steps to absorption, then, neglecting the 
excess over the barriers, 

)1)/(exp())exp(1(/ 00 −−−= abQP θθ  when 
E(Zi) ≠ 0 and 
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when E(Zi) ≠ 0, 
 

where θ0 is the non-zero solution of the equation f*(θ) = 1. For Wn 
we set a and b equal to n. Also, the random variable S ( = Zi) is 
used to represent the increase in pair A’s score (i.e. the better 
pair’s score) during the play of one module, and D is used to rep-
resent the number of points in the play of one module. It can be 
seen from above that the efficiency of system 1 relative to system 2 
is given by the expression 

 
)/)/ln()/(()/)/ln()((/ 222221111121 µµρρ QPQPQPQP −−=

 
Using the above expressions for the ratio P/Q and 

E(N), and representing Wn(point-quads) as system 1, and 
the above standard system as system 2, we have  

))(/)(/())(
/)()))(exp()(exp(exp(/
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where θ1 and θ2 are the non-zero solutions of their respective equa-
tions. 

 
It turns out that the efficiency of Wn(point-quads) 

(n = 1, 2, 3, …) is slightly less than unity, even when n is 
large. For example, when pa1 = 0.9, pa2 = 0.8, pb1 = 0.7, 
and pb2 = 0.6, it can be shown that E(D1) = 4, E(S1) = 0.8, 
and exp(θ1) = 1.7650, and E(D2) = 39.7541, E(S2) = 
7.8502, and exp(θ2) = 1.7908 (note that exp(4θ2) = 
(pa1pa2qb1qb2)/(pb1pb2qa1qa2)), and it follows that, when n = 
30 say, ρ1/ ρ2 = 0.9876, which is slightly less than 1. A 
few differences between systems 1 and 2 (or their mod-
ules) are noted here. A module of system 2 has the same 
expected number of a- and b- points in total, but the ex-
pected number of a1 points is not equal to the expected 
number of a2 points, and the expected number of b1 
points is not equal to the expected number of b2 points 
(For example, these are 10.3159, 9.5611, 10.8192 and 
9.0579 respectively in the above example). Also system 1 
can have excesses of 1, 2 or 3 over the boundaries, 
whereas system 2 cannot have any excesses. 

 
The efficiency of some PL and PW quadpoints systems 
In this section we consider whether the PL and PW ser-
vice exchange mechanisms can be used to find super-
efficient scoring systems for quadpoints, as has been 
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noted was possible in the case of bipoints. We firstly 
consider {Wn(W1(W2mPL(a1, b1), W2mPL(a2, b2)), 
W1(W2mPL(a1, b2), W2mPL(a2, b1)))} (n = 1, 2, 3, …; m 
= 1, 2, 3, …). Note that W2mPL(a1, b1), for example, is 
the generalized PL point-pair structure described earlier 
that makes use of the W2m stopping rule. 

For the first of the four components, W2mPL(a1, 
b1), we have, using a similar notation to above, 

)/( 12
11

12
11

12
111

−−− += m
ab

m
ba

m
ba qpqpqpP  

)/())))(1(1)((2( 1111111 baba ppppmQP −+−+−=µ  
 
Similar expressions for the other three components 

can be written down. Firstly, the case when n = 1 is con-
sidered. Using similar methods to above, expressions for 
P1,2,3,4 and µ1,2,3,4 can be determined for this PL scoring 
system, and it can be shown by substituting these expres-
sions into the formula for ρ above that the efficiency of 
this PL system is less than unity for all m = 2, 3, 4, …. 
For example, Table 1 has values for the efficiency of this 
PL system when n = 1 and m = 1, 2, 3, 4 and 5, when pa1 
= 0.9, pa2 = 0.8, pb1 = 0.7 and pb2 = 0.6. This table also 
gives values for the efficiency of the corresponding alter-
nating and play-the-winner scoring systems 
{Wn(W1(W2mAL(a1, b1), W2mAL(a2, b2)), 
W1(W2mAL(a1, b2), W2mAL(a2, b1)))} (n = 1, 2, 3, …; m 
= 1, 2, 3, …) and {Wn(W1(W2mPW(a1, b1), W2mPW(a2, 
b2)), W1(W2mPW(a1, b2), W2mPW(a2, b1)))} (n = 1, 2, 3, 
…; m = 1, 2, 3, …), for the cases when n = 1 and m = 1, 
2, 3, 4 and 5. 
 
Table 1. The efficiency of the PL, AL and PW systems when 
pa1 = 0.9, pa2 = 0.8, pb1 = 0.7 and pb2 = 0.6 

ρ 
when n = 1 

PL AL PW 

m = 1 1 1 1 
m = 2 .9477 .7622 .5701 
m = 3 .9139 .6888 .4585 
m = 4 .8989 .6526 .4055 
m = 5 .8926 .6322 .3742 

 
It was observed that the efficiency of all of these 

systems (when n = 1) is less than unity as soon as m is 
greater than unity. Noting that these scoring systems with 
general n amount to playing the corresponding system 
with n = 1 n or more times, it is clear that the efficiency of 
these systems when n is greater than 1 (and m is not 
unity) must also be less than unity. This follows since 
efficiency under nesting is essentially multiplicative 
(Miles, 1984). Thus, it follows that it is not possible to 
use these PL and PW mechanisms in the above manner to 
increase efficiency above 1. 
 
The efficiency of some other PL and PW quadpoints 
systems 
We now consider an alternative application of the PL 
mechanism, and consider the PLteams module approach 
mentioned in the introduction. For example, for this mod-
ule as defined, when pa1 = 0.9, pa2 = 0.8, pb1 = 0.7 and pb2 
= 0.6, it was shown numerically that θ was approximately 
0.8642 and E(D)/E(S) was 7.5 for each ‘half’ of the mod-
ule. (It was verified numerically that E(D)/E(S) for this 

module is in general equal to (pa1 + pa2 + pb1 + pb2)/(pa1 + 
pa2 – pb1 – pb2). The value for θ, however, needed to be 
calculated numerically.) Thus, for these parameter values, 
E(D2)/(θ2E(S2)) is equal to 8.6909 (from above), and 
E(D1)/(θ1E(S1)) is equal to 8.6785, so the ratio is 1.0014. 
When n = 30, exp(exp(-nθ2)-exp(-nθ1)) = 1.0000, so the 
efficiency of this W30(PLteams) relative to the standard 
system is equal to 1.0014 when pa1 = 0.9, pa2 = 0.8, pb1 = 
0.7 and pb2 = 0.6. Thus, in the tennis context, for quad-
points just as for bipoints, it is possible to use the PL 
mechanism to achieve efficiencies greater than 1. It is 
noted that the PLteams module as defined in the introduc-
tion should be extended so that it includes two additional 
components beginning with (a1, b2) and (a2, b1). Pollard, 
1990 noted that the values of θ0 and of E(D)/E(S) were 
unaffected by reversing the roles of b1 and b2; namely the 
case in which the first section of the module started with 
an (a1, b2) point-pair and the second section with an (a2, 
b1) point-pair. Thus, as in the bipoints case, any increases 
in efficiency above 1 are miniscule. Correspondingly, 
when the underlying p-values are less than 0.5 as in vol-
leyball, the PW mechanism can be used to achieve effi-
ciencies marginally greater than 1. 

The above module, PLteams, made use of point-
pairs. However, a corresponding module making use of 
points rather than point-pairs can be formed. This is done 
by using the PL mechanism between teams but alternating 
the points within each team. It was verified that the value 
of E(D)/E(S) was again given by (pa1 + pa2 + pb1 + 
pb2)/(pa1 + pa2 – pb1 – pb2), and that exp(θ0) was the square 
root (since points rather than point-pairs are involved) of 
its value for the PLteams module. Thus, these two modules 
are equivalent. The advantage of this formulation, how-
ever, is that it can be extended to multi-points (a1, a2, a3, 
…; b1, b2, b3, …) by ‘rotating’ or ‘cycling’ through the 
relevant points rather than alternating between the pair of 
them. This result is relevant to the situation where there 
are two teams of two doubles pairs (i.e. a1, a2, a3, a4; b1, 
b2, b3, b4), even though ‘rotating’ or ‘cycling’ would be 
impractical as it would involve (amongst other things) 
players going on and off the court continuously. Never-
theless, a relative measure of efficiency in this team situa-
tion could be evaluated. It can be seen that this paragraph 
is related to the next section. 
 
An extension of the quadpoints systems 
Suppose team A has two doubles pairs represented by 
[(a1, a2), (a3, a4)] and team B has two doubles pairs rep-
resented by [(b1, b2), (b3, b4)]. Then, denoting the above 
quadpoints standard scoring system {W1(W1(W2AL(a1, 
b1), W2AL(a2, b2)), W1(W2AL(a1, b2), W2AL(a2, b1)))} 
by SS(a1, a2; b1,b2), it follows that Wn(W1(SS(a1, a2; 
b1,b2), SS(a3, a4; b3,b4)), W1(SS(a1, a2; b3,b4), SS(a3, 
a4; b1,b2))) (n = 1, 2, 3,…) has the c.p.r. property, and is 
the corresponding standard family of scoring systems for 
two teams with two doubles pairs per team. Thus, it can 
be used as the standard family of scoring systems against 
which to assess the efficiency of team doubles with two 
pairs per team. In the same way, this process can be ex-
tended to teams of 4 doubles pairs, 8 doubles pairs, etcet-
era. 
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Results 
 
A family of doubles scoring systems has been identified 
and used to establish a framework for measuring the effi-
ciency of any tennis doubles scoring system. An expres-
sion for the efficiency of a general tennis doubles scoring 
system with one parameter for each player has been de-
rived. Further, the relative efficiency expression in this 
doubles context is in fact the same as that for tennis sin-
gles, and the same as for squash. 

A doubles scoring system based on simply playing 
groups of the four point-types at a time and using the Wn 
stopping rule has been shown to have slightly smaller 
efficiency than the framework scoring systems. 

Two scoring systems using the PL rule have been 
considered. In the tennis context, one has efficiency less 
than the framework family of scoring systems, and the 
other has efficiency greater than that family. 

It has been demonstrated how the methods of this 
paper can be further developed to find the efficiency of 
scoring systems used in a contest between two teams of 2, 
4, 8, …doubles pairs. 
 
Conclusion 
 
In tennis doubles pair A has probabilities pa1 and pa2 of 
winning a point on service when players A1 and A2 serve 
respectively, and correspondingly pair B has probabilities 
pb1 and pb2. In this paper a family of standard scoring 
systems for testing the hypothesis that pair A is better 
than B versus the alternative hypothesis that pair B is 
better than A, for this four parameter situation, has been 
established. Characteristics of this family of scoring sys-
tems such as the probability that each pair wins and the 
expected number of points played do not depend on the 
order of the four types of points played. A formula for the 
efficiency of any doubles scoring system relative to this 
family of scoring systems has been determined. Thus, this 
scoring system can be used as a benchmark against which 
the efficiency of any doubles scoring system can be 
evaluated. This is particularly useful as there is a range of 
scoring systems presently used for doubles. The standard 
family of scoring systems that has been set up is very 
efficient. It has been shown that, as in singles tennis with 
two parameters rather than four, there is a family of ever-
so-slightly more efficient systems that make use of the 
play-the-loser service exchange mechanism. As in singles, 
this super-efficient family of play-the-loser scoring sys-
tems is of theoretical rather than sporting relevance. 
An expression for the relative efficiency of two doubles 
scoring systems has been identified, and it has been 
shown to be identical to that for tennis singles and other 
sports such as squash which typically need just one pa-
rameter when modelling. 

The methods of this paper can be applied to a 
match between two teams of 2, 4, 8, etc. doubles pairs. 
That is, it is possible to establish a yardstick, and to 
measure the efficiency of such team contests. 
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Key points 
 
• A relatively straightforward expression or formula 

for the efficiency of a tennis doubles scoring system 
has been established.  

• The expression for the relative efficiency of two 
tennis doubles scoring systems is a simple one, and 
is the same as that for two singles scoring systems. 

• The methodology of this paper can be used and ex-
tended so that the efficiency of a scoring system for 
a match between two teams of doubles pairs can be 
measured. 
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