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Abstract. In this paper, we analyze the convergence of the adaptive conforming P1

element method with the red-green refinement. Since the mesh after refining is not nested
into the one before, the Galerkin-orthogonality does not hold for this case. To overcome
such a difficulty, we prove some quasi-orthogonality instead under some mild condition
on the initial mesh (Condition A). Consequently, we show convergence of the adaptive
method by establishing the reduction of some total error. To weaken the condition on
the initial mesh, we propose a modified red-green refinement and prove the convergence
of the associated adaptive method under a much weaker condition on the initial mesh
(Condition B).

1. Introduction

The adaptive finite element method (hereafter AFEM) is an efficient and reliable tool in
the numerical solution of partial differential equations. The typical structure of the adap-
tive algorithm is made up of four modules: “Solve”, “Estimate”, “Mark”, and “Refine”.
For triangular meshes there essentially exist three different local refinement strategies:
the longest edge bisection, the newest vertex bisection, and the red-green refinement [26].
The first two refinements are nested refinements while the last is not. Among these re-
finements, only the complexity of the newest vertex bisection is clear so far [23]. The
red-green refinement is in fact, a modification of the usual regular refinement, which is for
the purpose of fulfilling local refinement. This refinement was first proposed by Bank[3, 4]
and successfully extended to tetrahedron in [18, 20, 11, 15]. Even though adaptivity has
been a fundamental tool of engineering and scientific computing for about three decades,
the convergence analysis is only recent. It started with Döfler [14], who introduced a cru-
cial marking, from now on called Döfler’s marking, and proved the strict energy reduction
for the Laplacian provided the initial mesh T0 satisfies a fineness assumption. By intro-
ducing the concept of data oscillation and the interior node property, Morin, Nochetto
and Siebert [21, 22] removed restriction on the initial mesh T0 and proved the conver-
gence of the AFEM. Very recently, Cascon, Kreuzer, Nochetto and Siebert established the
convergence of the AFEM without the interior node property for the self-adjoint second
order elliptic problem [10]. All of these results are based on an important tool: “Galerkin-
orthogonality”. There are some works on nonstandard finite element methods in the
literature. Carstensen and Hoppe proved the convergence of adaptive nonconforming and
mixed finite element methods [9, 8]. One key ingredient of those papers is the so-called
“quasi-orthogonality”. This technique is extended to the high order mixed finite element
methods for the Poisson equation in [12] and the nonconforming P1 finite element method
for the Stokes-like problem in [17]. In a very recent paper [16], the second two authors with
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their corporator gave unifying convergence analysis of the adaptive Morley-type element
methods by adopting the conservative properties of these class of schemes. So far, both
Galerkin-orthogonality and quasi-orthogonality can be derived only for the first two re-
finement strategies where the resulted meshes are nested. There is no work concerning the
convergence of the AFEM with the red-green refinement. Since it has been widely used
in practical computing, for example, semi-conductor device simulation [26, 18], it is of
importance to analyze the convergence of the adaptive algorithm with such a refinement.

The objective of this paper is to study the convergence of the adaptive conforming P1

element method based on the red-green refinement. Since the mesh after refining is not
nested into the one before for such a refinement strategy, the Galerkin-orthogonality does
not hold for this case. To overcome this difficulty, we prove some quasi-orthogonality which
is first proposed for the nonconforming P1 element method [9, 17, 16]. As indicated in [16],
the quasi-orthogonality of the Morley-type element methods [9, 16] is the consequence of
the conservative properties. Unlike those nonconforming methods, the difficulty herein
is not from the nonconformity of the discrete space but from the lack of the nesting
of the discrete finite element space. Moreover, no local conservative property can be
applied herein. Therefore, one can not expect to derive the quasi-orthogonality as those
in [9, 17, 16]. Herein we shall establish a different quasi-orthogonality under some mild
assumption on the initial mesh (see Condition A below) and then prove the convergence of
the adaptive conforming P1 element method. In addition, we propose a modified red-green
refinement and prove the associated adaptive conforming P1 element method under a much
weaker condition on the initial mesh(see Condition B below). Note that the Condition B
is satisfied by most practical meshes.

The rest of this paper is organized as follows. In the next section, we present the
preliminary including the notation, the problem under consideration, and the a posteriori
error estimate which is followed by the description of the red-green refinement algorithm.
In Section 4, we prove the reduction of the estimator while the quasi-orthogonality appears
in Section 5. In Section 6, we prove the main result of this paper, namely the convergence
of the adaptive algorithm with the red-green refinement strategy. In Section 7 we give a
modified red-green refinement strategy and prove the convergence of the adaptive methods
based on it. This paper ends with the conclusion in Section 8.

2. Preliminaries

This section presents the necessary notation and the a posteriori error estimate. We
assume Ω ∈ R2 to be a bounded, polygonal, open domain with boundary Γ := ∂Ω. For
a measurable set G ⊂ Ω, let (·, ·)G and ‖ · ‖0,G denote the inner product and the norm
in L2(G). We also use (·, ·) to denote (·, ·)Ω for simplicity. Furthermore, let | · |m,G and
‖ · ‖m,G denote the seminorm and norm in the Sobolev space Hm(G), respectively. In
particular, let | · |1,Ω stand for the associated seminorm on H1(Ω) which actually is a norm
on V := H1

0 (Ω) := {v ∈ H1(Ω), v|Γ = 0}. Given any nonnegative integer k, let Tk be a
triangular partition of the domain Ω in the sense of [6]. With no risk of confusion, we
assume that Tk+1 is a refinement of the coarser mesh Tk. Let Ek be the set of all internal
edges of the mesh Tk. Given any interior edge E, we denote by ωE := T1 ∪ T2 with
T1∩T2 = E. For a triangle T with three edges E1, E2, and E3, let ωT := ωE1 ∪ωE2 ∪ωE3 .
Let Vk ⊂ V be the usual conforming P1 finite element space over the triangulation Tk.

We consider the following second order elliptic equation

(2.1)
{−div(A∇u) = f in Ω,

u = 0 on ∂Ω.
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where f ∈ L2(Ω) and A is positive and piecewise constant. We assume that A is constant
on each triangle of the initial mesh T0.

The weak formulation of the problem (2.1) reads: Find u ∈ V such that

(2.2) a(u, v) = (f, v), ∀ v ∈ V,

where the bilinear forms a(u, v) =
∫
Ω A∇u · ∇v dx and (f, v) =

∫
Ω fv dx. Given S ⊂ Ω,

we denote by 9u9S the energy norm ‖A 1
2∇u‖0,S . Obviously, for any u ∈ V , |u|1,Ω and

9u9 are two equivalent norms, i.e.,

(2.3) ca 9 u9 ≤ |u|1,Ω ≤ Ca 9 u 9 .

The discrete weak formulation of the problem (2.1) reads: Find uk ∈ Vk such that

(2.4) a(uk, vk) = (f, vk), ∀ vk ∈ Vk.

We end this section by presenting the a posteriori error estimate from, for instance,
[1, 26]. Denote WTk

:= {w ∈ H1(Ω) | w is a piecewise linear function on T, ∀T ∈ Tk}.
Obviously, Vk ⊂ WTk

. Given any interior edge E, we define the edge jump function 1©

J(v)|E := ([A∇v] · −→nE)|E := (A∇v|T1
) · −→nE − (A∇v|T2

) · −→nE , ∀v ∈ H1
0 (Ω) ∩WTk

.

with the unit outer normal −→nE of E ⊂ ∂T1. Given T ∈ Tk, we define the local estimator
as

η2
k(v, T ) := h2

T ‖ f ‖2
0,T + hT ‖ J(v) ‖2

0,∂T∩Ω, ∀v ∈ H1
0 (Ω) ∩WTk

,

where hT := |T | 12 . For any subset T ′k ⊂ Tk, we define η2
k(v, T ′k) :=

∑
T∈T ′k

η2
k(v, T ). For

the case where T ′k = Tk and v = uk, we use ηk to denote ηk(uk, Tk) for short. For this
estimator, one has the following reliability and efficiency.

Lemma 2.1 (reliability and efficiency). Let u ∈ V and uk ∈ Vk be the solutions of problems
(2.2) and (2.4), respectively. It holds

9u− uk92 ≤ C1η
2
k,(2.5)

C2η
2
k ≤ 9u− uk 92 +osc2(f, Tk),(2.6)

where the oscillation osc(f, Tk) =
( ∑

T∈Tk

‖hT (f −fT )‖2
0,T

) 1
2

and the average fT =
R

T f dx

|T | .

The analysis in the sequel is based on the following assumption on the initial mesh T0:
Condition A: Given T ∈ T0, let a1, a2 and a3 be its three edges with the corresponding
heights h1, h2 and h3, respectively. Assume that

|hi| > 1/2|ai| or |T | > 1/4|ai|2, i = 1, 2, 3 ,

where | · | denotes the length or the area.
Let ρ(T ) = max{ a1

2h1
, a2

2h2
, a3

2h3
}. Condition A implies 0 < ρ(T ) < 1.

Remark 2.2. One sufficient condition for Condition A is as follows: Each angle of T is
larger than π

4 or T is an isosceles triangle with the vertex angle π
6 < θ < π

2 .

If all the elements of initial mesh T0 satisfy Condition A, we say T0 satisfies Condition
A.
1©Since two level meshes are not nested. Some quantities like ∇v|T or ∇v|E in the proof of lemma 4.1,
lemma 4.2 and lemma 5.1 may be piecewise constant on some triangle T or edge E. Hence we define the
edge jump in a larger space WTk not merely on Vk. However there is no confusion since the edge jump is
well-defined.
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3. Red-green Refinement

This section describes the red-green refinement. In the adaptive loop, the fourth step
is to refine the current mesh based on some marked elements. This procedure involves
splitting a triangle into smaller ones which may cause hangings nodes. To removing the
possible hanging nodes, one way is to use the so called the red-green refinement. This
refinement method is used in the code “ConchaBase”(R. Beck) and “PLTMG”(R. E.
Bank) 2©
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Figure 1. (left)Red-refinement of element domain T = T1 ∪ T2 ∪ T3 ∪ T4

into 4 congruent subdomains T1, . . . , T4; (right)Green-refinement of element
domain T = T1 ∪ T2 into two children T1 and T2 by connecting the vertex
and the midpoint of its corresponding opposite edge.

To give a brief description of the refinement method, we paint all elements in the initial
mesh T0 by the red color.

Algorithm 1 (Red-Green Refinement). Input: Triangulation Tk with the set of marked
elements Mk.

(1) Divide the set Mk into two subsets Mred
k := {T ∈ Mk, its color is red} and

Mgreen
k := {T ∈Mk, its color is green};

(2) Refine all elements in the red set Mred
k by the red-refinement strategy illustrated

on the left hand side of Figure 1 and paint their four children by the red color;
(3) Coarsen the elements in the green set Mgreen

k by removing their fathers’ mid-lines,
for instance P1P2, on the right hand side of Figure 1, and refine their fathers by
the red-refinement and repaint their sons by the red color;

(4) Remove the possible hanging nodes by the following strategies until no hanging
nodes in the current mesh:
(a) Refine the red elements with at least two hanging nodes by the red-refinement

and paint their sons by the red color;
(b) Coarsen the green elements with at least one hanging node by removing their

fathers’ mid-lines, and refine their fathers by the red-refinement and repaint
their sons by the red color;

(c) Refine the red elements with only one hanging node by the green-refinement
illustrated on the right hand side of Figure 1 and repaint their children by the
green color.

Output: The refined conforming triangulation Tk+1 = REFINE(Tk,Mk).

A pleasant feature of the resulted meshes with this red-green refinement is that all red
triangles are geometrically similar to their ancestors in the initial mesh T0 and thereby the
element quality of these triangles is the same as the quality of their ancestors. Moreover,

2©The “PLTMG” package after the version 8.0 has changed data structures to use the longest-edge bisection
while the previous versions is based on the red-green refinement.
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with a hierarchical memory representation, the refining and coarsening can be handled
easily. We refer the interested readers to [11, 15, 18, 20, 25] for further details of the
red-green refinement.

Let Tk+1 be a mesh refined from Tk by a local refinement, we denote by Rk := Tk\Tk+1

the set of elements which are refined in the refinement from Tk to Tk+1. Note that Mk ⊂
Rk.

4. Estimator reduction

This section shows one of main ingredients, namely the reduction of the estimator.

Lemma 4.1. Let Vk and Vk+1 be the discrete spaces over the triangulations Tk and Tk+1

respectively. There exists a constant C3 > 0 depending on the minimum angle of T0 and
the data A such that

ηk+1(v, T ) ≤ ηk+1(w, T ) + C3|v − w|1,ωT for all T ∈ Tk+1, w ∈ Vk, v ∈ Vk+1.(4.1)

Proof : Since ∇w is constant on E for any E ∈ Ek+1 (possibly piecewise, see A4A5 of
Figure 3 for example in Section 5), J(w)|E is well-defined. We use the triangle inequality
to get

ηk+1(v, T ) = (h2
T ‖f‖2

0,T + hT ‖J(v)‖2
0,∂T∩Ω)

1
2

≤ (h2
T ‖f‖2

0,T + hT (‖J(w)‖0,∂T∩Ω + ‖J(v − w)‖0,∂T∩Ω)2)
1
2

≤ (h2
T ‖f‖2

0,T + hT ‖J(w)‖2
0,∂T∩Ω)

1
2 + h

1/2
T ‖J(v − w)‖0,∂T∩Ω

= ηk+1(w, T ) + h
1/2
T ‖J(v − w)‖0,∂T∩Ω.

(4.2)

Let E = T ∩T ′ and −→nE and −→nE
′ be the unit outer normals of ∂T and ∂T ′ restricted on E.

Note that the quantities A∇(v −w)|T and A∇(v −w)|T ′ may also be piecewise constant
on T and T ′; c.f. the edge A4A5 of Figure 3 in Section 5. Then using the scaling argument,
the (possibly piecewise) trace and inverse inequalities, one can get

‖A∇(v − w)|T ‖0,E ≤ Ch
−1/2
T ‖∇(v − w)‖0,T .(4.3)

and

‖A∇(v − w)|T ′‖0,E ≤ Ch
−1/2
T ′ ‖∇(v − w)‖0,T ′ .(4.4)

Hence

‖J(v − w)‖0,E = ‖A∇(v − w)|T · −→nE + A∇(v − w)|T ′ · −→nE
′‖0,E

≤ Ch
−1/2
T |v − w|1,ωE .(4.5)

Inserting (4.5) into (4.2) ends the proof. ¤
Lemma 4.2 (estimator reduction). Let Tk+1 be some refinement of Tk in the sense of
Algorithm 1. There exist constants 0 < λ < 1 and C4 > 0 depending on the minimum
angle of T0 and the data A with

η2
k+1(vk+1, Tk+1) ≤ (1 + δ)η2

k(vk, Tk)− λ(1 + δ)η2
k(vk,Mk) + C4(1 + 1/δ) 9 vk+1 − vk92 ,

for any vk ∈ Vk and vk+1 ∈ Vk+1 with the parameter δ > 0 to be determined below.

Proof. Applying Lemma 4.1 with vk ∈ Vk, vk+1 ∈ Vk+1 over T ∈ Tk+1, and using Young’s
inequality with the parameter δ, we derive

η2
k+1(vk+1, T ) ≤ (1 + δ)η2

k+1(vk, T ) + C3(1 + 1/δ)|vk+1 − vk|21,ωT
.
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Due to the finite overlapping of ωT and the equivalence of the H1 norm and the energy
norm in Ω, the summation over all elements T ∈ Tk+1 leads to

η2
k+1(vk+1, Tk+1) ≤ (1 + δ)η2

k+1(vk, Tk+1) + C(1 + 1/δ)9vk+1 − vk92 .

In what follows we plan to bound the first term on the right hand side of the above
inequality by the estimator on the mesh Tk. To this end, we need to take care of three
cases.
Case 1. T ∈ Mk ⊂ Tk and T is a green element. From Algorithm 1, we know green
elements appear in pairs. Hence there exits another green element T ′ which adjoins to T
with E = T ∩ T ′. We define M̃green

k := {T ′| T ∈ Mgreen
k } and M̃k := Mk ∪ M̃green

k . Let
K = T ∪ T ′ and Tk+1,K := {T̃ ∈ Tk+1 | T̃ ⊂ K} (see Figure 2). It follows the definition of
the element-size that

hT̃ = |T̃ |1/2 ≤ (1/4|K|)1/2 and hT = hT ′ = |T |1/2 = (1/2|K|)1/2 .

This yields

hT̃ ≤ 2−1/2hT = 2−1/2hT ′ .(4.6)

Figure 2. K = T ∪ T ′ and Tk+1,K .

Define Ek+1,K := {e ∈ Ek+1| e ⊂ ∂T̃\∂K, ∀T̃ ∈ Tk+1,K}. Given e ∈ Ek+1,K , although
∇vk may be piecewise constant on e, one has J(vk)|e = 0. This and (4.6) lead to

η2
k+1(vk,K) =

∑

T̃∈Tk+1,K

η2
k+1(vk, T̃ ) ≤ 2−1h2

T ‖f‖2
0,K + 2−1/2

∑

e∈Ek+1∩∂K

hT ‖J(vk)|e‖2
0,e

≤ 2−1/2η2
k(vk, T ) + 2−1/2η2

k(vk, T
′) = 2−1/2η2

k(vk,K).

Case 2. T ∈ Mk ⊂ Tk and T is a red element. For this case, a similar argument of the
Case 1 shows

η2
k+1(vk, T ) ≤ 2−1/2η2

k(vk, T ).

Case 3. T ∈ Tk+1\M̃k with M̃k defined in Case 1. If T is not refined, we have
ηk+1(vk, T ) = ηk(vk, T ); if T is refined we can use the same arguments of Cases 1 and
2 to prove ηk+1(vk, T ) ≤ ηk(vk, T ). Therefore, for both cases, we have

ηk+1(vk, T ) ≤ ηk(vk, T ).

Taking aforementioned three cases into account and summing over all T ∈ Tk+1 leads to

η2
k+1(vk, Tk+1) = η2

k+1(vk, Tk+1\M̃k) + η2
k+1(vk,M̃k)

≤ η2
k(vk, Tk\M̃k) + 2−1/2η2

k(vk,M̃k)

≤ η2
k(vk, Tk)− (1− 2−1/2)η2

k(vk,M̃k)

≤ η2
k(vk, Tk)− (1− 2−1/2)η2

k(vk,Mk) .
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The choice λ = 1− 2−1/2 ∈ (0, 1) ends the proof. ¤

5. Quasi-orthogonality

This section presents the quasi-orthogonality. Let Ω|Rk
=

⋃
T∈Rk

T and Pk+1 := {T ∈
Tk+1| T ⊂ Ω|Rk

}.

Lemma 5.1. (quasi-orthogonality) Assume T0 satisfies Condition A. Let Tk+1 be some
refinement of Tk with Algorithm 1. There exist constants 0 < ρ0 < 1 and C5 > 0 depending
on the minimum angle of T0 and the data A such that

|a(u− uk+1, uk+1 − uk)| ≤ (γ +
ρ0

2
) 9 uk+1 − uk 92 +

C5

γ

∑

T∈Rk

h2
T ‖f‖2

0,T .(5.1)

where the parameter γ > 0 is to be determined later.

Proof. Let Ik+1 be the Lagrange interpolator associated to Tk+1, then one can use Green’
formula to get

a(u− uk+1, uk+1 − uk) = a
(
u− uk+1, (I − Ik+1)(uk+1 − uk)

)

=
(
f, (I − Ik+1)(uk+1 − uk)

)− a
(
uk+1, (I − Ik+1)(uk+1 − uk)

)

=
∑

T∈Pk+1

(
f, (I − Ik+1)(uk+1 − uk)

)
T

−
∑

T∈Pk+1

∑

e⊂∂T

∫

e
[A∇uk+1] · −→ne((I − Ik+1)(uk+1 − uk))ds.

(5.2)

Since (I − Ik+1)(uk+1 − uk)(p) = 0 for any node p of Tk+1, one can use the elementwise
Cauchy-Schwarz inequality with respect to Tk+1 and the scaling argument to obtain

∑

T∈Pk+1

(
f, (I − Ik+1)(uk+1 − uk)

)
T

≤
∑

T∈Pk+1

‖f‖0,T ‖(I − Ik+1)(uk+1 − uk)‖0,T

≤ C8

∑

T∈Pk+1

hT ‖f‖0,T |uk+1 − uk|1,T .

For a pair of green elements T and T ′, we set K = T ∪ T ′ (see Figure 3). We denote by
Gk the set of the central lines of their fathers, for instance, the line A4A5 depicted in the
Figure 3. Hence we can derive as

a(u− uk+1, uk+1 − uk) ≤ C8

∑

T∈Pk+1

hT ‖f‖0,T |uk+1 − uk|1,T

−
∑

E∈Gk

([A∇uk+1] · −→nE)
∫

E
(I − Ik+1)(uk+1 − uk)ds.

(5.3)
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Figure 3. (left)A pair of green elements T and T ′; (right) Four red ele-
ments refined from their father.

Using Young’s inequality with parameter ε > 0 and the equivalence of the H1 norm and
energy norm in Ω, we can obtain

∑

T∈Pk+1

hT ‖f‖0,T |uk+1 − uk|1,T ≤ ε|uk+1 − uk|21,Ω|Rk
+

1
4ε

∑

T∈Pk+1

h2
T ‖f‖2

0,T

≤ ε|uk+1 − uk|21,Ω +
1
4ε

∑

T∈Rk

h2
T ‖f‖2

0,T

≤ C2
aε 9 uk+1 − uk 92 +

1
4ε

∑

T∈Rk

h2
T ‖f‖2

0,T .

It remains to bound the second term on the right-hand side of (5.3). If E ∈ Ek+1\Ek

lies in the interior of some T ∈ Tk (see A4A6 in Figure 3) one has (I − Ik+1)uk|E = 0; if
E ∈ Ek+1\Ek is a child of some edge in Ek (see A1A4 in Figure 3), (I − Ik+1)uk|E = 0; if
E ∈ Ek+1 ∩Ek, (I − Ik+1)uk|E = 0. Therefore, we only need to consider edge E ∈ Ek+1\Ek

which is not contained in any T ∈ Tk, for instance, E = A4A5 in Figure 3. Because of
(I − Ik+1)uk+1 ≡ 0, we get

∫

E
(I − Ik+1)(uk+1 − uk)ds = −

∫

E
(I − Ik+1)ukds.

Since ((I − Ik+1)uk)(A4) = 0, ((I − Ik+1)uk)(A5) = 0 and (I − Ik+1)uk is a piecewise
linear function on E, one can use the trapezoidal quadrature rule on A4A7 and A7A5,
respectively, to get

∫

E
(I − Ik+1)(uk+1 − uk)ds

= −
(

0 + ((I − Ik+1)uk)(A7)
2

hE

2
+

((I − Ik+1)uk)(A7) + 0
2

hE

2

)

= −hE

2
(
uk(A7)− (Ik+1uk)(A7)

)
,
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with the length hE of E. Since uk is linear on A1A6 and A7 is the midpoint of A1A6, we
have ∫

E
(I − Ik+1)(uk+1 − uk)ds = −hE

4

(
uk(A1) + uk(A6)− uk(A4)− uk(A5)

)
.(5.4)

The continuity of ∇uk+1 · −→tE over E, i.e., ∇uk+1|K1∪K2 ·
−→
tE = ∇uk+1|K3∪K4 ·

−→
tE , yields

(
uk(A1) + uk(A6)− uk(A4)− uk(A5)

)

=
1
2
(
uk(A1)− uk(A4) + uk(A6)− uk(A4) + uk(A1)− uk(A5) + uk(A6)− uk(A5)

)

=
1
2
(∇uk|T · −−−→A4A1 +∇uk|T · −−−→A4A6 +∇uk|T ′ ·

−−−→
A5A1 +∇uk|T ′ ·

−−−→
A5A6

)

=
1
2
(∇uk|T · −−−→A4A5 +∇uk|T ′ ·

−−−→
A5A4

)
=

hE

2
(∇uk|T · −→tE −∇uk|T ′ · −→tE

)

= −hE

2
(∇(uk+1 − uk)|K1∪K4 ·

−→
tE −∇(uk+1 − uk)|K2∪K3 ·

−→
tE

)
.

Using the fact that ∇uk+1|K1 ·
−→
tE = ∇uk+1|K4 ·

−→
tE and that ∇uk+1|K2 ·

−→
tE = ∇uk+1|K3 ·

−→
tE ,

and inserting the above identity into (5.4) leads to

([A∇uk+1] · −→nE)
∫

E
(I − Ik+1)(uk+1 − uk)ds

=
h2

E

8
(
A∇uk+1|K1∪K2 · −→nE −A∇uk+1|K3∪K4 · −→nE

)

× (∇(uk+1 − uk)|K1∪K4 ·
−→
tE −∇(uk+1 − uk)|K2∪K3 ·

−→
tE

)

=
h2

E

8

((
A∇uk+1|K1 · −→nE

)(∇(uk+1 − uk)|K1 ·
−→
tE

)

− (
A∇uk+1|K2 · −→nE

)(∇(uk+1 − uk)|K2 ·
−→
tE

)

+
(
A∇uk+1|K3 · −→nE

)(∇(uk+1 − uk)|K3 ·
−→
tE

)

− (
A∇uk+1|K4 · −→nE

)(∇(uk+1 − uk)|K4 ·
−→
tE

))
.

(5.5)

Using ∇uk+1|K1 ·
−→
tE = ∇uk+1|K4 ·

−→
tE and ∇uk+1|K2 ·

−→
tE = ∇uk+1|K3 ·

−→
tE again gives

(
A∇uk|K1 · −→nE

)(∇(uk+1 − uk)|K1 ·
−→
tE

)− (
A∇uk|K2 · −→nE

)(∇(uk+1 − uk)|K2 ·
−→
tE

)

+
(
A∇uk|K3 · −→nE

)(∇(uk+1 − uk)|K3 ·
−→
tE

)− (
A∇uk|K4 · −→nE

)(∇(uk+1 − uk)|K4 ·
−→
tE

)
= 0.

(5.6)

Combining (5.5) and (5.6) leads to

([A∇uk+1] · −→nE)
∫

E
(I − Ik+1)(uk+1 − uk)ds

=
h2

E

8

((
A∇(uk+1 − uk)|K1 · −→nE

)(∇(uk+1 − uk)|K1 ·
−→
tE

)

−(
A∇(uk+1 − uk)|K2 · −→nE

)(∇(uk+1 − uk)|K2 ·
−→
tE

)

+
(
A∇(uk+1 − uk)|K3 · −→nE

)(∇(uk+1 − uk)|K3 ·
−→
tE

)

−(
A∇(uk+1 − uk)|K4 · −→nE

)(∇(uk+1 − uk)|K4 ·
−→
tE

))
.
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Let θ1 denote the angle between the gradient ∇(uk+1 − uk)|K1 and the normal vector −→nE

which implies that the angle between the gradient ∇(uk+1−uk)|K1 and the tangent vector−→
tE is either π/2− θ1 or π/2 + θ1. Whence we derive

(A∇(uk+1 − uk)|K1 · −→nE)(∇(uk+1 − uk)|K1 ·
−→
tE)

=
(
A

∣∣∇(uk+1 − uk)|K1

∣∣ cos θ1

)(±
∣∣∇(uk+1 − uk)|K1

∣∣ sin θ1

)

= ±1
2

∣∣A 1
2∇(uk+1 − uk)

∣∣2 sin 2θ1

= ±sin 2θ1

2|K1| 9 uk+1 − uk 92
K1

.

This implies

|(A∇(uk+1 − uk)|K1 · −→nE)(∇(uk+1 − uk)|K1 ·
−→
tE)| ≤ 4

|K| 9 uk+1 − uk 92
K1

.

A similar argument leads to

|(A∇(uk+1 − uk)|Ki · −→nE)(∇(uk+1 − uk)|Ki ·
−→
tE)| ≤ 4

|K| 9 uk+1 − uk92
Ki

, i = 2, 3, 4.

Let S = K1 ∪K2 ∪K3 ∪K4 and l = |A2A3| and hl be the height on edge A2A3 in K, then
S ⊂ K and hE = l/2. Setting ρ0 = sup

T∈T0

ρ(T ). The condition on T0 implies 0 < ρ0 < 1.

Therefore

|
∫

E
([A∇uk+1] · −→nE)(I − Ik+1)(uk+1 − uk)ds|

≤ l2

8|K| 9 uk+1 − uk92
S =

l

4hl
9 uk+1 − uk92

S ≤
1
2
ρ0 9 uk+1 − uk 92

S .

Taking γ = C8C
2
aε and C5 = C2

8C2
a

4 , the summation over E ∈ Gk ends the proof. ¤

6. Convergence

This section proves the convergence of the adaptive conforming P1 method with the
red-green refinement strategy.
AFEM Algorithm: Given the initial grid T0 and parameters 0 < θ, θ̃ < 1 and ε.
[TN , uN ]= AFEM(T0, f, ε, θ, θ̃). set k := 0, η = ε.
While η ≥ ε,

(1) Solve (2.4) on Tk to get the solution uk;
(2) Compute the error estimator η = ηTk

(uk, Tk);
(3) Mark the minimal element set Mk such that

(6.1) ηk(uk,Mk) ≥ θηk(uk, Tk);

(4) If it is necessary, enlarge Mk (still denoted by Mk) such that

(6.2)
∑

T∈Mk

h2
T ‖f‖2

0,T ≥ θ̃
∑

T∈Tk

h2
T ‖f‖2

0,T ;

(5) Refine the elements in Mk by Algorithm 1 to get Tk+1;
(6) Set k = k + 1.
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End While
TN = Tk, uN = uk.

End AFEM
Set ek+1 = 9u − uk+19, ek = 9u − uk9 and ek,k+1 = 9uk − uk+19. The following

theorem highlights on the relation of errors between two level meshes.

Lemma 6.1 (Error contraction). Assume T0 satisfies Condition A. Let Tk+1 = REFINE(Tk,Mk)
with (6.1). Then there exist constants 0 < α < 1, β > 0, and C6 > 0 such that

e2
k+1 + βη2

k+1 ≤ α(e2
k + βη2

k) + C6

∑

T∈Rk

h2
T ‖f‖2

0,T .(6.3)

Proof. It follows from the quasi-orthogonality of Lemma 5.1 and the estimator reduction
of Lemma 4.2 that

e2
k+1 + βη2

k+1 = e2
k − e2

k,k+1 − 2a(u− uk+1, uk+1 − uk) + βη2
k+1

≤ e2
k − e2

k,k+1 + 2γe2
k,k+1 +

2C5

γ

∑

T∈Rk

h2
T ‖f‖2

0,T + ρ0e
2
k,k+1

+β

(
(1 + δ)η2

k − λ(1 + δ)η2
k(uk,Mk) + C4(1 + 1/δ)e2

k,k+1

)
.

The bulk criterion (6.1) and the reliability of the estimator give

−βλ(1 + δ)η2
k(uk,Mk) ≤ −θβλ(1 + δ)η2

k

= −θβλ(1 + δ)(1− s + s)η2
k

≤ −θβλ(1 + δ)s
C1

e2
k − θβλ(1 + δ)(1− s)η2

k,

with the constant 0 < s < 1 to be determined later. Inserting this estimate into the
previous one leads to

e2
k+1 + βη2

k+1 ≤
(

1− θβλ(1 + δ)s
C1

)
e2
k + β

(
(1 + δ)(1− θλ(1− s))

)
η2

k

−
(

1− ρ0 − 2γ − βC4(1 + 1/δ)
)

e2
k,k+1 +

2C5

γ

∑

T∈Rk

h2
T ‖f‖2

0,T .

It remains to choose these parameters. First we select 0 < δ < 1 such that α = max((1 +
δ)(1− λθ(1− s)), 1− θβλ(1+δ)s

C1
) < 1. Then the choice β = (1− ρ0 − 2γ)/C4(1 + 1/δ) with

2γ < 1− ρ0 ends the proof. ¤

Lemma 6.2. Let Tk+1 be some refinement of Tk with (6.2). There exists 0 < µ < 1 with
∑

T∈Tk+1

h2
T ‖f‖2

0,T ≤ µ
∑

T∈Tk

h2
T ‖f‖2

0,T .(6.4)

Proof. The result follows from the bulk criterion (6.2) and the definition of the element-
size. ¤

Theorem 6.3 (Convergence). Assume T0 satisfies Condition A. Let (Tk, uk) be the se-
quence of meshes and solutions produced by the AFEM Algorithm. Then there exist con-
stants 0 < ξ < 1, β > 0, and C7 > 0 such that

e2
k + βη2

k ≤ C7ξ
k.(6.5)
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Proof. Set Ek = e2
k + βη2

k and Hk(f) =
∑

T∈Tk

h2
T ‖f‖2

0,T , k = 1, 2, · · · , N .

Combining Lemma 6.1 and Lemma 6.2 yields

Ek ≤ αEk−1 + C6Hk−1(f)
≤ α(αEk−2 + C6Hk−2(f)) + C6µHk−2(f)

≤ αkE0 + C6H0(f)
k−1∑

i=0

αiµk−1−i.

Taking max(α, µ) < ξ < 1, we have
k−1∑

i=0

αiµk−1−i ≤ ξk

ξ −min(α, µ)
.

Setting C7 = |u− u0|21,Ω + βη2
0 +

C6
P

T∈T0
h2

T ‖f‖20,T

ξ−min(α,µ) completes the proof. ¤

7. Modified red-green refinement

This section presents a modified red-green refinement. With such a refinement strategy,
one can prove the convergence of the adaptive algorithm under a much weaker condition
on the initial mesh which reads
Condition B: Given T , assume that there exists at least one side (denoted by a) such that

|ha| > 1/2|a| with the height ha on a.(7.1)

Remark 7.1. Let α, β, and γ (α ≤ β ≤ γ) be three angles of T . One sufficient condition
for Condition B is that either γ < 5π

6 , or γ ≥ 5π
6 and sin β sin(α+β)

sin α > 1
2 . This condition

is satisfied by almost all practical meshes. In fact, for one extreme case with γ = 170o,
β = 8o and α = 2o, one has sin β sin(α+β)

sin α ≈ 0.6925 > 1
2 .

Now we present the modified red-green refinement. To this end, we let eB denote the
edge of T which satisfies Condition B. We paint all elements in the initial mesh T0 by the
red color.

¢
¢
¢
¢
¢
¢
¢¢

A
A

A
A

A
A

AA

¢
¢
¢¢

T1 T2

T3

P1

P2

P3

P4
Figure 4. Blue-refinement of element domain T = T1∪T2∪T3 into a child
T1 and two grandchildren T2 and T3.

Algorithm 2 (Modified Red-Green Refinement). Input: Triangulation Tk with the set of
marked elements Mk.

(1) Divide Mk into three subsets Mred
k := {T ∈Mk, its color is red}, Mgreen

k := {T ∈
Mk, its color is green}, and Mblue

k := {T ∈Mk, its color is blue}.
(2) Refine all elements in Mred

k by the red-refinement strategy and paint its four chil-
dren by the red color;
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(3) Coarsen the elements in Mgreen
k by removing their fathers’ mid-lines, for instance

P1P2, on the right hand side of Figure 1, or their fathers’ mid-lines and central
lines, for instance P1P2 and P1P3 in Figure 4, and refine their fathers by the
red-refinement and repaint their sons by the red color.

(4) Coarsen the elements in Mblue
k by removing their grandfathers’ mid-lines and cen-

tral lines, for instance P1P2 and P1P3 in Figure 4, and refine their grandfathers
by the red-refinement and repaint their sons by the red color.

(5) Remove the possible hanging nodes by the following strategies until no hanging
nodes in the current mesh:
(a) Refine the red element with three hanging nodes by the red-refinement and

paint their sons by the red color.
(b) Refine the red element T with two hanging nodes by the modified blue-refinement:

First divide the element into two children by the green-refinement, namely,
connecting the midpoint of eB and its opposite vertex, and repaint the children
by the green color; Second decompose the child (or two children) generated by
the green-refinement with one hanging node into two grandchildren (or four
grandchildren) and repaint the grandchildren by the blue color. c.f Figure 4.

(c) Refine the red element T with one hanging node with the green-refinement
into two children by connecting the midpoint of eB and its opposite vertex
and repaint both children by the green color. In the case where the only one
hanging node is not on the eB, further decompose the child generated by the
green-refinement with one hanging node into two grandchildren and repaint
both of them by the blue color.

(d) Coarsen the green element with two hanging nodes and refine its father by the
red-refinement and repaint the four children by red color.

(e) Refine the green element with one hanging node which is not on the formerly
bisected edge by the blue-refinement and repaint its two children by the blue
color.

(f) Coarsen the green element with one hanging node which is on the formerly
bisected edge and refine its father element by the red-refinement and repaint
its four children by the red color.

(g) Coarsen the blue element with one hanging node and refine its grandfather by
the red-refinement and repaint the four children by red color.

(6) Locally adjust all the local meshes depicted on the left-hand side of Figure 5 to the
meshes shown on the right-hand side of Figure 5 by post-processing A.

(7) Locally adjust all the local parallelogram meshes illustrated in the middle of Figure
6 to the local parallelogram meshes shown on the right-hand side of Figure 6 with
post-processing B.

Output: The refined conforming triangulation Tk+1 = REFINE(Tk,Mk).

Post-processing A is to improve the regularity of current mesh while post-processing B
is useful to prove the quasi-orthogonality in Lemma 5.1.

The convergence of AFEM with the red-green refinement can be extended to the AFEM
based on the modified red-green refinement with a slight modification. In fact, the neces-
sary modification is to define the element-size of blue elements as follows:
For blue element T2 or T3 shown in Figure 4, we define the element-size as:

hT2 :=
√

κ|T2|, hT3 :=
√

κ|T3|.(7.2)

where constant κ = 3/2. We will explain the reason in the proof of the following theorem.
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Figure 5. Post-processing A: The local mesh on the left-hand side should
be locally adjusted to the mesh on the right-hand side.

Figure 6. Post-processing B: The local parallelogram mesh in the middle
of the above figure is generated from the mesh on the left-hand side, but
it should be locally adjusted to the mesh shown on the right-hand side of
the above figure.

Theorem 7.2. Assume T0 satisfies Condition B. Let (Tk, uk) be the sequence of meshes
and solutions produced by the AFEM Algorithm with the modified red-green refinement.
Then there exist constants 0 < ξ < 1, β > 0, and C9 > 0 such that

e2
k + βη2

k ≤ C9ξ
k.(7.3)

Proof. The proof of this modified red-green refinement is similar to that of the original
red-green refinement.

One main difference is from the proof of Lemma 4.2 and Lemma 6.2. The key of proving
Lemma 4.2 is the relation (4.6). From Figure 6, it is easy to find from case (c) and case
(e) that a blue element in Tk may become a red element in Tk+1 without any splitting
after refinement. Hence, it is necessary to give a new definition of the element-size of
blue elements, i.e., the element-size of blue element should be larger than the red element
after refinement which in fact without any splitting. On the other hand, a green element
may be split into two blue elements after refinement. Therefore, the element-size of blue
element should be smaller than the father(green element). In order to keep the relation
(4.6) hold, we modify the definition of the blue element-size as (7.2). In fact, κ occurred
in (7.2) can be any constant in the interval (1, 2). Based on this modified definition, one
can proof Lemma 4.2 in a similar routine. Similarly, Lemma 6.2 will be shown easily using
this modified definition.

The other main difference is from the proof of quasi-orthogonality in Lemma 5.1. With
this refinement strategy, the possible non-nesting mesh can happen in the following situ-
ations: (d), (f), (g) of Algorithm 2, and the local adjusting in Figure 5. The situations
of, (d), (f), and the local adjusting in Figure 5, can be proved by proceeding along the
same line of Lemma 5.1. But we only need a much weaker condition on the initial mesh,
namely Condition B since the green refinement is to connect the midpoint of eB and its
opposite vertex. To see this, the readers only need to refer the last inequality of the proof
of Lemma 5.1 where we use the relation between the length of the edge and the area of
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the coarser element K. For the situation (g), we take Figure 4 as example. There are two
cases in this situation: (1) the hanging node lies on the boundary P2P3 of the element T3;
(2) the hanging node lies on the boundary P1P4 or P3P4 of the element T2. The proof
of the case (2) is the same as those for the cases (d) and (f); the case (1) will be locally
adjusted as shown in Figure 6 which actually generates the local nested mesh. ¤

8. Conclusion

In this paper, we prove the convergence of AFEM algorithm with the red-green re-
finement under Condition A. With this result, we conclude that the AFEM algorithm
converges for the case where the initial mesh is “good” in the sense of Remark 2.2. In
addition, we show the convergence of AFEM algorithm with the modified red-green re-
finement under Condition B. The discussion in Remark 7.1 indicates that Condition B is
actually satisfied by almost all practical meshes. In fact, the often used Delaunay triangu-
lation generates the equilateral triangles in the interior of the domain. Therefore, we only
need to use the modified red-green refinement in a layer near the boundary of the domain
where the Condition A may fail.
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