
高级计算机体系结构设计及其在数据中心和云计算的应
用

Lecture 4

Memory Data PrefetchingMemory Data Prefetching

高级计算机体系结构设计及其在数据中心和云计算的应
用

Prefetching (1/3)
• Fetch block ahead of demand

• Target compulsory, capacity, (& coherence) misses

– Why not conflict?

• Big challenges:• Big challenges:

– Knowing “what” to fetch
• Fetching useless blocks wastes resources

– Knowing “when” to fetch
• Too early  clutters storage (or gets thrown out before use)

• Fetching too late  defeats purpose of “pre”-fetching

高级计算机体系结构设计及其在数据中心和云计算的应
用

• Without prefetching:

• With prefetching:

Prefetching (2/3)

Load

L1 L2

Data

DRAM

Total Load-to-Use Latency
timetime• With prefetching:

• Or:

Prefetch

Prefetch

DataLoad

Much improved Load-to-Use Latency

Somewhat improved Latency

DataLoad

Prefetching must be accurate and timely

高级计算机体系结构设计及其在数据中心和云计算的应
用

Prefetching (3/3)

• Without prefetching:

Run

• With prefetching: Load

timetime

Prefetching removes loads from critical path

高级计算机体系结构设计及其在数据中心和云计算的应
用

Common “Types” of Prefetching
• Software

• Next-Line, Adjacent-Line

• Next-N-Line

• Stream Buffers

• Stride

• “Localized” (e.g., PC-based)

• Pointer

• Correlation

高级计算机体系结构设计及其在数据中心和云计算的应
用

Software Prefetching (1/4)
• Compiler/programmer places prefetch instructions

• Put prefetched value into…

– Register (binding, also called “hoisting”)
• May prevent instructions from committing• May prevent instructions from committing

– Cache (non-binding)
• Requires ISA support

• May get evicted from cache before demand

高级计算机体系结构设计及其在数据中心和云计算的应
用

A

R1 = [R2]

Software Prefetching (2/4)

A

R1 = R1- 1R1 = R1- 1

Hoisting must
be aware of

dependencies

A

PREFETCH[R2]

CB

R3 = R1+4

CB
R1 = [R2]
R3 = R1+4

(Cache misses in red) Hopefully the load miss
is serviced by the time

we get to the consumer

CB
R1 = [R2]
R3 = R1+4

Using a prefetch instruction
can avoid problems with

data dependencies

高级计算机体系结构设计及其在数据中心和云计算的应
用

Software Prefetching (3/4)

for (I = 1; I < rows; I++)

{

for (J = 1; J < columns; J++)

{

prefetch(&x[I+1,J]);

sum = sum + x[I,J];

}

}

高级计算机体系结构设计及其在数据中心和云计算的应
用

Software Prefetching (4/4)
• Pros:

– Gives programmer control and flexibility

– Allows time for complex (compiler) analysis

– No (major) hardware modifications needed

• Cons:Cons:
– Hard to perform timely prefetches

• At IPC=2 and 100-cycle memory  move load 200 inst. earlier

• Might not even have 200 inst. in current function

– Prefetching earlier and more often leads to low accuracy
• Program may go down a different path

– Prefetch instructions increase code footprint
• May cause more I$ misses, code alignment issues

高级计算机体系结构设计及其在数据中心和云计算的应
用

Hardware Prefetching (1/3)
• Hardware monitors memory accesses

– Looks for common patterns

• Guessed addresses are placed into prefetch queue
– Queue is checked when no demand accesses waiting

• Prefetchers look like READ requests to the hierarchy• Prefetchers look like READ requests to the hierarchy
– Although may get special “prefetched” flag in the state bits

• Prefetchers trade bandwidth for latency
– Extra bandwidth used only when guessing incorrectly

– Latency reduced only when guessing correctly

No need to change software

高级计算机体系结构设计及其在数据中心和云计算的应
用

Processor

Hardware Prefetching (2/3)

Registers

L1 I-Cache L1 D-Cache

L2 Cache

D-TLBI-TLB

Potential
Prefetcher
Locations

Main Memory (DRAM)

L3 Cache (LLC)

高级计算机体系结构设计及其在数据中心和云计算的应
用

Processor

Hardware Prefetching (3/3)

Registers

L1 I-Cache L1 D-Cache

L2 Cache

D-TLBI-TLB

Intel Core2
Prefetcher
Locations

• Real CPUs have multiple prefetchers

– Usually closer to the core (easier to detect patterns)

– Prefetching at LLC is hard (cache is banked and hashed)

L3 Cache (LLC)

高级计算机体系结构设计及其在数据中心和云计算的应
用

Next-Line (or Adjacent-Line) Prefetching
• On request for line X, prefetch X+1 (or X^0x1)

– Assumes spatial locality
• Often a good assumption

– Should stop at physical (OS) page boundaries

• Can often be done efficiently• Can often be done efficiently

– Adjacent-line is convenient when next-level block is bigger

– Prefetch from DRAM can use bursts and row-buffer hits

• Works for I$ and D$

– Instructions execute sequentially

– Large data structures often span multiple blocks

Simple, but usually not timely

高级计算机体系结构设计及其在数据中心和云计算的应
用

Next-N-Line Prefetching
• On request for line X, prefetch X+1, X+2, …, X+N

– N is called “prefetch depth” or “prefetch degree”

• Must carefully tune depth N. Large N is …

– More likely to be useful (correct and timely)– More likely to be useful (correct and timely)

– More aggressive  more likely to make a mistake
• Might evict something useful

– More expensive  need storage for prefetched lines
• Might delay useful request on interconnect or port

Still simple, but more timely than Next-Line

高级计算机体系结构设计及其在数据中心和云计算的应
用

Stream Buffers (1/3)
• What if we have multiple inter-twined streams?

– A, B, A+1, B+1, A+2, B+2, …

• Can use multiple stream buffers to track streams

– Keep next-N available in buffer

– On request for line X, shift buffer and fetch X+N+1 into it– On request for line X, shift buffer and fetch X+N+1 into it

• Can extend to “quasi-sequential” stream buffer

– On request Y in [X…X+N], advance by Y-X+1

– Allows buffer to work when items are skipped

– Requires expensive (associative) comparison

高级计算机体系结构设计及其在数据中心和云计算的应
用

Stream Buffers (2/3)

Figures from Jouppi “Improving Direct-Mapped Cache Performance by the
Addition of a Small Fully-Associative Cache and Prefetch Buffers,” ISCA’90

高级计算机体系结构设计及其在数据中心和云计算的应
用

Stream Buffers (3/3)

Can support multiple streams in parallel

高级计算机体系结构设计及其在数据中心和云计算的应
用

Stride Prefetching (1/2)

• Access patterns often follow a stride

Column in matrix

Elements in array of structs

• Access patterns often follow a stride

– Accessing column of elements in a matrix

– Accessing elements in array of structs

• Detect stride S, prefetch depth N

– Prefetch X+1∙S, X+2∙S, …, X+N∙S

高级计算机体系结构设计及其在数据中心和云计算的应
用

Stride Prefetching (2/2)
• Must carefully select depth N

– Same constraints as Next-N-Line prefetcher

• How to determine if A[i]  A[i+1] or X  Y ?
– Wait until A[i+2] (or more)– Wait until A[i+2] (or more)

– Can vary prefetch depth based on confidence
• More consecutive strided accesses  higher confidence

New access to
A+3N

Stride Count

A+2N N 2

+ A+4N+=

Update count

>2 Do prefetch?

Last Addr

高级计算机体系结构设计及其在数据中心和云计算的应
用

“Localized” Stride Prefetchers (1/2)
• What if multiple strides are interleaved?

– No clearly-discernible stride

– Could do multiple strides like stream buffers
• Expensive (must detect/compare many strides on each access)

– Accesses to structures usually localized to an instruction– Accesses to structures usually localized to an instruction

Miss pattern looks like:

A, X, Y, A+N, X+N, Y+N, A+2N, X+2N, Y+2N, …

(X-A)

(Y-X)

(A+N-Y)

Use an array of strides, indexed by PC

(X-A)

(Y-X)

(A+N-Y)

(X-A)

(Y-X)

(A+N-Y)

Load R1 = [R2]

Load R3 = [R4]

Store [R6] = R5

Add R5, R1, R3

高级计算机体系结构设计及其在数据中心和云计算的应
用

“Localized” Stride Prefetchers (2/2)
• Store PC, last address, last stride, and count in RPT

• On access, check RPT (Reference Prediction Table)

– Same stride?  count++ if yes, count-- or count=0 if no

– If count is high, prefetch (last address + stride*N)

PCa: 0x409A34 Load R1 = [R2]

PCb: 0x409A38 Load R3 = [R4]

PCc: 0x409A40 Store [R6] = R5

0x409

Tag Last Addr Stride Count

0x409

0x409

A+3N N 2

X+3N N 2

Y+2N N 1

If confident
about the stride
(count > Cmin),

prefetch
(A+4N)

+

高级计算机体系结构设计及其在数据中心和云计算的应
用

Other Patterns
• Sometimes accesses are regular, but no strides

– Linked data structures (e.g., lists or trees)

A B C D E F Linked-list traversal

F

A B

C

D

E

Actual memory
layout

(no chance to detect a stride)

高级计算机体系结构设计及其在数据中心和云计算的应
用

Pointer Prefetching (1/2)

Data filled on cache miss (512 bits of data)

1 4128 90120230 901207588029 0 14 4128

Nope Nope Maybe! Maybe!Nope Nope Nope Nope

90120230 90120758

Nope Nope Maybe! Maybe!

struct bintree_node_t {
int data1;
int data2;
struct bintree_node_t * left;
struct bintree_node_t * right;

};

This allows you to walk the tree
(or other pointer-based data structures

which are typically hard to prefetch)

Pointers usually “look different”

Go ahead and prefetch these
(needs some help from the TLB)

Nope Nope Nope Nope

高级计算机体系结构设计及其在数据中心和云计算的应
用

Pointer Prefetching (2/2)
• Relatively cheap to implement

– Don’t need extra hardware to store patterns

• Limited lookahead makes timely prefetches hard

– Can’t get next pointer until fetched data block

X Access Latency

Access Latency

Access Latency

Stride Prefetcher:

A Access Latency

B Access Latency

C Access Latency

Pointer Prefetcher:

X+N

X+2N

高级计算机体系结构设计及其在数据中心和云计算的应
用

Pair-wise Temporal Correlation (1/2)
• Accesses exhibit temporal correlation

– If E followed D in the past  if we see D, prefetch E

Correlation Table

D A B C D E F

Linked-list traversal

D

F

A

B

C

E

E

?

B

C

D

F

A B C D E F

F

A B

C

D

E

Actual memory layout

10

00

11

11

11

01

D

F

A

B

C

E

Can use recursively to get more lookahead 

高级计算机体系结构设计及其在数据中心和云计算的应
用

Pair-wise Temporal Correlation (2/2)
• Many patterns more complex than linked lists

– Can be represented by a Markov Model

– Required tracking multiple potential successors

• Number of candidates is called breadth
Correlation Table

A B C

D E F
1.0 .33 .5

.2

1.0.6
.2

.67

.6

.5

.2

.2

D

F

A

B

C

E

C

E

B

C

D

A

11

11

11

11

11

11

E

?

C

?

F

?

01

00

01

00

10

00

D

F

A

B

C

E

Recursive breadth & depth grows exponentially 

Markov Model

高级计算机体系结构设计及其在数据中心和云计算的应
用

Increasing Correlation History Length
• Longer history enables more complex patterns

– Use history hash for lookup

– Increases training time

A

B C

D E F G

DFS traversal: ABDBEBACFCGCA A B

B D

D B

B E

E B

B A

A C

D

B

E

B

A

C

F

Much better accuracy , exponential storage cost 

高级计算机体系结构设计及其在数据中心和云计算的应
用

Spatial Correlation (1/2)
Database Page in Memory (8kB)

page header

tuple data

tuple slot index

M
e
m

o
ry

• Irregular layout  non-strided

• Sparse  can’t capture with cache blocks

• But, repetitive  predict to improve MLP

tuple slot index

M
e
m

o
ry

Large-scale repetitive spatial access patterns

高级计算机体系结构设计及其在数据中心和云计算的应
用

• Logically divide memory into regions

• Identify region by base address

• Store spatial pattern (bit vector) in correlation table

Spatial Correlation (2/2)

Region A

Region B

Correlation Table
PCx: A’

PCy: B’ 110…1010001…111

110…0001101…111

PCx

PCy

+
To prefetch

FIFO

高级计算机体系结构设计及其在数据中心和云计算的应
用

Evaluating Prefetchers
• Compare against larger caches

– Complex prefetcher vs. simple prefetcher with larger cache

• Primary metrics
– Coverage: prefetched hits / base misses

– Accuracy: prefetched hits / total prefetches– Accuracy: prefetched hits / total prefetches

– Timeliness: latency of prefetched blocks / hit latency

• Secondary metrics
– Pollution: misses / (prefetched hits + base misses)

– Bandwidth: total prefetches + misses / base misses

– Power, Energy, Area...

高级计算机体系结构设计及其在数据中心和云计算的应
用

Hardware Prefetcher Design Space
• What to prefetch?

– Predictors regular patterns (x, x+8, x+16, …)

– Predicted correlated patterns (A…B->C, B..C->J, A..C->K, …)

• When to prefetch?

– On every reference  lots of lookup/prefetcher overhead– On every reference  lots of lookup/prefetcher overhead

– On every miss  patterns filtered by caches

– On prefetched-data hits (positive feedback)

• Where to put prefetched data?

– Prefetch buffers

– Caches

高级计算机体系结构设计及其在数据中心和云计算的应
用

What’s Inside Today’s Chips
• Data L1

– PC-localized stride predictors

– Short-stride predictors within block  prefetch next block

• Instruction L1

– Predict future PC  prefetch– Predict future PC  prefetch

• L2

– Stream buffers

– Adjacent-line prefetch

