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LECTURE THREE – 3

P-I-D engine speed governors
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LEARNING OBJECTIVES

• To understand single-input-single-output control concepts

• To define and understand benefits & limitations of on/off control

• To define the full PID control law in its main forms

• To understand P / PI / PID / PD-control benefits and issues

• To be able to perform basic steady-state error analysis of linear 
systems using the Laplace Transform’s Final Value Theorem

• To be able to perform perturbation analysis of marine propulsion 
engines in order to determine the rpm regulation problem

• To apply robust control theory and pole placement to design 
disturbance rejection PI and PID speed governors

• To apply robustness analysis for both parametric uncertainty and 
neglected dynamics

• To use available signals shipboard in order to improve robustness 
of PID engine controllers
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PID Control Fundamentals

Nik. Xiros
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Single-Input-Single-Output system control
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ON/OFF Control - EXAMPLE
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ON/OFF Control - EXAMPLE
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ON/OFF Control – EXAMPLE
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The P-I-D Controller
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- Analytic form
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Forms of the PID Control Law

- Practical form
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Static plant equation 0( )
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Proportional control – EXAMPLE 1
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Proportional control – EXAMPLE 2
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Proportional control – Final Value Theorem

0
( ) ( ) ( )

( ) ( ) ( )

t

p i

p ii
p

u t K e t K e d

K s KK
U s K E s E s

s s

ξ ξ= ⋅ + ⋅

⋅ + 
= + ⋅ = ⋅ 
 

∫
�

16

Proportional-Integral control
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Closed-loop Characteristic Polynomial
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Proportional-Integral control

Closed-loop equation for 1st order open-loop plant
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Proportional-Integral control – EXAMPLE 

Steady-state error using the Final Value Theorem
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Closed-loop equation for 1st order open-loop plant
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Proportional-Integral-Differential control

Full PID controller equation

2

( ) ( ) ( )
i p di

p d

K K s K sK
U s K K s E s E s

s s

+ + 
= + + ⋅ = ⋅ 
 

Closed-loop equation for 1st order open-loop plant

( ) ( )

( ) ( )

( )
( ) ( )

1

         ( )
1

SS p d

SS d SS p

SS

SS d SS p

K K K s
Y s R s

K K s K K

K
D s

K K s K K

τ

τ

+
= ⋅

+ + +

+ ⋅
+ + +

20

Proportional-Differential control

Steady-state error analysis using Final Value Theorem
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Issues with PI or PID control
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Perturbation Analysis of Ship Powertrains
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Introduction

The speed regulation problem is one of the oldest and most important feedback control 

problems. Indeed the mechanical load to be turned by a prime mover consists of two 

distinct components:

a) the load’s moment of inertia and 

b) the load’s resisting torque (moment) due to rotation. 

23

Introduction

The objective of speed regulation is to balance and match the power delivery of the 

prime mover to the power demand of the turning load. The favorable results of 

introducing speed regulation are: 

a) To maintain and restore the power balance of the prime mover to its load that is 

perturbed by the fluctuations of the resistance torque of the load and 

b) To protect the prime mover from slipping outside of the admissible operational 

range.
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Torque and power balance

Equation of motion
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Torque and power balance

3 24 4( )
m load

S S

c c
P P t N M L N

η η
= = ⇒ = =

26



14

Engine torque perturbation analysis
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Engine torque perturbation analysis
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Propeller torque perturbation analysis
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Equation of motion for perturbation analysis
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Derivation:
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The above is a linearized equation of motion for perturbation analysis.
Torque disturbance d(t) packs torque fluctuations, non-modeled and
neglected terms etc. that cause deviation from the propeller curve.

30



16

Block diagram for perturbation analysis
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NOTE:
All signals in the block diagram are
perturbations from the steady-state
values of the operating point on the
propeller curve of the powertrain.

Robust PID Control of Marine Propulsion Engines

Nik. Xiros
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ROBUST PID CONTROL
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� Controller design equations

Marine engine control
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ROBUST PID CONTROL
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Robustness against neglected fast dynamics…

35

ROBUST PID CONTROL
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� Controller tuning for std PI, Hinf PI και Hinf PID

� Closed-loop system Bode plots

36



19

0 5 10 15

93

94

95

96

97

E
n
g
in

e
 r

p
m

w = 0.61rad/s

0 5 10 15
Time (s)

w = 1.50rad/s

0 4 8

w = 2.93rad/s

std PI

Hinf PI

Hinf PID

0 5 10 15
Time (s)

94

95

96

E
n

g
in

e
 r

p
m

0 5 10 15
Time (s)

100

110

120

F
u
e

l 
in

d
e
x
 p

o
s
it
io

n

std PI

Hinf PI

Hinf PID

PID control of “Shanghai Express” main engine

ROBUST PID CONTROL

� Sinusoidal response at system eigenvalues

� Reduced-order system step response
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PID control of “Shanghai Express” main engine

� Full order system step response
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� Approximate robustness analysis for a single open-loop 

neglected pole

38



20

0 5 10 15 20 25 30
Time (sec)

94

94.5

95

95.5

96

96.5

97

E
n
g
. 
S

p
e
e
d
 (

rp
m

) H∞ PID
Reference PI

H∞ PI

0 5 10 15 20 25 30
Time (sec)

0.45

0.5

0.55

0.6

0.65

0.7

R
a
c
k
 P

o
s
. 
(-

)

H∞ PID
Reference PI

H∞ PI

ROBUST PID CONTROL

� Step response using MoTher – Process noise

� RPM rate estimate on the basis of shaft torque signal
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ROBUST PID CONTROL
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� Determination of Hinf PI+FF gains based on Hinf PID values

� RPM regulation for “Shanghai Express”
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CONCLUSIONS AT THE END OF THE 3rd SESSION

� Only full PID control provides with disturbance rejection 

and robustness against fast neglected dynamics

� D-term can be approximated by shaft torque signal
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