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ABSTRACT: 
 
Change detection is the process of identifying differences in the state of objects and/or phenomena under consideration by observing 
them at different times. Change detection is important for monitoring and managing natural resources, urban development, 
environmental changes, and disaster assessments. Recent advances in satellite imagery, in terms of improved spatial and temporal 
resolutions, allow for reliable identification and prediction of change patterns. The quality of the image registration process of the 
involved imagery is the key factor that dictates the validity and the reliability of the change detection outcome. The fact that change 
detection analysis might involve multi-spectral, multi-source, and/or multi-resolution imagery captured at different times calls for the 
development of a robust registration procedure that can handle these types of imageries. This paper introduces a new approach for 
semi-automatic image registration using linear features, which can be reliably extracted from imagery with significantly different 
geometric and radiometric properties. The Modified Iterated Hough Transform (MIHT) is used as the matching strategy for 
automatically deriving an estimate of the parameters involved in the transformation function relating the images to be registered as 
well as the correspondence between conjugate lines. Once the registration problem has been solved, the suggested methodology 
proceeds by detecting changes between the registered imagery. Traditional change detection methodologies, which are based on the 
subtraction of intensity images, usually fail due to different illumination conditions, sensors, and/or viewing perspectives at the 
moments of exposure. To overcome these problems, features that are invariant to changes in the illumination conditions can be used. 
Based on this reasoning, derived edges from the registered images are used as the basis for change detection in this research. 
Experimental results using real data proved the feasibility of the suggested approach for deriving a quantitative estimate of changes 
among the registered images. 
 

1. INTRODUCTION 

The demand for up-to-date geographic data is increasing due to 
fast changes in the real world that are taking place as a result of 
nature and/or human actions. Such changes have to be 
accurately and reliably inventoried to fully understand the 
physical and human processes at work (Estes, 1992). Change 
detection is the process of identifying differences in the state of 
an object or phenomenon by observing it at different times 
(Singh, 1989). It involves the ability to quantify changes using 
multi-resolution, multi-spectral, and/or multi-source imagery 
captured at different epochs. Traditional change detection 
studies are based on visual/manual comparison of temporal 
datasets (such as satellite scenes, aerial images, maps, etc.). 
However, the huge flux of imagery that is being captured by an 
ever increasing number of earth observing satellites necessitates 
the development of reliable and fast change detection 
techniques. Such techniques are essential to reduce the high 
cost associated with spatial data updating activities.  

Several change detection methods have been developed and 
reported in the literature (Singh, 1989; Townshend et al., 1992; 
Dowman, 1998; Bruzzone and Prieto, 2000; and Li et al., 
2002). Basically, two main solutions for the change detection 
problem have been proposed: supervised and unsupervised 
approaches. The former is based on supervised classification 
methods, which require the availability of multi-temporal 
ground truth in order to derive a suitable training set for the 

learning process of the classifier. The latter performs change 
detection directly by comparing two images under 
consideration, without relying on any additional information 
(Bruzzone and Prieto, 2000). 

In supervised classification, data from two images are separately 
classified, thus the problem of normalizing such data for 
atmospheric and sensor differences between two different times 
is minimized (Singh, 1989). The supervised approach exhibits 
some advantages over the unsupervised, mainly the capability to 
recognize the kinds of land cover transition that have occurred, 
robustness to different atmospheric and light conditions at the 
two acquisition times, and the ability to process multi-
sensor/multi-source images (Bruzzone and Serpico, 1997). A 
major drawback of the supervised classification is that the 
generation of an appropriate multi-temporal ground truth is 
usually a difficult and expensive task; in addition, greater 
computational and labelling efforts are required. On the other 
hand, unsupervised classification primarily entails the creation 
of “difference images”. It involves image differencing, image 
ratio, vegetation index differencing, image regressions, change 
vector analysis (CVA), and principal component analysis 
(PCA). Changes are then identified through analysis of (e.g., 
thresholding) the difference images. 

Based on the literature of change detection techniques, the 
following issues have to be considered: 



 

� Image differencing methods assume that the differences 
between the radiometric values are due to changes in the 
object space. Indeed these differences could be a result of 
other factors, such as different atmospheric conditions, 
illumination conditions, changes in soil moisture and 
sunlight angle. Several solutions were suggested to overcome 
such a problem. Basically, these solutions depend on image 
enhancement and radiometric corrections that tend to reduce 
radiometric differences between images under consideration. 

� Most of these methods require a decision as to where to 
place the threshold boundaries in order to separate the areas 
of changes from those of no change (Singh, 1989). In fact, 
classical techniques perform thresholding based on empirical 
strategies or manual trial and error procedures, which 
significantly affect the reliability and the accuracy of the 
final change detection results (Li et al., 2002). 

� In general, classification methods require two or more bands 
for the classification process. This is not always available 
especially when dealing with aerial images that represent an 
important source of historical information needed for change 
detection purposes. 

� Image differencing techniques are sensitive to misregistration 
between the reference and input images (Singh, 1989; 
Townshend et al., 1992; Li et al., 2002;). Literature pointed 
out that accuracy of the image registration process is the key 
factor that controls the validity and reliability of the change 
detection outcome. 

In summary, uncertainty in the change detection outcome relies 
on two factors. Firstly, the detected changes might be biased by 
inaccurate rectification/registration procedure (geometric 
differences). Secondly, it is affected by possible radiometric 
differences due to atmospheric changes and/or different sensor 
types. To overcome the problem of geometric differences, this 
study will investigate and develop a semi-automated, accurate, 
and robust registration paradigm that guarantees accurate co-
registration which is required for reliable change detection 
(Section 2). To overcome the problem of radiometric 
differences, derived edges from the registered images are used 
as the basis for change detection. The utilization of edges is 
motivated by the fact that they are invariant with respect to 
possible radiometric differences between the images in question 
(Section 3). Section 4 demonstrates the proposed methodology 
of change detection. Experimental results using real data, which 
proves the feasibility and robustness of the suggested 
methodology, are discussed in Section 5. Finally, conclusions 
and recommendations for future work are discussed in 
Section 6. 

 
2. GEOMETRIC DIFFERENCES 

High resolution overlapping scenes captured by space-borne 
platforms and aerial images are becoming more available at a 
reasonable cost. These images represent the main source of 
recent and historical information that are necessary for change 
detection application. Due to different imaging systems, spatial 
resolutions, viewing points and perspective geometry between 
these temporal images, geometric differences should be 
expected. Reliable change detection is contingent on accurate 
compensation of these differences among the involved images. 
The proposed registration methodology will accurately align the 
images in question regardless of possible geometric differences.  

In general, an image registration process aims at combining data 
and/or information from multiple sensors in order to achieve 
improved accuracies and better inference about the environment 
than could be attained through the use of a single sensor. An 
effective automated image registration methodology must deal 
with four issues (Habib and Al-Ruzouq, 2004); namely 
registration primitives, transformation function, similarity 
measure, and matching strategy. The following subsections 
briefly discuss the rationale regarding these issues. 
 
2.1 Registration primitives 

To carry out the registration process, a decision has to be made 
regarding the choice of the appropriate primitives (for example, 
distinct points, linear features, or homogeneous regions). In this 
research, straight-line segments are used as the registration 
primitives. This choice is motivated by the following facts:  

� Straight lines are easier to detect than distinct points and 
areal features. Moreover, the correspondence between 
conjugate linear features in the input imagery becomes 
easier. 

� Images of man-made environments are rich with straight-line 
features. 

� It is straightforward to develop mathematical constraints 
(similarity measures) ensuring the correspondence of 
conjugate straight-line segments. 

� Free-form linear features can be represented with sufficient 
accuracy as a sequence of straight-line segments (poly-lines). 

After selecting straight-line segments as the registration 
primitives, one has to make a decision regarding on how to 
represent them. In this research, the line segments are 
represented by their end points. This representation is chosen 
since it is capable of representing all line segments in 2-D 
space. Also, it will allow for a straightforward similarity 
measure that mathematically describes the correspondence of 
conjugate line segments. It should be mentioned that the end 
points defining corresponding line segments in the imagery 
need not be conjugate, Figure 1. 

 
2.2 Registration transformation function 

The second issue in a registration procedure is concerned with 
establishing the transformation function that mathematically 
describes the mapping function between the imagery in 
question. In other words, given a pair of images, reference and 
input images, the transformation function will attempt to 
properly overlay them. Habib and Morgan (2002) showed that 
affine transformation, Equation 1, could be used as the 
registration transformation function for imagery captured by 
satellite imaging systems with narrow angular field of view over 
relatively flat terrain (a terrain with negligible height variations 
compared with the flying height).  
 

�
�

�
�
�

�
�
�

�
�
�

�
+�
�

�
�
�

�
=�

�

�
�
�

�

′
′

y

x

bb

aa

b

a

y

x

21

21

0

0

  

(1) 

 
 
where 
 

),( yx  : coordinate of a point in the reference image  



 

),( yx ′′ : coordinate of the conjugate point in the input image 

),...,( 20 ba  affine transformation parameters. 

 
Figure 1.  Similarity measure using straight-line segments 

 
2.3 Similarity measure  

The next step in the registration paradigm is the selection of the 
similarity measure, which mathematically describes the 
necessary constraints for ensuring the correspondence of 
conjugate primitives. The similarity measure formulation 
depends on the selected registration primitives and their 
respective attributes. As mentioned before, the registration 
primitives, straight-lines, will be represented by their end 
points, which need not be conjugate. 

Assuming that a line segment (1-2) in the reference image 
corresponds to the line segment (3-4) in the input image, Figure 
1, the similarity measure should mathematically describe the 
fact that the line segment (1-2) will coincide with the 
corresponding line segment (3-4) after applying the 
transformation function relating the reference and input images. 
Such a measure can be derived by forcing the normal distances 
between the end points of a transformed line segment in the 
reference image, and the corresponding line segment in the 
input image to be zero (i.e., n1 = n2 = 0 , Figure 1). Equation 2 
mathematically describes such a constraint for one of the end 
points of the line segment in the reference image. 
 
 

0sincos 11 =−′+′ ρθθ yx  (2) 
 
 

where 

),( θρ  Polar coordinates representing the line segment (3-4) 
in the input image 

),( 11 yx ′′  Transformed coordinates of point 1 in the reference 
image after applying the registration transformation 
function. 

Another constraint in the form of Equation 2 can be written for 
point 2 along the line-segment in the reference image. 
 
2.4 Matching strategy 

To automate the solution of the registration problem, a 
controlling framework that utilizes the primitives, similarity 
measure, and transformation function must be established. This 
framework is usually referred to as the matching strategy. In this 

research, the MIHT is used as the matching strategy. Such a 
methodology is attractive since it allows for simultaneous 
matching and parameter estimation. Moreover, it does not 
require complete correspondence between the primitives in the 
reference and input images. MIHT has been successfully 
implemented in several photogrammetric operations such as 
automatic single photo resection and relative orientation (Habib 
et al, 2001a, 2001b). 

MIHT assumes the availability of two datasets where the 
attributes of conjugate primitives are related to each other 
through a mathematical function (similarity measure 
incorporating the appropriate transformation function). The 
approach starts by making all possible matching hypotheses 
between the primitives in the datasets under consideration. For 
each hypothesis, the similarity measure constraints are 
formulated and solved for one of the parameters in the 
registration transformation function. The parameter solutions 
from all possible matching hypotheses are stored in an 
accumulator array, which is a discrete tessellation of the 
expected range of the parameter under consideration. Within the 
considered matches, correct matching hypotheses would 
produce the same parameter solution, which will manifest itself 
as a distinct peak in the accumulator array. Moreover, matching 
hypotheses that contributed to the peak can be tracked to 
establish the correspondence between conjugate primitives in 
the involved datasets. Detailed explanation of the MIHT can be 
found in Habib et al, 2001b. 

The basic steps for implementing the MIHT for solving the 
registration problem are as follows: 

� Approximations are assumed for the parameters which are 
yet to be determined. The cell size of the accumulator array 
depends on the quality of the initial approximations; poor 
approximations will require larger cell sizes. 

� All possible matches between individual registration 
primitives within the reference and input images are 
evaluated, incrementing the accumulator array at the location 
of the resulting solution, pertaining to the sought-after 
parameter, from each matching hypothesis. 

� After all possible matches have been considered, the peak in 
the accumulator array will indicate the most probable 
solution of the parameter in question. Only one peak is 
expected for a given accumulator array. 

� After each parameter is determined (in a sequential manner), 
the approximations are updated. For the next iteration, the 
accumulator array cell size is decreased to reflect the 
improvement in the quality of the parameters. Then, the 
above two steps are repeated until convergence is achieved 
(for example, the estimated parameters do not significantly 
change from one iteration to the next). 

� By tracking the hypothesized matches that contribute 
towards the peak in the last iteration, one can determine the 
correspondence between conjugate primitives. These 
matches are then used in a simultaneous least squares 
adjustment to derive a stochastic estimate of the involved 
parameters in the registration transformation function. 

Once the registration primitives, transformation function, 
similarity measure, and the matching strategy have been 
selected, they are integrated in an automatic registration 
procedure. As mentioned earlier the accuracy of the registration 
process is the key factor that controls the validity and the 
reliability of the change detection outcome. Section 5 will show 
that a few pixels accuracy has been achieved. 
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3. RADIOMETRIC DIFFERENCES 

The basic premise in using remotely sensed data for a change 
detection application is that changes in land cover will result in 
changes in radiance values. Moreover, changes in radiance due 
to land cover changes must be larger when compared to 
radiance changes caused by other factors. These other factors 
might include differences in atmospheric conditions, sun angle 
and soil moisture. One should expect that these factors will 
affect the reliability of change detection algorithms especially 
when considering images captured by different sensors that 
have varying radiometric and spatial resolutions. 

To alleviate the effect of these factors, intensity normalization is 
traditionally used as a pre-processing technique to compensate 
for possible illumination variations between the involved 
images. In this type of pre-processing, the intensity values in the 
second image are normalized to have the same mean and 
variance values as those in the first image. Assuming that the 
involved images are co-registered relative to a common 
reference frame, one can proceed by applying image-
differencing methods to create a new image that represents the 
changes. The comparison results are based on the assumption 
that the differences between the radiometric properties of 
corresponding pixels are due to actual changes in the object 
space. However, these differences could be the result of other 
factors, such as different atmospheric conditions, noise, 
different imaging sensors, and/or registration/rectifications 
errors. Moreover, the difference image is usually binarized by 
thresholding where thresholds are empirically selected. In these 
cases, traditional approaches to change detection, which are 
based on the differencing of intensity images, fail. 

To overcome these problems, derived edges from the registered 
images are used as a basis for the proposed change detection 
methodology. The utilization of edges is motivated by the fact 
that they are invariant with respect to possible radiometric 
differences between the images in question.  
 

4. CHANGE DETECTION METHODOLOGY 

The proposed method for change detection is as follows:  

� Resample the input image into the reference frame associated 
with the reference image. The parameters of the registration 
transformation function (Section 2) are used in the 
resampling process. After resampling, corresponding pixels 
are assumed to belong to the same object space feature. 

� Apply intensity normalization techniques to the images in 
question (e.g., to ensure that they have the same intensity 
mean and variance values) in order to reduce the radiometric 
differences between the involved images. However, this 
procedure would not be enough to eliminate radiometric 
differences in the involved images. 

� Extract edge cells from the resampled images using the 
canny edge detector (Canny, 1986). Utilizing the edge 
images has two advantages. First, derived edges are robust to 
possible radiometric differences between the registered 
images (e.g., due to noise and/or different spectral 
properties). Also, the edges would correspond to interesting 
features (e.g., building boundaries, roads, trails, etc.). 
Therefore, comparing edge images will be useful in outlining 
the amount of urbanization activities, which is one of the 
most important objectives of change detection exercises. The 
final output of the edge extraction process will be binary 

images in which white pixels refer to edges while black 
pixels refer to non-edges. 

� Apply the majority filter (also known as the mode filter) to 
the edge images. This filter is applied to binary images where 
a window is centered at each pixel and the value of this pixel 
is changed or maintained according to the majority of the 
pixels within this window (Lillesand and Kiefer 2000).  In 
the proposed methodology for change detection, the majority 
filer has been implemented for the following reasons: 

• To compensate for small registration errors (in the 
order of few pixels). 

• To balance the effect of varying edge densities in the 
registered images especially when dealing with multi-
source images. 

• To fill small gaps within an area with numerous edges 
(Figure 2-a, highlighted by solid circles), and smooth 
object boundaries without expanding and/or shrinking 
the objects (Lillesand and Kiefer 2000). 

• To eliminate isolated edges (Figure 2-b, highlighted by 
dotted circles). 

 
Figure 2. Majority filter: filling gaps among dense edges (a), 

removing isolated edges (b) 

As a result, filtered images will highlight areas with 
interesting features since they lead to a dense distribution of 
edge cells. 

� Subtract filtered images (pixel-by-pixel) in order to highlight 
areas of change. 

� Apply a majority filter to the difference image to eliminate 
small areas (since changes/no-changes are expected to be 
locally spread – i.e., they are not isolated). 

5. EXPERIMENTAL RESULTS 

Experiments have been conducted using multi-source, multi-
resolution, and multi-temporal imageries over the city of 
Calgary, Alberta to illustrate the feasibility of the suggested 
methodology. The experiments incorporated a 1374 rows by 
1274 columns aerial photo (5.0m resolution) captured in 1956, 
1374 rows by 1274 columns aerial photo (3.5m resolution) 
captured in 1972, 2000 rows by 2000 columns ortho-image 
(5.0m resolution) created from an aerial image captured in 



 

1999, and 300 rows by 300 columns LANDSAT image (30m 
resolution) captured in 2001. These scenes exhibit significantly 
different geometric and radiometric properties. Straight-line 
segments have been manually digitized in these images. As an 
example, Figure 3 shows the digitized segments in the 1999 
ortho-photo and 1956 aerial image, where 139 lines have been 
digitized in the reference image (1956 aerial) and 183 Lines 
have been digitized in the input image (1999 ortho-photo). 

 
Figure 3. Digitized linear features in the 1956 aerial image and 

the 1999 ortho-photo 

A closer look at Figure 3 reveals that there is no complete 
correspondence between the digitized lines in the input and 
reference images. The digitized segments were then 
incorporated in the MIHT strategy to determine the parameters 
involved in the registration transformation function as well as 
the correspondence between conjugate line segments.  

The estimated parameters for affine transformation functions 
and their variance components for the abovementioned datasets 
are listed in Table 1. The estimated variance components, which 
reflect the quality of fit, reveal two facts. First, they show good 
registrations between the involved images (within a few pixels). 
Also, the small variance components signify the validity of the 
affine transformation as the registration transformation function. 

Affine Aerial_56/ 
Aerial_72 

Aerial_56/ 
Ortho_99 

Aerial_56/ 
Land_01 

2ˆoσ (Pixel ^2) 2.9524^2 2.1537^2 1.8822^2 
ao (pixel) -78.9282 -105.8868 41.3663 
a1 1.4148 1.0899 00.1753 
a2 -0.0925 -0.0235 00.0493 
bo (pixel) 415.1431 614.5326 53.0329 
b1 00.099324 0.0292 -00.0481 
b2 1.4242 1.0916 00.1754 

Table 1. Affine transformation parameters between the involved 
datasets 

In addition to the estimated parameters, the correspondences 
between line segments have been identified. For example, 
Figure 4 depicts established correspondences between the 
digitized primitives in the 1956 aerial image and the 1999 
ortho-photo. A mosaic image covering the northwest part of the 
city is derived by combining the 1999 ortho-photo and the 1956 
aerial image, where every other square patch in the reference 
image has been replaced by the corresponding resampled patch 
in the input image, is shown in Figure 5. It can be seen that 
features (for example, roads, rivers) in the derived mosaic fit 
each other (observe the smooth transition along the features 
within the resampled patches). A closer look at Figure 5 reveals 
the changes that took place in the northwest part of the city 
during the forty three years between the moments of capture. 

 
Figure 4.  Established correspondences between the 1956 aerial 

image and the 1999 ortho-photo line segments 

 
Figure 5.  1956 aerial image and 1999 ortho-photo mosaic 

Having established the transformation function between the 
images, the input image can be resampled into the reference 
frame associated with the reference image. As explained in the 
previous section, the resampling is followed by applying Canny 
edge detection and majority filter to both images. Then, the 
resulting images are subtracted to produce a change image, 
which is enhanced by re-application of the majority filter. 
Figure 6-a shows the change image resulting from the 
registration of the 1956 aerial image with the 1999 ortho-photo. 
In this image, white areas indicate changes while black areas 
indicate parts with no change. Simple statistics show that there 
is roughly 50.6% change between the 1956 and 1999 imagery. 
Dividing the area into four quarters shows that the percentages 
of change, which occurred in the northwest, northeast, southeast 
and southwest parts of the image, are 74.8%, 66.4%, 34.4%, 
and 26.8%, respectively. The sub-images (b, c, d, and e) in 
Figure 6 show different types of changes that took place. Sub 
image 6-b shows changes as a result of an urbanization activity 
(new residential community has been built). Sub image 6-c 
shows changes caused by trails in newly developed parks. 
Changes resulting from the construction of a new highway 
along the east side of the city is shown in sub image 6-d. 



 

Finally, sub image 6-e shows changes due to different 
shadowing effects caused by newly erected high-rise buildings 
in the downtown area. 

 
Figure 6. Change detection image (a), white pixels represent 

changes. Sub-figures b, c, d, and e have been cropped 
and closely examined 

6. CONCLUSION AND RECOMMENDATIONS 

This paper presents a new methodology for image registration 
together with a suggested procedure for detecting changes 
between the involved images. The developed approach has been 
tested on real datasets, which showed its effectiveness in 
registering and detecting changes among multi-source, multi-
resolution, and multi-temporal imagery.  

The use of the MIHT procedure, for automatic registration of 
multi-source imagery with varying geometric and radiometric 
properties, has been explained. The presented approach used 
linear features (straight-line segments) as the registration 
primitives since they can be reliably extracted from the images. 
The MIHT sequentially solves for the parameters involved in 
the registration transformation function while establishing the 
correspondence between conjugate primitives. Experimental 
results using real data proved the feasibility and the robustness 
of the MIHT strategy even when there was no complete 
correspondence between conjugate lines in the images. This 
robustness is attributed to the fact that the parameters are 
estimated using common features in both datasets while non-
corresponding entities are filtered out prior to the parameter 
estimation. 

To avoid the effect of possible radiometric differences between 
the registered images, due to different atmospheric conditions, 
noise, and/or different spectral properties, the change detection 
is based on derived edge images. The use of edge images is 
attractive since it would lead to an effective detection of 

urbanization activities as they are represented by a dense 
distribution of edge cells. Also, a majority filter is applied to 
compensate for small registration errors as well as eliminate 
small gaps and isolated edges. The images are then subtracted to 
produce a change image, which could be enhanced by applying 
a majority filter to remove small regions. The change detection 
results were found to be consistent with those visually 
identified.  

Future research will concentrate on automatic extraction of the 
registration primitives, straight-line segments, from the input 
imagery. Moreover, the origin of the detected changes will be 
investigated (e.g., new residential community, new roads, etc.).  
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