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Abstract. Present-day networks are being challenged by  dramatic increases in bandwidth demand of 
emerging applications.  We will explore a new transport, ”optical flow switching”, that will enable 
significant growth, power-efficiency and cost-effective scalability of next-generation networks.  

 
Summary. In the early days of the Internet, the most precious resource was long-haul transmission capacity. The 
electronic packet switching (EPS) architecture was designed to use this resource as efficiently as possible Figure 1.  The 
problem with the EPS architecture, is its scalability: to keep apace with the unfolding exponential growth in data 
network bandwidth demand. Even electronic processing advancing with Moore's Law will not be able to avert a crisis in 
electronic-based switching. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Network cost reductions owing to disruptive optical 
technologies, [1].  

Figure 2. OFS with transparent, end-to-end data flow between 
users. 

 
In this paper, we explored the use of an optical network transport mechanism, Optical Flow Switching (OFS), for 
lowering network cost by the same order of magnitude as anticipated future increases in data volume per transaction 
(two to three orders of magnitude). OFS is a scheduled, all-optical, end-to-end service in which connections are 
established in response to flow-based requests by client-layer IP network schedulers (e.g., routers) for direct access by 
individual users, Figure 2. To use network resources efficiently, service holding times of wavelength channels are 
required to be on the order of hundreds of milliseconds or longer. Scheduling of flows with a time horizon of several 
transactions also help to achieve high network utilization albeit with some queueing delay at the entrance of the network 
usually in the form of holding the user from transmission until the network is ready. However, there are specialized 
applications that have stringent time deadline and would not like to wait in a queue but will be willing to pay for more 
expense to use the network with short notice such as a single roundtrip time from source to destination. In this paper we 
will focus on the major factors on the network architecture that result in substantially lowering the cost of providing the 
OFS transport mechanism. We will also explore a fast OFS for stringent time deadline services. This fast flow 
switching architecture is highly efficient and economical for on-demand high data rates transfers, distributed sensor data 
ingestion, as well as distributed computing and processing with short time deadlines and bursty, high-volume data 
transactions. There is a tradeoff among three observable network performance parameters: delay, blocking probability, 
and wavelength utilization. The key to high utilization of backbone wavelength channels – a precious network resource 
owing to the necessity of optical amplifiers and dispersion management – is statistical multiplexing of large flows from 
many users in a scheduled fashion. Thus, high network utilization can be achieved if the users are willing to wait for 
service according to a schedule (incurring delay) or accept high blocking probability upon request for service. Figure 3 
shows the increase in utilization for the same blocking performance as the scheduling horizon increases.  
 
There are 5 major features that contribute to the OFS architecture that lowers its cost by ~ 50 times versus IP packet 
switching for large transactions: 
1. End-to-end flows – reducing access and core router traffic by 99%. 
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2. The use of optimized logical MAN topology – minimizing active component (especially optical switch) costs. 
3. Remotely pumped optical access LAN to increase the number of access users/LAN in order to share expensive 

head-end equipment more cost efficiently. 
4. Efficient MAC protocol for fast time statistical multiplexing without hgih speed switching and contention collisions. 
5. The use of quasi-static network management and control in the core (WAN) for greatly simplified and scalable 

network control plane. 
 

 
 
 
 
 
 
 
 
 
 

 
 

 

 
 

 

Figure  3. OFS with and without scheduling horizons, [19], 
showing increased utilization with increasing scheduling 
horizon (M transactions) for the same blocking probability 
performance.                                                                                                 

 
Figure 4. 5 major architecture features that allow OFS offer ~50 
times lower cost to large transactions compared to IP packet 
switched service. 

 
The results of the throughput-cost comparison are given in Figure 5, [1,2,4,5,13,15]. OFS is the most scalable 
architecture of all when the average user data rate is high and the number of users in the network is large; EPS is most 
sensible at low to moderate data rates with a small number of users; the GMPLS architecture, which is conceptually 
intermediate to EPS and OFS, is optimal at moderate user data rates with a moderate to large number of users; and, 
finally, there does not exist a regime of optimality for Tell-and-Go, TaG, since the low cost of scheduling in OFS yields 
great performance benefit relative to the otherwise identical TaG architecture.  
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Figure 5. Cost/user/bit as a function of user rates for different 
transport mechanisms, [1].                                                                                                                                                                         

Figure 6. The (slow) centralized network management system periodically 
broadcasts the path states at regular intervals. The user/scheduler probes 
Kp(t) = min{Kk, Ko(t)} paths to achieve the desired blocking probability. 

OFS can serve high performance applications with very stringent time deadline constraints; setup times only need be 
slightly longer than one roundtrip time with networks at moderate to high loading. Figure 6 shows the performance of a 
MAC protocol that a multi-path probing mechanism using periodically updated network state information and with pre-
emption of lower priority traffic. The updating scheme calls for a slow control plane, which refreshes and broadcast 
network states only periodically on the order of seconds or longer. This algorithm, a combination of both slow 
centralized and fast distributed processes, delivers an efficient and scalable control design, providing different classes of 
OFS services based on desired delay/cost trade-offs and will allow OFS achieve high utlization > 80% with good 
quality of service. Thus, the proposed transport mechanism, OFS, with its new network architecture features, that 
exploit the strengths of optics to serve large transactions, will enable orders of magnitude of cost reductions. The 
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consequence of a shift towards OFS is that most architectural elements of the network – from the physical layer to the 
higher network layers, as well as network management and control, must be redesigned at the fundamental level.   
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