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Abstract: The coding mechanism of sensory memory on the neuron scale is one of the most 

important questions in neuroscience. We have put forward a quantitative neural network model, 

which is self-organized, self-similar, and self-adaptive, just like an ecosystem following 

Darwin's theory. According to this model, neural coding is a “mult-to-one” mapping from 

objects to neurons. And the whole cerebrum is a real-time statistical Turing Machine, with 

powerful representing and learning ability. This model can reconcile some important disputations, 

such as: temporal coding versus rate-based coding, grandmother cell versus population coding, 

and decay theory versus interference theory. And it has also provided explanations for some key 

questions such as memory consolidation, episodic memory, consciousness, and sentiment. 

Philosophical significance is indicated at last.  

Main Text: Great strides have been made in neuroscience and cognitive science (1-8). Until now 

however, the coding mechanism of sensory memory on the neuron scale is still unclear. A gap 

exists between the molecular and whole brain research (9). We wish to bridge this gap through a 

quantitative coding model. Inspired by the “self-organization” idea (10, 11), we only make local 

rules about neuron and synapse based on existing data and theories. Then the hierarchical neural 

network will emerge automatically. It has features of considerable interest in neuroscience, 

cognitive science, psychology, and even philosophy. The modeling target is mainly the cerebral 

cortex. All ci are constants, which have different meanings in different paragraphs. 
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m is neuromodulator factor, pi is the postsynaptic signal, ai is the activation or sensitivity of 

membrane channels. The neuron will be fired when q>c0. And the postsynaptic AP (action 

potential) will induce LTP (long-term potentiation) in this case. Otherwise LTD (long-term 

depression) will be induced when lacking postsynaptic AP. N1 is inspired by the MP model (12) 

and Hodgkin-Huxley model (13). N2)
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synaptic strength, fi is the presynaptic spike frequency, sp is stimulus quantity inducing LTP 

when the neuron is fired, f is the neuron’s firing frequency. Namely pi is determined by two 

processes: linearly increase of fi and exponentially decay. N3) 6 7 6( ) 0( 0)i
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   , where sd is stimulus quantity inducing LTD when the neuron can’t be 

fired. LTD should be caused by stimulus to fatigue channels namely
7 ic a . Postsynaptic AP can 

result in complete fatigue of channels namely 0ia  , while EPSP (excitatory postsynaptic 



potential) will result in partial fatigue namely
70 ia c  . Without stimulus however, they will 

recover to c7 quickly since c6>>0.  

N1 and N2 reflect the widely acknowledged spatial and temporal summarization of EPSP. 

N3 is actually an adaptive mechanism preventing spike frequency becoming too high. This 

model is supported by experiments and STDP (Spike timing Dependent Plasticity) model (14). 

As in N1, experiments support that inducing LTP needs the coincidence of back-propagating AP 

and EPSP (15). Correspondingly, inducing LTD needs stimulus without postsynaptic AP. 

According to N1, this require stimulus of low frequency (16) or closely after postsynaptic AP 

(namely stimulus in the refractory period) (14). Accordingly to N2 and N3, the time interval 

between presynaptic and postsynaptic spikes is important. Specifically, the temporal curves of 

LTP and LTD in STDP should be caused by the EPSP decay and channels recovery respectively. 

On the other hand however, this neuron model also supports rate-based coding or Hebb coding. 

For a usual spike sequence, it can be inferred from N2 that 2
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when t>>0. Therefore
3 4p i is c p f c f f  , and this is actually the Hebb conjecture (17). This can 

explain why inducing LTP needs stimulus of high frequency or collaboration of multiple 

dendrites (16). In conclusion, this model has reconciled the disputations between rate-based 

coding (Hebb coding) and temporal coding (STDP). Specifically, it is temporal coding for single 

isolated spike, but rate-based coding for natural spike sequence. We mainly discuss natural spike 

sequence in this paper, because the isolated spike is usually man-made rather than natural.  

For usual spike sequence, σ in N1 is approximately constant. Therefore N1 becomes
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important for the statistical significances. Suppose that the probability of an object O occurring 

on condition of attribute Ai is P(Oi)= P(O|Ai), where Ai are independent events. Let P(¬Oi)= 
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Compared with N1, the firing frequency f is proportional to the probability of an object occurring 

P(O) on condition of attributes. Similarly in N2, 6
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probabilistic estimate of an attribute occurring P(Ai) on condition of presynaptic spikes history. 

Without presynaptic spikes however, the reliability of this probabilistic estimate should drop 

exponentially with time. In essence, N1 and N2 reflect space-time localization which is also a 

frequently-used principle in the memory management of computer. Namely objects tend to exist 

in continuous local space and time. In conclusion, neuron is real-time statistical machine. This is 

also inspired by the statistical physics (18) and prediction of John Von Neumann (19). 

Incidentally, the exponential functions in this model can be easily implemented in physics and 

biology. For example, the radioactive materials decay exponentially.  
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is hormone factor, 
5p is c f f according to N2. Generally speaking, synapses are alive and self-

adaptive like muscles: continuous exercises make them thick and tough, but they will decay 



passively without exercises. S2) LTD:  6 0 1d
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recovery rate of wd. Generally speaking, LTD is the devaluation of LTP, and the actual synaptic 

strength should be their product wwd. Interestingly, curves in S2 are almost the reversal of S1. 

Since LTP is long-term (16), stimulus must have changed the synaptic persistence as well as 

strength. And obviously LTP decays with time. This synapse model is inspired by the BCM 

model in that synaptic growth rate is influenced by the synaptic strength itself (20). From the 

statistical viewpoint, synaptic strength reflects the confidence of attribute based on stimulus 

history. Similar to N2, S1 actually reflect the temporal localization principle, which should be 

the physiological foundation of “recency effect” or “recency bias”. Differently however, N2 is a 

kind of instantaneous memory which could be the foundation of consciousness according to 

Francis Crick (1). We mainly discuss LTP here, because LTD is similar. In addition, LTD is 

induced by stimulus below the firing threshold. Therefore it should be a regulator for depressing 

noises other than kernel encoding mechanism (21), just like the fatigue of photoreceptors in the 

retina. Both synaptic increase and decrease are necessary for many neural network models (6, 7). 

According to our model however, the synaptic decrease should be due to passive decay instead 

of LTD.  
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quantity of retrograde messengers, n is the number of dendrites connected to the same axonal 

branch, pi and fi are the postsynaptic potential and spike frequency respectively. Specifically, 

back-propagating AP will release retrograde messengers to the presynaptic and transitorily 

depress other synapses connecting to the axonal branch (22). And their postsynaptic APs will be 

depressed reversely according to N1. As statistics, this “rich-get-richer” will lead to lateral 

inhibition known as “softmax” or “winner-take-all” in existing theories (see Fig. 1) (4, 6). 

However, our model doesn’t need extra “MAX” layers or lateral inhibitory neurons, which is 

consistent with physiological evidences. The presynaptic axonal branches themselves actually 

play similar roles. This convergent competition should be the physiological foundation of 

“primacy effect” in psychology. And the unique winner is actually the coding neuron of this 

input, while its revivals can be viewed as background noises. After all, two clocks don’t give 

more accurate time. Form this viewpoint, lateral inhibition is a spatial adaptive mechanism, just 

like LTD being the temporal adaptive. On the other hand, neurons tend to keep sematic distances 

apart and prevent replicative coding due to lateral competition. In brief, neurons are 

professionalized in the division of work. And this will lead to sparse coding (23) and the 

structure of attribute slot defined as following.   

 

 

y1       y2       y3 

a      b       c    d 

Sparse Inputs 



Fig. 1. Synaptic competition and attribute slot. Black and white dots mean fired and unfired 

neurons respectively. Synapse a and d aren’t activated for lack of presynaptic spike. But b isn’t 

activated for its failure in the synaptic competition. However, c will be activated somewhat 

because y3 will be fired by other inputs. As a result, neuron y2 will inhibit y1 known as lateral 

inhibition, and y2 and y3 will inhibit each other. Lateral inhibition will lead to attribute slots, 

which are divided by vertical dotted lines here. For example, y1 and y2 are in the same attribute 

slot, while y3 is in a different one.  

 

Definition 1: as in Fig. 1, an attribute slot is a set of neurons: s=(a1, a2, …, an): if ai>0, then 

aj=0 for all j≠i, where ai is the neuron’s firing frequency. For example, if every color of a point 

corresponds to a single detector, all these detectors can compose an attribute slot. Specially, a 

binary bit is actually a special attribute slot with two values, and it needs two neurons for 

representing 0 and 1 respectively (see Fig. 2). In some models, 0 is represented by the resting 

potential. In our opinion however, the resting potential is meaningless because it can’t transit 

neurotransmitters. Therefore the spike is actually unitary other than binary, different from the 

binary pulse in computer. On the other hand, an attribute with n values can also be represented 

by the combination of m independent neurons (log ( ) )b n m n   other than by n mutually-

exclusive neurons. For example, all colors can be mixed of three-primary colors in different 

proportions. In essence, these two coding manners are “grandmother cell” and population coding 

respectively (24). 

Attribute slot has great representative ability. The “XOR problem” once caused the 

“artificial intelligence winter” (25), which was solved by multiple-layered network latter. With 

attribute slot however, it can be solved through a single-layer network (see Fig. 2). In fact, it can 

be proved that a single-layer network can represent any logic expression P. As well known,

1 i nP p p p   , i 1 j mp  a a a   , where aj is either an atom expression or its 

negative form. Since aj and ¬aj can be represented by attribute slot, pi can be represented by a 

single neuron. Therefore P can be represented by a single-layer network. Moreover, inhibitory 

neurons aren’t necessary, different from logic gates in computer. Retrograde massagers actually 

play similar roles of logic “NOT”. Similar to the all-or-none AP, the attribute slot is a kind of 

digital coding in essence. The digital coding is used widely in computer science for its tolerance 

of noise. Similarly, the cerebrum can also ignore flaws known as brain completion. The cost is 

that more neurons are needed. 

 

 

 

Fig. 2. Representation of XOR function. Panel A and B represent “x1 XOR x2” and “x1 OR x2” 

respectively. Feature each of x1 and ¬x1 corresponds to an independent neuron respectively. In 

some models however, ¬x1 and ¬x2 are represented by resting potentials.  
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Self-organized neural network and circuits. The initial model is composed of free 

neurons. Free dendrites move randomly and connect to axonal branches nearby with an initial 

synaptic strength. Whenever meeting an input, neurons compete and only winners can strengthen 

their dendritic synapses. Other synapses will decay until broken. Therefore, any input is actually 

either encoded by a free neuron or merged into the most similar coding neuron. Since single 

neuron’s dendrites are limited, every neuron only encodes a small part of an input. Therefore 

fine-grain encoding is supported. And the whole input is actually encoded by a hierarchy tree 

structure, whose root is the coding neuron of this input (see Fig. 3A). Overlapping coding trees 

compose neural network or cortical column (26). Since input is sparse (23), for simplicity we 

suppose that every input is composed of attribute slots (s1,s2,…,sn). Then every layer should be 

composed of attribute slots according to C1. And higher layer contains fewer attribute slots. 

Therefore every layer is the input of next layer, and feedback fibers can be viewed as common 

inputs. As results, circuits can be self-organized similar to the feedforward network (see Fig. 3B). 

Moreover, the neural network is self-similar: coding trees are like large neurons, while columns 

are large attribute slots. In some degree, a cortical area or the cerebrum itself is a super attribute 

slot.  

According to Francis Crick (1), the main cortical structure is determined by genes, while the 

fine neural coding is determined by postnatal experiences. Consistent with the neural Darwinism 

theory (2), the cortex is like an ecosystem according to our model: inputs are the sunshine; 

neurons collaborate and compete like plants and animals; and only the fittest can survive. 

Animals at the top of food chains are actually the memories of environment and era. For 

instances, lion is the symbol of African grassland, while the tyrannosaurus rex is the memory of 

the Cretaceous period. Recent experiments support that neural connections change dynamically 

with external stimulus (27). As results, universal free neurons become specialized gradually, just 

like embryonic stem-cells irreversibly growing into different organs. For example, visual 

pathways in the developing ferret brain can be rewired to auditory cortex and work well. A 

neuron’s function is actually determined by its dendritic connections. Just as Karl Marx said, 

“Person is the sum of all social relations”. From this viewpoint, people are super neurons of the 

society or Twitter.  

 

   

Fig. 3. Neural network and circuits. In A, black and white dots mean fired and unfired neurons 

respectively. Any input will converge to a single neuron such as y1 through a coding tree. 

Overlapping trees compose a neural network, and common intermediate nodes such as x are 

shared. Due to lateral inhibition, every layer is composed of attribute slots separated by vertical 

dotted lines here. In B, the triangle symbol represents coding tree in A. The long feedforward 

and feedback fibers can be viewed as common inputs. Therefore circuits can be self-organized 

similar to A.  
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Computational significance. According to our model, neural coding is a “multiple-to-one” 

mapping from inputs to neurons due to lateral inhibition, which is a well-defined function in 

essence. An input is encoded only when it has been convergent to the coding neuron through a 

coding tree. Conversely, whenever a coding neuron is fired, the corresponding input will be 

retrieved. Obviously, the retrieval process is an encoding process meanwhile. Neurons are 

computing units as well as storage units. Information is saved in the dendritic synapses, while the 

firing frequency is actually computing result. From this viewpoint, synapses and spikes are 

hardware and software of nerve system respectively, and both of them are distributed. Different 

from the von Neumann architecture (19), data and program aren’t separated. Representation of 

information is digital but not binary. In addition, dynamic changes of program at runtime are 

allowed. From the viewpoint of machine learning, the feedforward encoding is unsupervised 

learning in general. But supervised learning can also be conducted by facilitating or inhibiting 

neuron’s firing through specific fibers casting. This is important when we need to associate 

different objects or distinguish similar objects. For instance, we have to associate words and 

pronunciations with pictures as well as distinguish similar faces. Incidentally, that’s why people 

have “face cells” while monkeys don’t (1). According to N1 and S1, neuromodulators and 

hormones are actually meta-mechanisms influencing neuron’s firing frequency and learning rate. 

They could conduct reinforcement learning and selectively reinforcing memories important for 

survival, similar to the dopamine system in motor learning (28). However, the supervised 

learning and reinforcement learning here are “soft” or statistical rather than absolute. Since fired 

neurons strengthen their dendritic synapses towards to the input pattern, the lateral competition 

become convergent and stable gradually. Therefore the neural network tends to converge to the 

global minimum point, as in the simulated annealing algorithm (29). Similarly, synapses become 

stable gradually with stimuli according to S1. And synapses in lower layers are more stable. As 

results, iterations in back-propagating algorithm could be avoided when training hierarchical 

feedforward networks (7).  

Generally speaking, our model supports “grandmother cell” rather than population coding 

(24). The “grandmother cell” was questioned for following reasons (1, 4): first, neurons are too 

few and too simple for coding infinite complex objects in theory; second, experiments 

demonstrate that a neuron isn’t a template of all stimuli in its receptive field. According to our 

model however, a neuron encodes more than one object, and not all inputs are stored. Instead, 

only those occurring frequently or companied with hormone can be saved. And synaptic decay 

and neurogenesis (30) can produce additional memory capacity. Moreover, resources can be 

saved through sharing common intermediate nodes in the deep hierarchical network (4, 5), 

although retrieval will become slower. And neurons could actually use large trees for encoding 

complex objects. On the other hand, not all stimuli in a neuron’s receptive field are effective. 

Due to space-time adaptive mechanisms, neurons are more sensitive to features in contrast to 

backgrounds. Moreover, the coding is also influenced by the vast top-down connections. A 

possible worry is about the dying of neurons. In our opinion, only those lack of stimulus die. In 

fact, the influence of accidental death is also limited. As statistical model, lack of partial inputs 

won’t result in fatal disaster to a neuron. And due to the low firing threshold, this neuron model 

has surprising generalizing ability (4). Almost any input could stir up many neurons, and the 

retrieval is actually determined by lateral competition. Therefore the place of a dead neuron can 

be taken by the most similar one. In brief, the “grandmother cell” is as robust as population 

coding. However, population firing confronts the binding problem (1), namely how to reconcile 

distributed information and the unitary consciousness. Brain waves or rhythm was proposed as 



the binding mechanism. In our opinion however, binding is computing in essence. And neurons 

themselves should be the workshops binding features together.  

Psychological significance. S1 actually gives the learning curve and forgetting curve. 

However, the forgetting curve in experiments isn’t consistent with exponential function 

completely (31). In our opinion, recall in the tests and other rehearsals are actually memory 

consolidation process, which will slow down the decay rate. On the other hand, the lateral 

inhibition in C1 can explain memories interference (32). Since it influences encoding and 

retrieval meanwhile, both proactive interference and retroactive interference can be explained. 

Therefore our model has actually reconciled the decay theory and interference theory (33). In 

essence, forgetting is retrieval failure due to either lateral inhibition or disappearance of 

“memory trace”. Some researchers hold that forgetting should result from random changes of 

synapses due to noise (34), because relearning is easier than learning new, namely the implicit 

memory in psychology. According to our model, implicit memory are stored in lower layers, 

where neurons are common nodes shared by different coding trees. Therefore their synapses are 

usually tougher and more likely to remain. And forgetting should mainly be due to synaptic 

decay near the root of coding trees. Repetitive stimulus (rehearsal) and hormones can lead to 

memory consolidation. For example, we can remember a strange phone number through quick 

repetition. And dream should be one of such rehearsals (35). Specifically, neurons will become 

sensitive and firing spontaneously when without external inputs in sleep. Due to lateral inhibition, 

only strong circuits can be fired. Therefore in essence, dream is the self-reinforcing of strong 

memories as well as the fantasy divorced from reality since lacking inputs from nature. 

Influential events are often companied with hormones changing, which actually represent their 

importance for the survival (36). Since an event seldom repeats, it is hard for the neocortex to 

encode. However, it can be stored in hippocampus and limbic structure which are sensitive to 

hormones. These memories are usually known as episodic memory or flash memory, which is an 

important part of working memory in our opinion. They should be able to influence the sematic 

memory in cortex (37), just like computer memory writing and reading disk. From this viewpoint, 

sematic memory and rationality serve the hormone system, or instinct dominates rationality.  

Consciousness is one of the most important and mystical topics (1, 3, 8), which has different 

meanings in different disciplines. Here we try to discuss the neural mechanism correlative with 

consciousness, namely what happens when you think of an object. According to our model, 

conscious of something means the corresponding coding neuron’s firing. Paying attention to an 

object means specific fibers and neuromodulators casting to the coding neuron, while sentiment 

should be pervasive hormones. And different areas should be sensitive to different hormones, as 

the Lövheim cube of emotion (38). Our consciousness is often believed to be autonomous and 

free. For example, a girl can make various sentences she has never heard of. In our opinion, the 

consciousness seems autonomous because of the continuous complex inputs, huge memory 

volume, and some randomness. Specifically, the cerebrum is a “Turing Machine” in essence, 

whose output is determined by current inputs and internal states. Current inputs come from 

nature as well as our body, while internal states include memory and instinct system. In fact, the 

instinct or sentiment can also be viewed as ancient memories encoded in genes. As Crick said, 

we believe our minds are free, because we often know the decision itself but unaware of the 

decision-making process (1). In other words, the cerebrum is approximately a black box for us. 

Open the mainframe however, you will find a not-so-intelligent machine composed of transistors 

and plastic connections, although it is indeed more robust. It is surprising and interesting that 

intelligence could come from random processes.  



The philosophical significance hasn’t escaped our notice: the consciousness is the second 

nature, while the so-called “nature” is actually our subjective cognition of the “real” nature. We 

can cognize the nature only in probability and statistics, but never precisely or completely. In 

brief, the materialism and idealism can be reconciled. 
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