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Abstract

We present a semantic role labeling sys-
tem submitted to the closed track of the
CoNLL-2005 shared task. The system, in-
troduced in (Toutanova et al., 2005), im-
plements a joint model that captures de-
pendencies among arguments of a predi-
cate using log-linear models in a discrimi-
native re-ranking framework. We also de-
scribe experiments aimed at increasing the
robustness of the system in the presence
of syntactic parse errors. Our final system
achieves F1-Measures of 76.68 and 78.45
on the development and the WSJ portion
of the test set, respectively.

1 Introduction

It is evident that there are strong statistical patterns
in the syntactic realization and ordering of the argu-
ments of verbs; for instance, if an active predicate
has anA0 argument it is very likely to come before
anA1 argument. Our model aims to capture such de-
pendencies among the labels of nodes in a syntactic
parse tree.

However, building such a model is computation-
ally expensive. Since the space of possible joint la-
belings is exponential in the number of parse tree
nodes, a model cannot exhaustively consider these
labelings unless it makes strong independence as-
sumptions. To overcome this problem, we adopt
a discriminative re-ranking approach reminiscent of
(Collins, 2000). We use a local model, which la-
bels arguments independently, to generate a smaller
number of likely joint labelings. These candidate la-
belings are in turn input to a joint model which can

use global features and re-score the candidates. Both
the local and global re-ranking models are log-linear
(maximum entropy) models.

In the following sections, we briefly describe our
local and joint models and the system architecture
for combining them. We list the features used by our
models, with an emphasis on new features, and com-
pare the performance of a local and a joint model on
the CoNLL shared task. We also study an approach
to increasing the robustness of the semantic role la-
beling system to syntactic parser errors, by consid-
ering multiple parse trees generated by a statistical
parser.

2 Local Models

Our local model labels nodes in a parse tree inde-
pendently. We decompose the probability over la-
bels (all argument labels plusNONE), into a product
of the probability overARG andNONE, and a prob-
ability over argument labels given that a node is an
ARG. This can be seen as chaining anidentification
and aclassificationmodel. The identification model
classifies each phrase as either an argument or non-
argument and our classification model labels each
potential argument with a specific argument label.
The two models use the same features.

Previous research (Gildea and Jurafsky, 2002;
Pradhan et al., 2004; Carreras and Màrquez, 2004)
has identified many useful features for local iden-
tification and classification. Below we list the fea-
tures and hand-picked conjunctions of features used
in our local models. The ones denoted with asterisks
(*) were not present in (Toutanova et al., 2005). Al-
though most of these features have been described in
previous work, some features, described in the next
section, are – to our knowledge – novel.



• Phrase-Type Syntactic category of node
• Predicate Lemma Stemmed target verb
• Path Sequence of phrase types between the predicate and

node, with↑, ↓ to indicate direction
• Position Before or after predicate
• Voice Voice of predicate
• Head-Word of Phrase
• Head-POS POS tag of head word
• Sub-Cat CFG expansion of predicate’s parent
• First/Last Word
• Left/Right Sister Phrase-Type
• Left/Right Sister Head-Word/Head-POS
• Parent Phrase-Type
• Parent POS/Head-Word
• Ordinal Tree Distance Phrase-type concatenated with the

length of thePath feature
• Node-LCA Partial Path Path from the node to the lowest

common ancestor of the predicate and the node
• PP Parent Head-Word If the parent of the node is a PP, the

parent’s head-word
• PP NP Head-Word/Head-POS For a PP, retrieve the head-

word /head-POS of its rightmost NP
• Temporal Keywords* Is the head of the node a temporal

word e.g ‘February’ or ‘afternoon’
• Missing subject* Is the predicate missing a subject in

the“standard” location
• Projected path* Path from the maximal extended projection

of the predicate to the node
• Predicate Lemma & Path
• Predicate Lemma & Head-Word
• Predicate Lemma & Phrase-Type
• Voice & Position
• Predicate Lemma & PP Parent Head-Word
• Path & Missing subject*
• Projected path & Missing subject*

2.1 Additional Local Features

We found that a large source of errors forA0 andA1
stemmed from cases such as those illustrated in Fig-
ure 1, where arguments were dislocated by raising
or controlling verbs. Here, the predicate,expected,
does not have a subject in the typical position – in-
dicated by the empty NP – since the auxiliaryis has
raised the subject to its current position. In order to
capture this class of examples, we use a binary fea-
ture,Missing Subject, indicating whether the pred-
icate is “missing” its subject, and use this feature in
conjunction with thePath feature, so that we learn
typical paths to raised subjects conditioned on the
absence of the subject in its typical position.

In the particular case of Figure 1, there is an-
other instance of an argument being quite far from
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Figure 1: Example of displaced arguments

its predicate. The predicatewidensharesthe trade
gapwith expectas aA1 argument. However, asex-
pect is a raising verb,widen’s subject is not in its
typical position either, and we should expect to find
it in the same positions asexpected’s subject. This
indicates it may be useful to use the path relative to
expectedto find arguments forwiden. In general,
to identify certain arguments of predicates embed-
ded in auxiliary and infinitival VPs we expect it to
be helpful to take the path from the maximum ex-
tended projection of the predicate – the highest VP
in the chain of VP’s dominating the predicate. We
introduce a new path feature,Projected Path, which
takes the path from the maximal extended projec-
tion to an argument node. This feature applies only
when the argument is not dominated by the maxi-
mal projection, (e.g., direct objects). These features
also handle other cases of discontinuous and non-
local dependencies, such as those arising due to con-
troller verbs. For a local model, these new features
and their conjunctions improved F1-Measure from
73.80 to 74.52 on the development set. Notably, the
F1-Measure ofA0 increased from 81.02 to 83.08.

3 Joint Model

Our joint model, in contrast to the local model, col-
lectively scores a labeling of all nodes in the parse
tree. The model is trained to re-rank a set ofN likely
labelings according to the local model. We find the
exact topN consistent1 most likely local model la-
belings using a simple dynamic program described
in (Toutanova et al., 2005).

Most of the features we use are described in more
detail in (Toutanova et al., 2005). Here we briefly

1A labeling is consistent if satisfies the constraint that argu-
ment phrases do not overlap.
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Figure 2: An example tree with semantic role annotations.

describe these features and introduce several new
joint features (denoted by *). A labelingL of all
nodes in the parse tree specifies a candidate argu-
ment frame – the sequence of all nodes labeled with
a non-NONE label according toL. The joint model
features operate on candidate argument frames, and
look at the labels and internal features of the candi-
date arguments. We introduce them in the context
of the example in Figure 2. The candidate argument
frame corresponding to the correct labeling for the
tree is:[NP1-A1,VBD-V,PP1-A3,PP2-A4,NP2-AM-TMP].

• Core arguments label sequence: The sequence
of labels of core arguments concatenated with
the predicate voice. Example:[voice:active:
A1,V,A3,A4] A back-off feature which substitutes
specific argument labels with a generic argument
(A) label is also included.

• Flattened core arguments label sequence*:
Same as the previous but merging consecutive
equal labels.

• Core arguments label and annotated phrase
type sequence: The sequence of labels of core
arguments together with annotated phrase types.
Phrase types are annotated with the head word for
PP nodes, and with the head POS tag for S and VP
nodes. Example:[voice:active: NP-A1,V,PP-to-
A3,PP-from-A4]. A back-off to genericA labels
is also included. Also a variant that adds the pred-
icate stem.

• Repeated core argument labels with phrase
types: Annotated phrase types for nodes with
the same core argument label. This feature cap-
tures, for example, the tendency ofWHNP refer-
ring phrases to occur as the second phrase having
the same label as a precedingNP phrase.

• Repeated core argument labels with phrase
types and sister/adjacency information*: Sim-
ilar to the previous feature, but also indicates

whether all repeated arguments are sisters in the
parse tree, or whether all repeated arguments are
adjacent in terms of word spans. These features
can provide robustness to parser errors, making it
more likely to label adjacent phrases incorrectly
split by the parser with the same label.

4 Combining Local and Joint Models

It is useful to combine the joint model score with
a local model score, because the local model has
been trained using all negative examples, whereas
the joint model has been trained only on likely
argument frames . Our final score is given by
a mixture of the local and joint model’s log-
probabilities: scoreSRL(L|t) = α score`(L|t) +
scoreJ(L|t), wherescore`(L|t) is the local score of
L, scoreJ(L|t) is the corresponding joint score, and
α is a tunable parameter. We search among the top
N candidate labelings proposed by the local model,
for the labeling that maximizes the final score.

5 Increasing Robustness to Parser Errors

Semantic role labeling is very sensitive to the cor-
rectness of the given parse tree. If an argument does
not correspond to a constituent in a parse tree, our
model will not be able to consider the correct phrase.

One way to address this problem is to utilize alter-
native parses. Recent releases of the Charniak parser
(Charniak, 2000) have included an option to provide
the topk parses of a given sentence according to
the probability model of the parser. We use these
alternative parses as follow: Supposet1, . . . , tk are
trees for sentences with given probabilitiesP (ti|s)
by the parser. Then for a fixed predicatev, let Li

denote the best joint labeling of treeti, with score
scoreSRL(Li|ti) according to our final joint model.



Then we choose the labelingL which maximizes:

arg max
i∈{1,...,k}

β log P (ti|S) + scoreSRL(Li|ti)

Considering topk = 5 parse trees using this al-
gorithm resulted in up to 0.4 absolute increase in
F-Measure. In future work, we plan to experiment
with better ways to combine information from mul-
tiple parse trees.

6 Experiments and Results

For our final results we used a joint model withα =
1.5 (local model weight),β = 1 (parse tree log-
probability weight) ,N = 15 (candidate labelings
from the local model to consider) , andk = 5 (num-
ber of alternative parses). The whole training set for
the CoNLL-2005 task was used to train the mod-
els. It takes about 2 hours to train a local identifi-
cation model, 40 minutes to train a local classifica-
tion model, and 7 hours to train a joint re-ranking
model.2

In Table 1, we present our final development and
test results using this model. The percentage of
perfectly labeled propositions for the three sets is
55.11% (development), 56.52% (test), and 37.06%
(Brown test). The improvement achieved by the
joint model relative to the local model is about 2
points absolute in F-Measure, similar to the im-
provement when gold-standard syntactic parses are
used (Toutanova et al., 2005). The relative error re-
duction is much lower for automatic parses, possi-
bly due to a lower upper bound on performance. It
is clear from the drop in performance from the WSJ
to Brown test set that our learned model’s features
do not generalize very well to related domains.
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