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Abstract

We consider the problem of reconstructing a sparse signal x0 ∈ Rn from a limited number of
linear measurements. Given m randomly selected samples of Ux0, where U is an orthonormal
matrix, we show that `1 minimization recovers x0 exactly when the number of measurements
exceeds

m ≥ Const · µ2(U) · S · log n,

where S is the number of nonzero components in x0, and µ is the largest entry in U properly
normalized: µ(U) =

√
n ·maxk,j |Uk,j |. The smaller µ, the fewer samples needed.

The result holds for “most” sparse signals x0 supported on a fixed (but arbitrary) set T .
Given T , if the sign of x0 for each nonzero entry on T and the observed values of Ux0 are drawn
at random, the signal is recovered with overwhelming probability. Moreover, there is a sense
in which this is nearly optimal since any method succeeding with the same probability would
require just about this many samples.
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1 Introduction

1.1 Sparse recovery from partial measurements

This paper addresses the problem of signal acquisition in a broad setting. We are interested in
“sampling” a vector x0 ∈ Rn. Instead of observing x0 directly, we sample a small number m of
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transform coefficients of x0. For an orthogonal matrix1 U with

U∗U = nI, (1.1)

these transform coefficients are given by y0 = Ux0. Of course, if all n of the coefficients y0 are
observed, recovering x0 is trivial: we simply apply 1

n U
∗ to the vector of observations y0. Instead,

we are concerned with the highly underdetermined case in which only a small fraction of the
components of y0 are actually sampled or observed. Given a subset Ω ⊂ {1, . . . , n} of size |Ω| = m,
the challenge is to infer the “long” n-dimensional vector x0 from the “short” m-dimensional vector
of observations y = UΩx

0, where UΩ is the m× n matrix consisting of the rows of U indexed by Ω.
In plain English, we wish to solve a system of linear equations in which there are fewer equations
than unknowns.

A special instance of this problem was investigated in a recent paper [4], where U is taken as the
usual discrete Fourier transform. The main result of this work is that if x0 is S-sparse (at most
S of the n components of x0 are nonzero), then it can be recovered perfectly from on the order
of S log n Fourier-domain samples. The recovery algorithm is concrete and tractable: given the
discrete Fourier coefficients

yk =
n∑

t=1

x0(t)e−i2π(t−1)k/n, k ∈ Ω, (1.2)

or y = FΩx
0 for short, we solve the convex optimization program

min
x

‖x‖`1 subject to FΩx = y.

For a fixed x0, the recovery is exact for the overwhelming majority of sample sets Ω of size

|Ω| ≥ C · S · log n, (1.3)

where C is a known (small) constant.

Since [4], a theory of “compressed sensing” has developed around several papers [6, 7, 9] demon-
strating the effectiveness of `1 minimization for recovering sparse signals from a limited number
of measurements. To date, most of this effort has been focused on systems which take completely
unstructured, noise-like measurements, i.e. the observation vector y is created from a series of inner
products against random test vectors {φk}:

yk = 〈φk, x
0〉, k = 1, . . . ,m. (1.4)

The collection {φk} is sometimes referred to as a measurement ensemble; we can write (1.4) com-
pactly as y = Φx0, where the rows of Φ are the φk. Published results take φk to be a realization
of Gaussian white noise, or a sequence of Bernoulli random variables taking values ±1 with equal
probability. This work has shown that taking random measurements is in some sense an optimal
strategy for acquiring sparse signals; it requires a near-minimal number of measurements [1,6,7,9,10]

1On a first reading, our choice of normalization of U may seem a bit strange. The advantages of taking the row
vectors of U to have Euclidean norm

√
n are that 1) the notation in the sequel will be cleaner, and 2) it will be easier

to see how this result generalizes the special case of incomplete sampling in the Fourier domain presented in [4].
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— m measurements can recover signals with sparsity S . m/ log(n/m), and all of the constants
appearing in the analysis are small [13]. Similar bounds have also appeared using greedy [28] and
complexity-based [17] recovery algorithms in place of `1 minimization.

Although theoretically powerful, the practical relevance of results for completely random measure-
ments is limited in two ways. The first is that we are not always at liberty to choose the types
of measurements we use to acquire a signal. For example, in magnetic resonance imaging (MRI),
subtle physical properties of nuclei are exploited to collect samples in the Fourier domain of a
two- or three-dimensional object of interest. While we have control over which Fourier coefficients
are sampled, the measurements are inherently frequency based. A similar statement can be made
about tomographic imaging; the machinery in place measures Radon slices, and these are what we
must use to reconstruct an image.

The second drawback to completely unstructured measurement systems is computational. Random
(i.e. unstructured) measurement ensembles are unwieldy numerically; for large values of m and n,
simply storing or applying Φ (tasks which are necessary to solve the `1 minimization program) are
nearly impossible. If, for example, we want to reconstruct a megapixel image (n = 1, 000, 000) from
m = 25, 000 measurements (see the numerical experiment in Section 2), we would need more than
3 gigabytes of memory just to store the measurement matrix, and on the order of gigaflops to apply
it. The goal from this point of view, then, is to have similar recovery bounds for measurement
matrices Φ which can be applied quickly (in O(n) or O(n log n) time) and implicitly (allowing us
to use a “matrix free” recovery algorithm).

Our main theorem, stated precisely in Section 1.2 and proven in Section 3, states that bounds
analogous to (1.3) hold for sampling with general orthogonal systems. We will show that for a fixed
signal support T of size |T | = S, the program

min
x

‖x‖`1 subject to UΩx = UΩx
0 (1.5)

recovers the overwhelming majority of x0 supported on T and observation subsets Ω of size

|Ω| ≥ C · µ2(U) · S · log n, (1.6)

where µ(U) is simply the largest magnitude among the entries in U :

µ(U) = max
k,j

|Uk,j |. (1.7)

It is important to understand the relevance of the parameter µ(U) in (1.6). µ(U) can be interpreted
as a rough measure of how concentrated the rows of U are. Since each row (or column) of U
necessarily has an `2-norm equal to

√
n, µ will take a value between 1 and

√
n. When the rows

of U are perfectly flat — |Uk,j | = 1 for each k, j, as in the case when U is the discrete Fourier
transform, we will have µ(U) = 1, and (1.6) is essentially as good as (1.3). If a row of U is
maximally concentrated — all the row entries but one vanish — then µ2(U) = n, and (1.6) offers
us no guarantees for recovery from a limited number of samples. This result is very intuitive.
Suppose indeed that Uk0,j0 =

√
n and x0 is 1-sparse with a nonzero entry in the j0th location. To

reconstruct x0, we need to observe the k0th entry of Ux0 as otherwise, the data vector y will vanish.
In other words, to reconstruct x0 with probability greater than 1− 1/n, we will need to see all the

3



components of Ux0, which is just about the content of (1.6). This shows informally that (1.6) is
fairly tight on both ends of the range of the parameter µ.

For a particular application, U can be decomposed as a product of a sparsity basis Ψ, and an
orthogonal measurement system Φ. Suppose for instance that we wish to recover a signal f ∈ Rn

from m measurements of the form y = Φf . The signal may not be sparse in the time domain but
its expansion in the basis Ψ may be

f(t) =
n∑

j=1

x0
jψj(t), f = Ψx

(the columns of Ψ are the discrete waveforms ψj). Our program searches for the coefficient sequence
in the Ψ-domain with minimum `1 norm that explains the samples in the measurement domain Φ.
In short, it solves (1.6) with

U = ΦΨ, Ψ∗Ψ = I, Φ∗Φ = nI.

The result (1.6) then tells us how the relationship between the sensing modality (Φ) and signal model
(Ψ) affects the number of measurements required to reconstruct a sparse signal. The parameter µ
can be rewritten as

µ(ΦΨ) = max
k,j

|〈φk, ψj〉|,

and serves as a rough characterization of the degree of similarity between the sparsity and mea-
surement systems. For µ to be close to its minimum value of 1, each of the measurement vectors
(rows of Φ) must be “spread out” in the Ψ domain. To emphasize this relationship, µ(U) is often
referred to as the mutual coherence [11, 12]. The bound (1.6) tells us that an S-sparse signal can
be reconstructed from ∼ S log n samples in any domain in which the test vectors are “flat”, i.e. the
coherence parameter is O(1).

1.2 Main result

The ability of the `1-minimization program (1.5) to recover a given signal x0 depends only on 1)
the support set T of x0, and 2) the sign sequence z0 of x0 on T .2 For a fixed support T , our main
theorem shows that perfect recovery is achieved for the overwhelming majority of the combinations
of sign sequences on T , and sample locations (in the U domain) of size m obeying (1.6).

The language “overwhelming majority” is made precise by introducing a probability model on the
set Ω and the sign sequence z. The model is simple: select Ω uniformly at random from the set of
all subsets of the given size m; choose each z(t), t ∈ T to be ±1 with probability 1/2. Our main
result is:

Theorem 1.1 Let U be an n× n orthogonal matrix (U∗U = nI) with |Uk,j | ≤ µ(U). Fix a subset
T of the signal domain. Choose a subset Ω of the measurement domain of size |Ω| = m, and a sign
sequence z on T uniformly at random. Suppose that

m ≥ C0 · |T | · µ2(U) · log(n/δ) (1.8)
2In other words, the recoverability of x0 is determined by the facet of the `1 ball of radius ‖x0‖`1 on which x0

resides.
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and also m ≥ C ′
0 · log2(n/δ) for some fixed numerical constants C0 and C ′

0. Then with probability
exceeding 1−δ, every signal x0 supported on T with signs matching z can be recovered from y = UΩx

0

by solving (1.5).

The hinge of Theorem 1.1 is a new weak uncertainty principle for general orthobases. Given T and
Ω as above, it is impossible to find a signal which is concentrated on T and on Ω in the U domain.
In the example above where U = ΦΨ, this says that one cannot be concentrated on small sets in
the Ψ and Φ domains simultaneously. As noted in previous publications [3, 4], this is a statement
about the eigenvalues of minors of the matrix U . Let UT be the n × |T | matrix corresponding to
the columns of U indexed by T , and let UΩT be the m × |T | matrix corresponding to the rows of
UT indexed by Ω. In Section 3, we will prove the following:

Theorem 1.2 Let U, T ,and Ω be as in Theorem 1.1. Suppose that the number of measurements m
obeys

m ≥ |T | · µ2(U) ·max(C1 log |T |, C2 log(3/δ)), (1.9)

for some positive constants C1, C2. Then

P
(
‖ 1
m
U∗

ΩTUΩT − I‖ ≥ 1/2
)
≤ δ, (1.10)

where ‖ · ‖ is the standard operator `2 norm—here, the largest eigenvalue (in absolute value).

For small values of δ, the eigenvalues of U∗
ΩTUΩT are all close to m with high probability. To see

that this is an uncertainty principle, let x ∈ Rn be a sequence supported on T , and suppose that
‖m−1U∗

ΩTUΩT − I‖ ≤ 1/2. It follows that

m

2
‖x‖2

`2 ≤ ‖UΩx‖2
`2 ≤

3m
2
‖x‖2

`2 , (1.11)

which asserts that only a small portion of the energy of x will be concentrated on the set Ω in
the U -domain (the total energy obeys ‖Ux‖2

`2
= n‖x‖2

`2
). Moreover, this portion is essentially

proportional to the size of Ω.

1.3 Contributions and relationship to prior work

The relationship of the mutual incoherence parameter µ to the performance of `1 minimization
programs with equality constraints first appeared in the context of Basis Pursuit for sparse approx-
imation, see [12] and also [11,14,16].

As mentioned in the previous section, [4] demonstrated the effectiveness of `1 recovery from Fourier-
domain samples in slightly more general situations than in Theorem 1.1 (randomization of the signs
on T is not required). Obviously, the results presented in this paper considerably extend this Fourier
sampling theorem.

We also note that since [4], several papers have appeared on using `1 minimization to recover sparse
signals from a limited number of measurements [5, 7, 9]. In particular [7] and [25] provide bounds
for reconstruction from a random subset of measurements selected from an orthogonal basis; these
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papers ask that all sparse signals to be simultaneously recoverable from the same set of samples
(which is stronger than our goal here), and their bounds have log factors of (log n)6 and (log n)5

respectively. These results are based on uniform uncertainty principles, which require (1.10) to
hold for all sets T of a certain size simultaneously once Ω is chosen. Whether or not this log power
can be reduced in this context remains an open question.

A contribution of this paper is to show that if one is only interested in the recovery of nearly all
signals on a fixed set T , these extra log factors can indeed be removed. We show that to guarantee
exact recovery, we only require UΩT to be well behaved for this fixed T as opposed to all T ’s of the
same size, which is a significantly weaker requirement. By examining the singular values of UΩT ,
one can check whether or not (1.11) holds.

Our method of proof, as the reader will see in Section 3, relies on a variation of the powerful results
presented in [24] about the expected spectral norm of certain random matrices. We also introduce
a novel large-deviation inequality, similar in spirit to those reviewed in [19,20] but carefully tailored
for our purposes, to turn this statement about expectation into one about high probability.

Finally, we would like to contrast this work with [29], which also draws on the results from [24].
First, there is a difference in how the problem is framed. In [29], the m×n measurement system is
fixed, and bounds for perfect recovery are derived when the support and sign sequence are chosen
at random, i.e. a fixed measurement system works for most signal supports of a certain size. In
this paper, we fix an arbitrary signal support, and show that we will be able to recover from
most sets of measurements of a certain size in a fixed domain. Second, although slightly more
general class of measurement systems is considered in [29], the final bounds for sparse recovery in
the context of (1.5) do not fundamentally improve on the uniform bounds cited above; [29] draws
weaker conclusions since the results are not shown to be universal in the sense that all sparse signals
are recovered as in [7] and [25].

2 Applications

In the 1990s, image compression algorithms were revolutionized by the introduction of the wavelet
transform. The reasons for this can be summarized with two major points: the wavelet trans-
form is a much sparser representation for photograph-like images than traditional Fourier-based
representations, and it can be applied and inverted in O(n) computations.

To exploit this wavelet-domain sparsity in acquisition, we must have a measurement system which
is incoherent with the wavelet representation (so that µ in (1.6) is small) and that can be applied
quickly and implicitly (so that large-scale recovery is computationally feasible). In this section, we
present numerical experiments for two such measurement strategies.

2.1 Fourier sampling of sparse wavelet subbands

Our first measurement strategy takes advantage of the fact that at fine scales, wavelets are very
much spread out in frequency. We will illustrate this in 1D; the ideas are readily applied to 2D
image.
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Figure 1: Wavelets in the frequency domain. The curves shown above are the magnitude of the discrete
Fourier transform (2.1) of Daubechies-8 wavelets for n = 1024 and j = 1, 2, 3. The magnitude of ψ̂j,· over
the subband (2.3) is shown in bold.

Labeling the scales of the wavelet transform by j = 1, 2, . . . , J , where j = 1 is the finest scale and
j = J the coarsest, the wavelets3 ψj,k at scale j are almost flat in the Fourier domain over a band
of size nj = n2−j . The magnitude of the Fourier transform

ψ̂j,k(ω) =
n∑

t=1

ψ(t)e−i2π(t−1)ω/n, ω = −n/2 + 1, . . . , n/2, (2.1)

is the same for each wavelet at scale j, since

ψ̂j,k(ω) = e−i2π(k−1)ω/nj ψ̂j,1(ω). (2.2)

These spectrum magnitudes are shown for the Daubechies-8 wavelet in Figure 1. We see that over
frequencies in the jth subband

ω ∈ Bj := {nj/2 + 1, . . . , nj} ∪ {−nj + 1, . . . ,−nj/2}, (2.3)

we have
maxω∈Bj |ψ̂j,k(ω)|
minω∈Bj |ψ̂j,k(ω)|

< Const ≈
√

2.

Suppose now that a signal x0 is a superposition of S wavelets at scale j, that is, we can write

x0 = Ψjw
0

where w0 ∈ Rnj is S-sparse, and Ψj is the n × nj matrix whose columns are the ψj,k(t) for
k = 1, . . . , nj . We will measure x0 by selecting Fourier coefficients from the band Bj at random. To
see how this scheme fits into the domain of the results in the introduction, let ω index the subband
Bj , let Fj be the nj × n matrix whose rows are the Fourier vectors for frequencies in Bj , let Dj be
a diagonal matrix with

(Dj)ω,ω = ψ̂j,1(ω), ω ∈ Bj ,

3Wavelets are naturally parameterized by a scale j and a shift k with k = 1, 2, . . . , n2−j — see [21]. The wavelets
at a set scale are just circular shifts of one another: ψj,k(t) = ψj,1(t− 2jk), where the substraction is modulo n.

7



Table 1: Number of measurements required to reconstruct a sparse subband. Here, n = 1024, S is the
sparsity of the subband, and M(S, j) is the smallest number of measurements so that the S-sparse subband
at wavelet level j was recovered perfectly in 1000/1000 trials.

j = 1 j = 2 j = 3
S M(S, j) S M(S, j) S M(S, j)
50 100 25 56 15 35
25 68 15 40 8 24
15 49 8 27 - -

and consider the nj × nj system
U = D−1

j FjΨj .

The columns of FjΨj are just the Fourier transforms of the wavelets given in (2.2),

(FjΨj)ω,k = e−i2π(k−1)ω/nj ψ̂j,1(ω) ⇒ Uω,k = e−i2π(k−1)ω/nj ,

and so U is just a nj × nj Fourier system. In fact, one can easily check that U∗U = U∗U = nj I.

We choose a set of Fouier coefficients Ω of size m in the band Bj , and measure

y = FΩx0 = FΩΨjw
0,

which can easily be turned into a set of samples in the U domain y′ = UΩw
0 just by re-weighting

y. Since the mutual incoherence of D−1FjΨj is µ = 1, we can recover w0 from ∼ S log n samples.

Table 1 summarizes the results of the following experiment: Fix the scale j, sparsity S, and a
number of measurements m. Perform a trial for (S, j,m) by first generating a signal support T of
size S, a sign sequence on that support, and a measurement set Ωj of size m uniformly at random,
and then measuring y = FΩjΨjx

0 (x0 is just the sign sequence on T and zero elsewhere), solving
(1.5), and declaring success if the solution matches x0. A thousand trials were performed for each
(S, j,m). The value M(S, j) recorded in the table is the smallest value of m such that the recovery
was successful in all 1000 trials. As with the partial Fourier ensemble (see the numerical results
in [4]), we can recover from m ≈ 2S to 3S measurements.

To use the above results in an imaging system, we would first separate the signal/image into wavelet
subband, measure Fourier coefficients in each subband as above, then reconstruct each subband
independently. In other words, if PWj is the projection operator onto the space spanned by the
columns of Ψj , we measure

yj = FΩjPWjx
0

for j = 1, . . . , J , then set wj to be the solution to

min ‖w‖`1 subject to FΩjΨjw = yj .

If all of the wavelet subbands of the object we are imaging are appropriately sparse, we will be able
to recover the image perfectly.

Finally, we would like to note that this projection onto Wj in the measurement process can be
avoided by constructing the wavelet and sampling systems a little more carefully. In [12], a “bi-
sinusoidal” measurement system is introduced which complements the orthonormal Meyer wavelet
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transform. These bi-sinusoids are an alternative orthobasis to the Wj spanned by Meyer wavelets
at a given scale (with perfect mutual incoherence), so sampling in the bi-sinusoidal basis isolates a
given wavelet subband automatically.

In the next section, we examine an orthogonal measurement system which allows us to forgo this
subband separation all together.

2.2 Noiselet measurements

In [8], a complex “noiselet” system is constructed that is perfectly incoherent with the Haar wavelet
representation. If Ψ is an orthonormal system of Haar wavelets, and Φ is the orthogonal noiselet
system (renormalized so that Φ∗Φ = nI), then U = ΦΨ has entries of constant magnitude:

|Uk,j | = 1, ∀k, j which implies µ(U) = 1.

Just as the canonical basis is maximally incoherent with the Fourier basis, so is the noiselet system
with Haar wavelets. Thus if an n-pixel image is S-sparse in the Haar wavelet domain, it can be
recovered (with high probability) from ∼ S log n randomly selected noiselet coefficients.

In addition to perfect incoherence with the Haar transform, noiselets have two additional properties
that make them ideal for coded image acquisition:

1. The noiselet matrix Φ can be decomposed as a multiscale filterbank. As a result, it can be
applied O(n log n) time.

2. The real and imaginary parts of each noiselet function are binary valued. A noiselet mea-
surement of an image is just an inner product with a sign pattern, which make their imple-
mentation in an actual acquisition system easier. (It would be straightforward to use them
in the imaging architecture proposed in [26], for example.)

A large-scale numerical example is shown in Figure 2. The n = 10242 pixel synthetic image in
panel (a) is an exact superposition of S = 25, 000 Haar wavelets4. The observation vector y was
created from m = 70, 000 randomly chosen noiselet coefficients (each noiselet coefficient has a real
and imaginary part, so there are really 140, 000 real numbers recorded). From y, we are able to
recover the image exactly by solving (1.5).

This result is a nice demonstration of the compressed sensing paradigm. A traditional acquisition
process would measure all n ∼ 106 pixels, transform into the wavelet domain, and record the S that
are important. Many measurements are made, but comparably very few numbers are recorded. Here
we take only a fraction of the number of measurements, and are able to find the S active wavelets
coefficients without any prior knowledge of their locations.

The measurement process can be adjusted slightly in a practical setting. We know that almost all
of the coarse-scale wavelet coefficients will be important (see Figure 2(b)), so we can potentially

4The image was created in the obvious way: the well-known test image was transformed into the Haar domain,
all but the 25, 000 largest Haar coefficients were set to zero, and the result inverse transformed back into the spatial
domain.
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(a) (b) (c)

Figure 2: Sparse image recovery from noiselet measurements. (a) Synthetic n = 10242-pixel image
with S = 25, 000 non-zero Haar wavelet coefficients. (b) Locations (in the wavelet quadtree) of sig-
nificant wavelet coefficients. (c) Image recovered from m = 70, 000 complex noiselet measurements.
The recovery matches (a) exactly.

reduce the number of measurements needed for perfect recovery by measuring these directly. In
fact, if we measure the 128 × 128 block of coarse wavelet coefficients for the image in Figure 2
directly (equivalent to measuring averages over 8× 8 blocks of pixels, 16, 384 measurement total),
we are able to recover the image perfectly from an additional 41, 808 complex noiselet measurements
(the total number of real numbers recorded is 100, 000).

3 Proofs

3.1 General strategy

The proof of Theorem 1.1 follows the program set forth in [4, 15]. As detailed in these references,
the signal x0 is the unique solution to (1.5) if and only if there exists a dual vector π ∈ Rn with
the following properties:

• π is in the row space of UΩ,

• π(t) = sgnx0(t) for t ∈ T , and

• |π(t)| < 1 for t ∈ T c.

We consider the candidate
π = U∗

ΩUΩT (U∗
ΩTUΩT )−1z0, (3.1)

where z0 is a |T |-dimensional vector whose entries are the signs of x0 on T , and show that under
the conditions in the theorem 1) π is well defined (i.e. U∗

ΩTUΩT is invertible), and given this 2)
|π(t)| < 1 on T c (we automatically have that π is in the row space of UΩ and π(t) = sgnx(t) on T ).
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We want to show that with the support fixed, a dual vector exists with high probability when
selecting Ω uniformly at random. Following [4], it is enough to show that the desired properties
when Ω is sampled using a Bernoulli model. Suppose Ω1 of size m is sampled uniformly at random,
and Ω2 is sampled by setting

Ω2 := {k : δk = 1},

where here and below δ1, δ2, . . . , δn is a sequence of independent identically distributed 0/1 Bernoulli
random variables with

P(δk = 1) = m/n.

Then
P(Failure(Ω1)) ≤ 2P(Failure(Ω2)) (3.2)

(see [4] for details). With this established, we will establish the existence of a dual vector for x0

with high probability for Ω sampled using the Bernoulli model.

The matrix U∗
ΩTUΩT is now a random variable, which can be written as

U∗
ΩTUΩT =

n∑
k=1

δku
k ⊗ uk,

where the uk are the row vectors of UT ; uk = (Ut,k)t∈T .

3.2 Proof of Theorem 1.2

Our first result, which is an analog to a theorem of Rudelson [24, Th. 1], states that if m is large
enough, then on average the matrix m−1U∗

ΩTUΩT deviates little from the identity.

Theorem 3.1 Let U be an orthogonal matrix obeying (1.1). Consider a fixed set T and let Ω be a
random set sampled using the Bernoulli model. Then

E ‖ 1
m
U∗

ΩTUΩT − I‖ ≤ CR ·
√

log |T |√
m

max
1≤k≤n

‖uk‖ (3.3)

for some positive constant CR, provided the right-hand side is less than 1. Since the coherence µ(U)
obeys

max
1≤k≤n

‖uk‖ ≤ µ(U)
√
|T |,

this implies

E ‖ 1
m
U∗

ΩTUΩT − I‖ ≤ CR · µ(U)

√
|T | log |T |√

m
. (3.4)

The probabilistic model is different here than in [24]. The argument, however, is similar.

Proof We are interested in E ‖Y ‖ where Y is the random sum

Y =
1
m

n∑
k=1

δk u
k ⊗ uk − I.
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Note that since U∗U = nI,

EY =
1
m

n∑
k=1

m

n
uk ⊗ uk − I =

1
n

n∑
k=1

uk ⊗ uk − I = 0.

We now use a symmetrization technique to bound the expected value of the norm of Y . We let Y ′

be an independent copy of Y , i.e.

Y ′ =
1
m

n∑
k=1

δ′k u
k ⊗ uk − I, (3.5)

where δ′1, . . . , δ
′
n are independent copies of δ1, . . . , δn, and write

E ‖Y ‖ ≤ E ‖Y − Y ′‖,

which follows from Jensen’s inequality and the law of iterated expectation (also known as Fubini’s
theorem). Now let ε1, . . . , εn be a sequence of Bernoulli variables taking values ±1 with probability
1/2 (and independent of the sequences δ and δ′). We have

E ‖Y ‖ ≤ Eδ,δ′ ‖
1
m

n∑
k=1

(δk − δ′k)u
k ⊗ uk‖

= Eε Eδ,δ′ ‖
1
m

∑
1≤k≤n

εk(δk − δ′k)u
k ⊗ uk‖

≤ 2Eε Eδ ‖
1
m

∑
1≤k≤n

εkδk u
k ⊗ uk‖;

the first equality follows from the symmetry of the random variable (δk − δ′k)uk ⊗ uk while the last
inequality follows from the triangle inequality.

We may know apply Rudelson’s powerful lemma [24] which states that

Eε ‖
n∑

k=1

εkδk u
k ⊗ uk‖ ≤ CR/4 ·

√
log |T | · max

k:δk=1
‖uk‖ ·

√√√√‖
n∑

k=1

δkuk ⊗ uk‖ (3.6)

for some universal constant CR > 0 (the notation should make it clear that the left-hand side is
only averaged over ε). Taking expectation over δ then gives

E ‖Y ‖ ≤ CR/2 ·
√

log |T |
m

· max
1≤k≤n

‖uk‖ ·E

√√√√‖
n∑

k=1

δkuk ⊗ uk‖

≤ CR/2 ·
√

log |T |
m

· max
1≤k≤n

‖uk‖ ·

√√√√E ‖
n∑

k=1

δkuk ⊗ uk‖, (3.7)
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where the second inequality uses the fact that for a nonnegative random variable Z, E
√
Z ≤

√
EZ.

Observe now that

E ‖
n∑

k=1

δku
k ⊗ uk‖ = E ‖mY +mI‖ ≤ m(E ‖Y ‖+ 1)

and, therefore, (3.7) gives

E ‖Y ‖ ≤ a ·
√

E ‖Y ‖+ 1, a = CR/2 ·
√

log |T |√
m

· max
1≤k≤n

‖uk‖.

It then follows that if a ≤ 1,
E ‖Y ‖ ≤ 2a,

which concludes the proof of the theorem.

With Theorem 3.1 established, we have a bound on the expected value of ‖m−1U∗
ΩTUΩT − I‖.

Theorem 1.2 shows that m−1U∗
ΩTUΩT is close to the identity with high probability, turning the

statement about expectation into a corresponding large deviation result.

The proof of Theorem 1.2 uses remarkable estimates about the large deviations of suprema of sums
of independent random variables. Let Y1, . . . , Yn be a sequence of independent random variables
taking values in a Banach space and let Z be the supremum defined as

Z = sup
f∈F

n∑
i=1

f(Yi), (3.8)

where F is a countable family of real-valued functions. In a striking paper, Talagrand [27] proved
a concentration inequality about Z which is stated below, see also [19][Corollary 7.8].

Theorem 3.2 Assume that |f | ≤ B for every f in F , and E f(Yi) = 0 for every f in F and
i = 1, . . . , n. Then for all t ≥ 0,

P(|Z −EZ| > t) ≤ 3 exp
(
− t

KB
log
(

1 +
Bt

σ2 +BE Z̄

))
, (3.9)

where σ2 = supf∈F
∑n

i=1 E f2(Yi), Z̄ = supf∈F |
∑n

i=1 f(Yi)|, and K is a numerical constant.

We note that very precise values of the numerical constant K are known and are small, see [22]
and [18,23].

Proof of Theorem 1.2. Set Y to be the matrix 1
mU

∗
ΩTUΩT−I and recall that 1

n

∑n
k=1 u

k⊗uk = I,
which allows to express Y as

Y =
n∑

k=1

(
δk −

m

n

) uk ⊗ uk

m
:=

n∑
k=1

Yk,

where

Yk :=
(
δk −

m

n

) uk ⊗ uk

m
.

13



Note that EYk = 0. We are interested in the spectral norm ‖Y ‖. By definition,

‖Y ‖ = sup
f1,f2

〈f1, Y f2〉 = sup
f1,f2

n∑
k=1

〈f1, Ykf2〉,

where the supremum is over a countable collection of unit vectors. For a fixed pair of unit vectors
(f1, f2), let f(Yk) denote the mapping 〈f1, Ykf2〉. Since E f(Yk) = 0, we can apply Theorem 3.2
with B obeying

|f(Yk)| ≤
|〈f1, u

k〉 〈uk, f2〉|
m

≤ ‖uk‖2

m
≤ B, for all k.

As such, we can take B = max1≤k≤n ‖uk‖2/m. We now compute

E f2(Yk) =
m

n

(
1− m

n

) |〈f1, u
k〉 〈uk, f2〉|2

m2

≤ m

n

(
1− m

n

) ‖uk‖2

m2
|〈uk, f2〉|2.

Since
∑

1≤k≤n |〈uk, f2〉|2 = n, we proved that∑
1≤k≤n

E f2(Yk) ≤
(
1− m

n

) 1
m

max
1≤k≤n

‖uk‖2 ≤ B.

In conclusion, with Z = ‖Y ‖ = Z̄, Theorem 3.2 shows that

P(| ‖Y ‖ −E ‖Y ‖ | > t) ≤ 3 exp
(
− t

KB
log
(

1 +
t

1 + E ‖Y ‖

))
. (3.10)

Take m large enough so that E ‖Y ‖ ≤ 1/4 in (3.4), and pick t = 1/4. Since B ≤ µ2(U)|T |/m,
(3.10) gives

P (‖Y ‖ > 1/2) ≤ 3e
− m

CT µ2(U)|T | ,

for CT = 4K/ log(6/5). Taking C1 = 16CR and C2 = CT finishes the proof.

3.3 Proof of Theorem 1.1

With Theorem 1.2 established, we know that with high probability the eigenvalues of U∗
ΩTUΩT will

be tightly controlled — they are all between m/2 and 3m/2. Under these conditions, the inverse
of (U∗

ΩTUΩT ) not only exists, but we can guarantee that ‖(U∗
ΩTUΩT )−1‖ ≤ 2/m, a fact which we

will use to show |π(t)| < 1 for t ∈ T c.

For a particular t0 ∈ T c, we can rewrite π(t0) as

π(t0) = 〈v0, (U∗
ΩTUΩT )−1z〉 = 〈w0, z〉,

where v0 is the row vector of U∗
ΩUΩT with row index t0, and w0 = (U∗

ΩTUΩT )−1v0. The following
three lemmas give estimates for the sizes of these vectors. From now on and for simplicity, we drop
the dependence on U in µ(U).

14



Lemma 3.1 The second moment of Z0 := ‖v0‖ obeys

EZ2
0 ≤ µ2m |T |. (3.11)

Proof Set λ0
k = uk,t0 . The vector v0 is given by

v0 =
n∑

k=1

δk λ
0
k uk =

n∑
k=1

(δk −E δk)λ0
k u

k,

where the second equality holds due to the orthogonality of the rows of U :
∑

1≤k≤n λ
0
k uk,t =∑

1≤k≤n uk,t0 uk,t = 0. We thus can view v0 as a sum of independent random variables:

v0 =
n∑

k=1

Yk, Yk = (δk −m/n)λ0
ku

k, (3.12)

where we note that EYk = 0. It follows that

EZ2
0 =

∑
k

E〈Yk, Yk〉+
∑
k′ 6=k

E〈Yk, Yk′〉 =
∑

k

E〈Yk, Yk〉.

Now
E ‖Yk‖2 =

m

n

(
1− m

n

)
|λ0

k|2‖uk‖2 ≤ m

n

(
1− m

n

)
|λ0

k|2 µ2|T |.

Since
∑

k |λ0
k|2 = n, we proved that

EZ2
0 ≤

(
1− m

n

)
µ2m |T |.

This establishes the claim.

The next result shows that the tail of Z0 exhibits a Gaussian behavior.

Lemma 3.2 Fix t0 ∈ T c and let Z0 = ‖v0‖. Define σ as

σ2 = µ2m ·max(1, µ|T |/
√
m).

Fix a > 0 obeying a ≤ (m/µ2)1/4 if µ|T |/
√
m > 1 and a ≤ (m/µ2|T |)1/2 otherwise. Then

P (Z0 ≥ µ
√
m|T |+ aσ) ≤ e−γa2

, (3.13)

for some positive constant γ > 0.

The proof of this lemma uses the powerful concentration inequality (3.9).

Proof By definition, Z0 is given by

Z0 = sup
‖f‖=1

〈v0, f〉 = sup
‖f‖=1

n∑
k=1

〈Yk, f〉

15



(and observe Z0 = Z̄0). For a fixed unit vector f , let f(Yk) denote the mapping 〈Yk, f〉. Since
E f(Yk) = 0, we can apply Theorem 3.2 with B obeying

|f(Yk)| ≤ |λ0
k| |〈f, uk〉| ≤ |λ0

k| ‖uk‖ ≤ µ2 |T |1/2 := B.

Before we do this, we also need bounds on σ2 and EZ0. For the latter, we simply use

EZ0 ≤
√

EZ2
0 ≤ µ

√
m |T |. (3.14)

For the former

E f2(Yk) =
m

n

(
1− m

n

)
|λ0

k|2 |〈uk, f〉|2 ≤ m

n

(
1− m

n

)
µ2 |〈uk, f〉|2.

Since
∑

1≤k≤n |〈uk, f〉|2 = n, we proved that∑
1≤k≤n

E f2(Yk) ≤ mµ2
(
1− m

n

)
.

In conclusion, Theorem 3.2 shows that

P(|Z0 −EZ0| > t) ≤ 3 exp

(
− t

KB
log

(
1 +

Bt

µ2m+Bµ
√
m|T |

))
. (3.15)

Suppose now σ2 = Bµ
√
m|T | ≥ µ2m, and fix t = aσ. Then it follows from (3.15) that

P(|Z0 −EZ0| > t) ≤ 3e−γa2
,

provided that Bt ≤ σ2. The same is true if σ2 = µ2m ≥ Bµ
√
m|T | and Bt ≤ µ2m. We omit the

details. The lemma follows from (3.14).

Lemma 3.3 Let w0 = (U∗
ΩTUΩT )−1v0. With the same notations and hypotheses as in Lemma 3.2,

we have

P
(

sup
t0∈T c

‖w0‖ ≥ 2µ
√
|T |/m+ 2aσ/m

)
≤ n e−γ a2

+ P(‖U∗
ΩTUΩT ‖ ≤ m/2). (3.16)

Proof Let A and B be the events {‖U∗
ΩTUΩT ‖ ≥ m/2} and {supt0∈T c ‖v0‖ ≤ µ

√
m ‖T | + a σ}

respectively, and observe that Lemma 3.2 gives P(Bc) ≤ ne−γ a2
. On the event A ∩B

sup
t0∈T c

‖w0‖ ≤ 2
m

(µ
√
m |T |+ a σ)

The claim follows.
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Lemma 3.4 Assume that z(t), t ∈ T is an i.i.d. sequence of symmetric Bernoulli random variables.
For each λ > 0, we have

P
(

sup
t∈T c

|π(t)| > 1
)
≤ 2ne−1/2λ2

+ P
(

sup
t0∈T c

‖w0‖ > λ

)
. (3.17)

Proof The proof is essentially an application of Hoeffding’s inequality [2]. Conditioned on the w0,
this inequality states that

P
(
|〈w0, z〉| > 1 | w0

)
≤ 2e

− 1
2‖w0‖2 . (3.18)

Recall that π(t0) = 〈w0, z〉. It then follows that

P
(

sup
t0∈T c

|π(t0)| > 1 | sup
t0∈T c

‖w0‖ ≤ λ

)
≤ 2ne−

1
2λ2 ,

which proves the result.

The pieces are in place to prove Theorem 1.1. Set λ = 2µ
√
|T |/m+2aσ/m. Combining Lemmas 3.4

and 3.3, we have for each a > 0 obeying the hypothesis of Lemma 3.2

P
(

sup
t∈T c

|π(t)| > 1
)

≤ 2ne−1/2λ2
+ ne−γ a2

+ P (‖(U∗
ΩTUΩT )‖ ≤ m/2) .

For the second term to be less than δ, we choose a such that

a2 = γ−1 log(n/δ),

and assume this value from now on. The first term is less than δ if

1
λ2

≥ 2 log(2n/δ). (3.19)

Suppose µ |T | ≥
√
m. The condition in Lemma 3.2 is a ≤ (m/µ2)1/4 or equivalently

m ≥ µ2 γ−2 [log(n/δ)]2,

where γ is a numerical constant. In this case, aσ ≤ µ
√
m |T | which gives

1
λ2

≥ 1
16

m

µ2 |T |
. (3.20)

Suppose now that µ |T | ≤
√
m. Then if |T | ≥ a2, aσ ≤ µ

√
m |T | which gives again (3.20). On the

other hand if |T | ≤ a, λ ≤ 4aσ/m and

1
λ2

≥ 1
16

m

a2 µ2
.

To verify (3.19), it suffices to take m obeying

m

16µ2
min

(
1
|T |

,
1
a2

)
≥ 2 log(2n/δ).
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This analysis shows that the second term is less than δ if

m ≥ K1 µ
2 max(|T |, log(n/δ)) log(n/δ)

for some constant K1. Finally, by Theorem 1.2, the last term will be bounded by δ if

m ≥ K2 µ
2 |T | log(n/δ)

for some constant K2. In conclusion, we proved that there exists a constant K3 such that the
reconstruction is exact with probability at least 1 − δ provided that the number of measurements
m obeys

m ≥ K3 µ
2 max(|T |, log(n/δ)) log(n/δ).

The theorem is proved.

4 Discussion

It is possible that a version of Theorem 1.1 exists that holds for all sign sequences on a set T
simultaneously, i.e. we can remove the condition that the signs are chosen uniformly at random.
Proving such a theorem with the methods above would require showing that the random vector
w0 = (U∗

ΩTUΩT )−1v0, where v0 is as in (3.12), will not be aligned with the fixed sign sequence
z. We conjecture that this is indeed true, but proving such a statement seems considerably more
involved.

The new large-deviation inequality of Theorem 1.2 can also be used to sharpen results presented
in [3] about using `1 minimization to find the sparsest decomposition of a signal in a union of
bases. Consider a signal f ∈ Rn that can be written as a sparse superposition of the columns of a
dictionary D = (Ψ1 Ψ2) where each Ψi is an orthonormal basis. In other words f = Dx0, where
x0 ∈ R2n has small support. Given such an f , we attempt to recover x0 by solving

min
x

‖x‖`1 subject to Dx = f. (4.1)

Combining Theorem 1.2 with the methods used in [3], we can establish that if

| suppx| ≤ Const · n

µ2(Ψ∗
1Ψ2) · log n

,

then the following will be true with high probability (where the support and signs of x0 are drawn
at random):

1. There is no x 6= x0 with | suppx| ≤ | suppx0| with f = Dx. That is, x0 is the sparsest
possible decomposition of f .

2. We can recover x0 from f by solving (4.1).

This is a significant improvement over the bounds presented in [3], which have logarithmic factors
of (log n)6.
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