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Abstract

Suppose we wish to transmit a vector f € R™ reliably. A frequently discussed
approach consists in encoding f with an m by n coding matrix A. Assume now that a
fraction of the entries of Af are corrupted in a completely arbitrary fashion. We do not
know which entries are affected nor do we know how they are affected. Is it possible to
recover f exactly from the corrupted m-dimensional vector y?

This paper proves that under suitable conditions on the coding matrix A, the input
f is the unique solution to the ¢;-minimization problem (||z|l¢, =", |z4|)

in [ly— A
Jnin [y — Aglle,

provided that the fraction of corrupted entries is not too large, i.e. does not exceed
some strictly positive constant p* (numerical values for p* are given). In other words,
f can be recovered exactly by solving a simple convex optimization problem; in fact, a
linear program. We report on numerical experiments suggesting that ¢;-minimization
is amazingly effective; f is recovered exactly even in situations where a very significant
fraction of the output is corrupted.
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This paper is in part an abridged version of the full companion unpublished report [4]; however, we
introduce here a new proof of our main result yielding slightly sharper statements, and present new
numerical evidence suggesting the wide applicability of our approach.

1 Introduction

1.1 The error correction problem

This paper considers the model problem of recovering an input vector f € R™ from cor-
rupted measurements y = Af +e. Here, A is an m by n matrix (we will assume throughout



the paper that m > n), and e is an arbitrary and unknown vector of errors. The problem
we consider is whether it is possible to recover f exactly from the data y. And if so, how?

In its abstract form, our problem is of course equivalent to the classical error correcting
problem which arises in coding theory as we may think of A as a linear code; a linear code
is a given collection of codewords which are vectors ay,...,a, € R"—the columns of the
matrix A. Given a vector f € R™ (the “plaintext”) we can then generate a vector Af in
R™ (the “ciphertext”); if A has full rank, then one can clearly recover the plaintext f from
the ciphertext Af. But now we suppose that the ciphertext Af is corrupted by an arbitrary
vector e € R™ to that the corrupted ciphertext is of the form Af +e. The question is then:
given the coding matrix A and Af + e, can one recover f exactly?

As is well-known, if the fraction of the corrupted entries is too large, then of course we
have no hope of reconstructing f from Af + e; for instance, assume m is even and consider
two distinct plaintexts f, f/ and form a vector g € R™ by concatenating the first half of
Af together with the second half of Af’. Hence, g equals the vector Af with at most half
of its entries being corrupted, but g also equals Af’ with again at most half of its entries
corrupted. This shows that no matter how large m is, accurate decoding is impossible when
the size of the support of the error vector is too large. This situation raises an important
question: for which fraction p of the corrupted entries is accurate decoding possible with
practical algorithms? That is, with algorithms whose complexity is at most polynomial in
the length m of the codewords?

1.2 Solution via ¢;-minimization

To recover f from corrupted data y = Af + e, we consider solving the following /¢;-
minimization problem

P i — Agll,.. 1.1
(P1) grgg}ll\y glle, (1.1)

This is a convex program which can be classically reformulated as a linear program. Indeed,
(Py) is equivalent to

m
min ) " t;, —t<y—Ag<t, (1.2)
=1

where the optimization variables are t € R™ and g € R™ (as is standard, the generalized
vector inequality z < y means that x; < y; for every coordinate 7). Hence, (P;) is an LP
with inequality constraints and can be solved efficiently using standard or even specialized
optimization algorithms, see [1].

The main claim of this paper is that for suitable coding matrices, the solution f* to our
linear program is actually exact; f* = f!

To develop a quantitative statement, however, we need to introduce the concept of restricted
isometries. Consider a fixed p by m matrix B and let By, T C {1,...,m}, be the p x |T|
submatrix obtained by extracting the columns of B corresponding to the indices in 7. Then
[4] defines the S-restricted isometry constant dg of B which is the smallest quantity such
that

(1= ds) llellZ, < 1Brell, < (1+ds) llellZ, (1.3)

for all subsets 7" with |T'| < .S and coefficient sequences (c¢;)jcr. This property essentially
requires that every set of columns with cardinality less than S approximately behaves like



an orthonormal system.

Let us return to our error correction problem, and consider a matrix B which annihilates
the m x n matrix A on the left, i.e. such that BA =0 (B is any (m — n) X n matrix whose
kernel is the range of A in R™). Apply B on both sides of the equation y = Af + e, and
obtain

j=DB(Af +e) = Be (1.4)

since BA = 0. Therefore, the decoding problem is reduced to that of recovering the error
vector e from the observations Be. Once e is known, Af is known and, therefore, f is also
known since A has full rank.

To solve the underdetermined system of linear equations §j = Be, we search among all
vector d € R™ obeying Bd = Be = g for that with minimum ¢;-norm

/ . o
(Pl) dgl]gl{l}n HdHﬁ? Bd = Be, (15)

This convex program—(P]) may be recast as an LP—also known by the name of Basis
Pursuit [5] is equivalent to (Pp). The reason is that since on the one hand y = Af + e, we
may decompose g as g = f + h so that

P in |le — Ahlly, .
(A1) < hrgggHe ey

But on the other hand, the constraint Bd = Be means that d = e — Ah for some h € R"
and, therefore,

(P) & i fdly, d=e— A

& i — Ah
hrgll?g ||€ ||€1’

which proves the claim. In conclusion, we can think of our decoding strategy either as the
solution of (Py) or as that of (P]). We now state the main results of this paper.

Theorem 1.1 Suppose that S > 1 is such that
035 + 3045 < 2, (1.6)

and let e be an arbitrary vector supported on a set T C {1,2,...,m} obeying |T| < S. Then
the solution to (P]) is unique and equal to e.

In turn this immediately gives:

Theorem 1.2 Suppose B is such that BA = 0 and let S > 1 be a number obeying the
hypothesis of Theorem 1.1. Then if e obeys the hypothesis of Theorem 1.1, the solution to
(Py) is unique and equal to f.

This last theorem claims, perhaps, a rather surprising result. In effect, it says that mini-
mizing ¢; recovers all input signals f € R" regardless of the corruption patterns, provided
of course that the support of the error vector is not too large. In particular, one can intro-
duce errors of arbitrary large sizes and still recover the input vector f exactly, by solving
a convenient linear program; in other words, as long as the fraction of corrupted entries is



not too large, there is nothing a malevolent adversary can do to corrupt Af as to fool the
simple decoding strategy (1.1).

The use of the ¢1-norm is of course critical. Consider instead a similar program in the
ly-norm, i.e. minimize ||y — Aglls,- Then f* is the least squares solution given by

= ATA) AT (Af +e) = f+ (ATA) AT

In general, the reconstruction error (AT A)~1 ATe does not vanish and ¢-minimization fails
to recover the message f. In fact, as ||e||¢, grows to infinity, the size of the reconstruction
error || f — f*||¢, would also, in general, grow to infinity.

1.3 Restricted isometry constant for random matrices

For Theorem 1.2 to be of real interest, one should use matrices B with good restricted
isometry constants dg; that is, such that the condition of Theorem 1.1 holds with large
values of S. How to design such matrices is a delicate question, and we do not know of any
matrix which provably obeys (1.6) for interesting values of S. However, if we simply sample
a matrix B with i.i.d. entries, it will obey (1.6) for large values of S with overwhelming
probability.

Theorem 1.3 Assume p < m and let B be a p by m matriz whose entries are i.i.d.
Gaussian with mean zero and variance 1/p. Then the condition of Theorem 1.1 holds with
probability at least 1 — O(e=*™) for some fixed constant o > 0, provided that S < p*m.
For large values of p and m, one can show that p* > 1/3,000 for p =m/2 (m = 2n), and
p* >1/2,000 for p=3m/4 (m =4n).

Suppose then that A is an m by n Gaussian matriz and set p = m —n. Then if the fraction
of the corrupted entries does not exceed p*, the solution to (Py) is unique and equal to f.

Similar statements with different constants hold for other types of ensembles, e.g. for binary
matrices with i.i.d. entries taking values £1/,/p with probability 1/2. It is interesting that
our methods actually give numerical values, instead of the traditional “for some positive
constant p.” However, the numerical bounds we derived in this paper are somewhat overly
pessimistic. We are confident that finer arguments and perhaps new ideas will allow to
derive versions of Theorem 1.3 with better bounds. Numerical experiments actually suggests
that the threshold is indeed much higher, see Section 3.

The proof of Theorem 1.3 is adapted from that of Theorem 1.6 in [4], and we only sketch the
main ideas. Take B to be a Gaussian matrix and fix a set of columns T'. Then By is a fixed p
by |T'| matrix and we wish to develop bounds on the largest and lowest eigenvalue of B}.Br,
or equivalently on the largest and lowest singular value of By, denoted by opax(Br) and
omin(Br) respectively. It turns out that it is possible to invoke concentration of measure
inequalities to obtain the deviation bounds [15]

P (Jmax(BT) > 14 /|T]/p+o(1) + t) < Pt/ (1.7)
P (oin(Br) < 1= V/[T1/p+o(1) - t) < e /% (1.8)

here, o(1) is a small term tending to zero as p — oo and which can be calculated explicitly,
see [9]. Other important references include [14, 18] and the reader will certainly recognize



1+ +/|T|/p as the asymptotic behavior of the extreme singular values of a Wishart matrix
as in the celebrated Marchenko-Pastur law [16]. Applying the union bound for all subsets
T obeying |T'| < S then gives explicit control of the singular value spread uniformly over
all such sets. A careful study actually yields numerical values.

To see why the decoding is exact, observe that we may think of the annihilator B as a matrix
with independent Gaussian entries. Indeed, the range of A is a random space of dimension
n embedded in R™ so that Be is the projection of e on a random space of dimension p. The
claim follows from the fact that the range of a p by m matrix with independent Gaussian
entries is a random subspace of dimension p.

2 Proof of Theorem 1.1

The proof of the theorem makes use of two geometrical special facts about the solution d*
to (P[). First, Bd* = Be which geometrically says that d* belongs to a known plane of
co-dimension p. Second, because e is feasible, we must have ||d*||¢, < ||e]|¢,. Decompose d*
as d* = e+ h. As observed in [7]

lelley = lhzy lley + [[hrglley < lle + hlley < llelle

where Tp is the support of e, and hg, (t) = h(t) for ¢ € Ty and zero elsewhere (similarly for
hre). Hence, h obeys the cone constraint

Ihzglley, < NPy lley (2.1)

which expresses the geometric idea that A must lie in the cone of descent of the £1-norm at
e. Exact recovery occurs provided that the null vector is the only point in the intersection
between {h : Bh = 0} and the set of i obeying (2.1).

We begin by dividing 7§ into subsets of size M (we will choose M later) and enumerate 7}
as M1, M2, . .., Ny, || in decreasing order of magnitude of hyg. Set T = {ne, j—1)M+1<
¢ < jM}. That is, T} contains the indices of the M largest coefficients of hre, To contains
the indices of the next M largest coefficients, and so on.

With this decomposition, the fo-norm of h is concentrated on Tp; = Ty U Th. Indeed, the
kth largest value of hre obeys

\hrely < Nhxglle, /K

and, therefore,
N

b lI7, < Nhzglly, D- 1k < lhrgllf, /M.
k=M-+1

Further, the ¢1-cone constraint gives
Ihrg 17, < hnli7,/M < |IhyllZ, - | Tol /M

and thus
I1B1I7, = Iz, |17, + 1Pz 17, < 1+ Tol/M) - ||hgy, |17, (2.2)



Observe now that

|1Bhle, = | Bry, oy, + ZBTthjH@ > |[Bry b lle; — |l ZBTthij

Jj=2 Jj=>2
> || By by lle; — Z ||BTthj lle
Jj>2
> 1- 5M+|To\ HhTmH@z —V1+4+0m Z HthH‘€2'

j>2

Set par = |To|/M. As we shall see later,

> Iy lle, < Vot - by e (2.3)

Jj=2

and since Bh = 0, this gives

[\/1 = 0nsimy) — VPm V14 0] - lhy, [le, < 0. (2.4)

It then follows from (2.2) that h = 0 provided that the quantity /1 — x4 7| —+/Pm V1 + 0
is positive. Take M = 3|Tp| for example. Then this quantity is positive if 037, + 3047, < 2.

It remains to argue about (2.3). Observe that by construction, the magnitude of each
coefficient in 7} is less than the average of the magnitudes in 7}:

’th+1 (t)’ S Hth HZI /M

Then

IN

Ihzyall7, < llhayllZ, /M

and (2.3) follows from
Dollbrlle, < ) lhglle/VM < lhgylle /VM < VITol/M - ||hg e,

5>2 j>1

3 Numerical Experiments

In this section, we empirically investigates the performance of our decoding strategy. Of
special interest is the location of the breakpoint beyond which ¢; fails to decode accurately.
To study this issue, we performed a first series of experiments as follows:

1. select n (the size of the input signal) and m so that with the same notations as before,
A is an m by n matrix; sample A with independent Gaussian entries and select the
plaintext f at random;

2. select S as a percentage of m;

3. select a support set T' of size |T'| = S uniformly at random, and sample a vector e on
T with independent and identically distributed Gaussian entries, and with standard
deviation about that of the coordinates of the output (Af) (the errors are then quite
large compared to the “clean” coordinates of Af);

!The results presented here do not seem to depend on the actual distribution used to sample the errors.



4. make § = Af + e, solve (P;) and obtain f*; compare f to f*;

5. repeat 100 times for each S, and for various sizes of n and m.

The results are presented in Figure 1. In these experiments, we choose n = 128, and set
m = 2n (Figure 1(a)) or m = 4n (Figure 1(b)). Our experiments show that the linear
program recovers the input vector all the time as long as the fraction of the corrupted
entries is less or equal to 15% in the case where m = 2n and less or equal to 35% in the
case where m = 4n. We repeated these experiments for different values of n, e.g. n = 256
and obtained very similar recovery curves.

It is clear that versions of Theorem 1.3 exist for other type of random matrices, e.g. binary
matrices. In the next experiment, we take the plaintext f as a binary sequence of zeros
and ones (which is generated at random), and sample A with i.i.d entries taking on values
in {£1}, each with probability 1/2. To recover f, we solve the linear program

min ||y — Aglle, subjectto 0<g¢g <1, (3.1)
geR”

and round up the coordinates of the solution to the nearest integer. We follow the same
procedure as before except that now, we select S locations of Af at random (the corruption
rate is again S/m) and flip the sign of the selected coordinates. We are again interested in
the location of the breakpoint.

The results are presented in Figure 2. In these experiments, we choose n = 128 as before,
and set m = 2n (Figure 2(a)) or m = 4n (Figure 2(b)). Our experiments show that the
linear program recovers the input vector all the time as long as the fraction of the corrupted
entries is less or equal to 22.5% in the case where m = 2n and less than about 35% in the
case where m = 4n. We repeated these experiments for different values of n, e.g. n = 256
and obtained similar recovery curves.

In conclusion, our error correcting strategy seems to enjoy a wide range of effectiveness.

4 Discussion

A first impulse to find the sparsest solution to an underdetermined system of linear equa-
tions might be to solve the combinatorial problem

(FPo) min ||d||g, subject to Bd = Be. (4.1)
deR™

To the best of our knowledge, solving this problem essentially require exhaustive searches
over all subsets of columns of B and is NP-hard [17]. Our results, however, establish a
formal equivalence between (Fy) and (P]) provided that the unknown vector e is sufficiently
sparse. In this direction, we would like to mention a series of papers [7,8,13,19] showing
the exact equivalence between the two programs (FPy) and (P]) for special matrices obtained
by concatenation of two orthonormal bases. In this literature, equivalence holds if e has
fewer than p - /m entries; compare with Theorem 1.3 which tolerates a fraction of nonzero
entries proportional to m.

For Gaussian random matrices, however, very recent work [6, 20] proved that the equivalence
holds when the number of nonzero entries may be as large as p-m, where p > 0 is some very



small and unspecified positive constant independent of m. This finding is of course similar to
ours but the ideas in this paper go much further. First, the paper establishes deterministic
results showing that exact decoding occurs provided that B obeys the conditions of Theorem
1.1. It is of interest because our own work [2, 3] shows that the condition of Theorem 1.1
holds with large values of S for many other types of matrices, and especially matrices
obtained by sampling rows or columns of larger Fourier matrices. These alternatives might
be of great practical interest because they would come with fast algorithms for applying A or
A* to an arbitrary vector g and, hence, speed up the computations to find the ¢1-minimizer.
And second of course, the paper links solutions to sparse underdetermined systems to a
linear programming problem for error correction, which we believe is new.

In our linear programming model, the plaintext and ciphertext had real-valued components.
Another intensively studied model occurs when the plaintext and ciphertext take values in
the finite field F5 := {0,1}. In recent work of Feldman et al. [10-12], linear programming
methods (based on relaxing the space of codewords to a convex polytope) were developed
to establish a polynomial-time decoder which can correct a constant fraction of errors, and
also achieve the information-theoretic capacity of the code. There is thus some intriguing
parallels between those works and the results in this paper, however there appears to be
no direct overlap as our methods are restricted to real-valued texts, and the work cited
above requires texts in F5. Also, our error analysis is deterministic and is thus guaranteed
to correct arbitrary errors provided that they are sufficiently sparse.

The ideas presented in this paper may be adapted to recover input vectors taking values
from a finite alphabet. We hope to report on work in progress in a follow-up paper.

In conclusion, we showed that if the coding matrix A is Gaussian for example, one can
correct a fraction of completely arbitrary errors by linear programming. We are aware
of several refinements allowing to prove sharper versions of Theorems 1.1 and 1.2 (with
less stringent conditions) but have ignored such refinements in this paper as to keep the
argument as simple as possible. In fact, there is little doubt that other researchers will be
able to follow up on our methods and show that ¢i-minimization succeeds for corruption
rates higher than those we established here.

In this direction, we would like to point out that for Gaussian matrices, say, there is a critical
point p. (depending on n and m) such that accurate decoding occurs for all plaintexts and
corruption patterns (in the sense of Theorem 1.2) as long as the fraction of corrupted entries
does not exceed p.. It would be of theoretical interest to identify this critical threshold, at
least in the limit of large m and n, with perhaps n/m converging to a fixed ratio. From a
different viewpoint, this is asking about how far the equivalence between a combinatorial
and a related convex problem holds. We pose this as an interesting challenge.
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Figure 1: ¢;-recovery of an input signal from y = Af+e with A an m by n matrix with independent
Gaussian entries. In these experiments, we set n = 128. (a) Success rate of (P]) for m = 2n. (b)
Success rate of (P]) for m = 4n. On the left, exact recovery occurs as long as the corruption rate
does not exceed 15%. On the right, the breakdown is near 35%.
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Figure 2: {i-recovery of a binary sequence from corrupted data y; A is an m by n matrix with
independent binary entries and the vector of errors is obtained by randomly selecting coordinates
of Af and flipping their sign. In these experiments, we set n = 128 (a) Success rate of for m = 2n.
(b) Success rate for m = 4n. On the left, exact recovery occurs as long as the corruption rate does

not exceed 22.5%. On the right, the breakdown is near 35%.
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