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Abstract

This paper considers the model problem of recovering a signal f(t) from noisy
sampled measurements. The objects we wish to recover are chirps which are neither
smoothly varying nor stationary but rather, which exhibit rapid oscillations and rapid
changes in their frequency content.

We introduce a mathematical model to describe classes of chirps of the general form
f(t) = A(t) cos(λϕ(t)) where λ is a (large) base frequency, ϕ(t) is time-varying and
A(t) is slowly varying, by imposing some smoothness conditions on the amplitude A(t)
and the “instantaneous frequency” ϕ′(t). For example, our models allow the unknown
object to oscillate at nearly the sampling/Nyquist rate.

Building on recent advances in computational harmonic analysis, we construct li-
braries of tight frames of multiscale chirplets which are rapidly searchable and with
fast algorithms for analysis and synthesis. We show that it is possible to invoke low-
complexity algorithms which select a best tight-frame from our library in which simple
thresholding achieves nearly minimax mean-squared errors over our classes of chirps.
Our methodology is adaptive in the sense that it does not require a-priori knowledge of
the degree of smoothness of the amplitude and the instantaneous frequency, and nearly
attains the minimax risk over a meaningful range of chirp classes.

Keywords. Minimax Estimation, Chirps, Recursive Partitioning, Time-Frequency
Analysis, Local Cosines, Adaptive Estimation, Oracle Inequalities.
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1 Introduction

We consider the problem of removing noise from one-dimensional signals. We suppose that
we have noisy sampled data

yi = fi + zi, i = 0, 1, . . . , N − 1; (1.1)

where the zi’s are i.i.d. N(0, σ2), and the unknown coordinates (fi) are sampled values
fi = f(i/N) of a signal of interest f(t), t ∈ [0, 1]. We wish to recover f with small mean-
squared error

MSE(f̂ , f) = E

(
1
N

∑
i

(f̂i − fi)2
)

. (1.2)

This is of course a well-known problem in the literature of statistics and signal processing;
classical results would assume that the objects we wish to recover are spatially homogeneous
and obey some smoothness conditions, and would develop estimation procedures based on
local averages of the noisy data [34].

1.1 Chirps

Our interest in this paper does not concern smooth objects but rather signals which exhibit
a highly oscillatory behavior. Such signals are known under the name of chirps and take
the general form

f(t) = A(t) cos(λϕ(t)); (1.3)

here λ is a (large) base frequency, ϕ(t) is time-varying and the amplitude A(t) is slowly
varying. To fix ideas, consider the chirp prototype f0(t) = cos(πNt2/2), with 1/N being
the sampling rate. This example illustrates several characteristics of chirps. First, chirps
may oscillate rapidly and this paper will consider signals which may actually change sign at
nearly the sampling rate. Second, chirps may span a wide range of frequencies; in fact, the
frequency of oscillation of a chirp may be rapidly changing over time so that at different
times, a chirp may display very different patterns. It is clear that chirps are very different
from the type of smooth and homogeneous objects the literature traditionally assumes.
This is the reason why most of the statistical methodology such as smoothing splines,
kernel smoothers, etc. would make no sense in this setting.

Chirps are ubiquitous in nature and arise in a number of scientific disciplines. In speech
processing for example, voice signals possess chirping components. In the neurosciences,
researchers are interested in the study of echolocating animals; in echolocation a series
of short, chirping signals are emitted by an animal which are then reflected by objects
and surfaces creating an echo; the animal processes this echo which gives it a sense of the
surrounding elements. Finally, in contemporary physics, there is an ongoing effort aimed
at detecting gravitational waves, many of which are chirping waveforms.

The strong nonstationary character of chirping signals causes Fourier series to be very
inefficient for representing chirps. For example, our chirp prototype f0 does not interact
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significantly with monofrequency sinusoids and all the Fourier coefficients of f0 are of a
very small size. Hence, it would be highly problematic to use the Fourier transform in a
setting where one would wish to detect or recover f0 from noisy or cluttered data. Those
limitations spurred the development of time-frequency analysis which aim at developing a
mixed representation of a signal in terms of a double sequence of elementary signals, each
of which occupies a certain domain in the time-frequency plane. After decades of research
in this field, we now have transforms which provide time-frequency phase portraits of a
signal, as well as new orthonormal bases and frames which can efficiently represent certain
kinds of time-frequency phenomena: here we mention Wilson Bases [37], Cosine Packets
[9], and Gaussian Frames [22].

1.2 Time-Frequency Analysis and Statistical Theory

Many of the problems which arise in time-frequency analysis are statistical in nature. For
instance a vast literature [24, 31, 6, 21, 7] is concerned with the following detection problem.
We suppose we have noisy data y(t) = αf(t) + z(t) where α is unknown and f(t) is
unknown (we may have some partial information about f) and chirping. We wish to know
whether α = 0 or not; that is, whether there is signal or not. In the field of astrophysics
alone, there are hundreds of publications on this subject in connection with the problem of
detecting gravitational waves, see [32, 25, 1] and references therein. The same would apply
to the estimation problem and in short, a large portion of the Time-Frequency literature is
concerned with the analysis of data which are subject to measurement errors.

Despite a great deal of activity in this field, very little is known—if anything at all—
about simple statistical questions such as how well one can recover chirps from noisy data.
Researchers in time-frequency analysis have successfully assembled a great collection of
tools but not much is known about how one can deploy these tools to design optimally
sensitive detectors and optimally efficient estimation procedures. From this viewpoint, it
seems fair to say that the concepts of statistical theory do not play an important role in
the literature of Time-Frequency analysis.

Our last statement is a little provocative but certainly justified in light of the strong
interactions between the agendas of statistical theory and other areas of applied harmonic
analysis and applied mathematics in general. For instance, there is a long tradition linking
classical Fourier analysis with statistical estimation going back to the work of Wiener
and the estimation of Gaussian processes, and the work of Kolmogorov and Tikhonov on
statistical regularization. More recently, Pinsker [33] has shown how the damping of Fourier
coefficients is asymptotically optimal for recovering smooth objects obeying constraints of
the form ‖f (m)‖2

L2
≤ R2 (f (m) is the mth derivative of f) from Gaussian white noise, see

also [20]. In a different area, Wahba and others [36] have established deep connections
between nonparametric regression and the theory of splines. And of course, in a series
of pathbreaking papers, Donoho and his collaborators [18, 17] have connected the field
of wavelet analysis with long-standing problems in nonparametric statistics by proposing
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the wavelet shrinkage, a simple and—in some sense—universal estimation principle with
provably optimal properties over a wide range of classes of inhomogeneous signals.

1.3 Challenge

This paper is an attempt to establish a link between concepts from time-frequency analysis
and from statistical theory. We are interested in (1) developing a quantitative approach
to time-frequency analysis and (2) developing methods which are flexible, i.e. which can
adapt to a variety of situations as opposed to strategies based on restrictive parametric
assumptions. For example, we would like to know how well one can recover chirps from
noisy measurements and quantify the ultimate limits of performance. And we would like
to know whether it is possible to design practical algorithms which would be amenable to
rigorous analysis with provably optimal or near optimal properties; that is, which would
come close to those limits of performance.

Here we understand the word ’optimal’ in a mathematical sense which requires the de-
velopment of a mathematical model and of quantitative analysis establishing an optimality
result for that model as we explain below.

1.4 Classes of Chirps

We define classes of chirps by penalizing the roughness of the amplitude A and instantaneous
frequency ϕ′. To measure this, we introduce the Hölder regularity s defined as follows. For
0 < s ≤ 1, we say that g(t) is in the Hölder class Hölders(C) if ‖g‖L∞ ≤ C and

|g(t)− g(t′)| ≤ C · |t− t′|s, 0 ≤ t, t′ ≤ 1; (1.4)

for s > 1 and m < s ≤ m + 1, the Hölder class Hölders(C) is the collection of functions
g obeying ‖g‖L∞ ≤ C, and

|gm(t)− gm(t′)| ≤ C · |t− t′|s−m 0 ≤ t, t′ ≤ 1.

We now define a class of chirps Chirp(s; λ, R) for signals of the form

f(t) = A(t) cos(λϕ(t)), or f(t) = A(t) exp(iλϕ(t)).

by imposing

Chirp(s; λ, R) = {f, A, ϕ ∈ Hölders(R) ≤ C, |ϕ′(t)| ≤ π}, 1 ≤ λ ≤ N, R > 0. (1.5)

The condition |ϕ′(t)| ≤ π quantifies the maximum oscillation rate of those elements f ∈
Chirp(s; λ, R) since it says that their frequency of oscillation is in some sense bounded by λ.
Of special interest is the situation in which λ = N ; in this case, the model Chirp(s; N,R)
allows for oscillations at nearly the sampling rate, i.e. the sign of f is allowed to switch at
nearly each sampling point. In this case, note that |ϕ′(t)| ≤ π becomes an identifiability
condition, as otherwise the signal may have several cycles in-between sample points.
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We would like to point out that our model is somewhat nonclassical. In the literature
of statistics, it is standard to define a fixed functional class and study the asymptotic
behavior as the sample size increases; i.e. we are gathering more sample about a fixed
object of interest. Suppose we take λ = N in (1.5). Then our model changes with N and
because the underlying objects A and ϕ can be the same, we speak of a collection with R

fixed and N variable as a chirp class; that is, we are really interested in the asymptotics
λN →∞ as N →∞. This is a necessary ingredient to develop a meaningful theory as the
asymptotics N →∞ with λ fixed would correspond to classical smoothing setups and would
be uninteresting. In any event, since the main results of this paper are nonasymptotic, we
can always think about N as fixed (large).

We note that related models were introduced by Donoho and Johnstone [16], and Meyer
[23] who proposed the study of the asymptotic properties of chirps (1.3) as λ → ∞. Our
definition is more precise than that of Chassande and Flandrin [7].

1.5 Quantifying Performance

To make make things concrete, suppose that λ = N so that we are interested in the
recovery of signals of the form A(t) cos(Nϕ(t)). In this section, we let F = Chirp(s; N,R)
for some s ≥ 2; that is, we suppose that the “instantaneous frequency” ϕ′ is in some sense
differentiable. Then any linear procedure T yielding an estimate f̂ = TY would obey

sup
f∈F

MSE(f̂ , f) ≥ A, (1.6)

for some constant A; that is, the MSE would not even decay as the sample size increases!
In other words, setting f̂ = 0 would in some sense be just as good as any linear estimator.
Next, following the recent literature on nonlinear estimation, we may want to investigate
the properties of estimators which seek to exploit the sparsity of the object to recover in
a preferred basis. Consider for instance a nice wavelet thresholding estimate f̂Wave. Then
the risk of such an estimate would also obey

sup
f∈F

MSE(f̂Wave, f) ≥ A.

Moreover, one would essentially obtain the same behavior if instead, we were to threshold
the coefficients in a Fourier basis, supf∈F MSE(f̂Fourier, f) ≥ A. In comparison, consider
an estimation procedure based on the thresholding of nice Gabor expansions. Then it is
possible to tune the window size as to achieve

sup
f∈F

MSE(f̂Wave, f) ∼ A ·N−2/5,

which is considerably better but far from the optimal asymptotic behavior.
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1.6 Optimal Behavior

Suppose that λ = N so that F = Chirp(s; N,R), for some s ∈ [2, 3]. A main result of this
paper is the construction of estimators f̂ with the property

sup
f∈F

MSE(f̂ , f) = O(log N) ·N− 2(s−1)
2s+1 . (1.7)

The behavior is essentially optimal. No estimator can achieve an essentially better rate
uniformly over F . Indeed, let M∗(N,F) be the minimax risk

M∗(N,F) = inf
f̂

sup
F

MSE(f̂ , f). (1.8)

Then the minimax risk obeys

M∗(N,F) ≥ c ·N− 2(s−1)
2s+1 ,

which shows that ignoring log-like factors, our estimation procedures are optimal as regards
rate of convergence. Moreover, our methodology is adaptive in the sense that it achieves
nearly the minimax risk for any value of the unknown degree of regularity of the amplitude
and the instantaneous frequency, 2 ≤ s ≤ 3. In addition, we will show that one may
construct such estimators using low-complexity algorithms, typically of the order of N4/3

operations for a signal of size N .
Underlying our methodology is the inspiration of computational harmonic analysis

whose aim is to find new types of data representations, fast algorithms to compute these,
and apply these tools to practical problems [10, 13].

1.7 Organization of the Paper

In section 2, we introduce a library of multiscale chirplets. Estimation strategies together
with the main results of this paper are presented in section 3. In section 4, we study the
computational complexity of the proposed algorithms. Sections 5, 6 and 7 are concerned
with the proofs and analysis of our results: section 5 develops oracle inequalities which are
an essential tool for deriving upper bounds on the mean-squared error of estimation while
section 6 develops approximation properties of the multiscale chirplet libraries; section 7
provides a proof of lower bounds. Section 8 opens up the discussion by suggesting areas for
future research and proposing a main challenge to the time-frequency research community.

2 Multiscale Chirplets

2.1 Recursive Dyadic Partitions

We begin with some notations and terminology. We let I be a dyadic interval I = [k2−j , (k+
1)2−j) for k ∈ Z and an integer j ≥ 0. Recall the definition of a Recursive Dyadic Partition
(RDP) which is classical in the literature of time-frequency analysis.
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Definition 2.1 The set of recursive dyadic partitions of the unit interval [0, 1) are those
partitions P constructed with the following rules:

1. the trivial partition P = {[0, 1)} is an RDP;

2. if P = {I1, . . . , Im} is any RDP, then the partition obtained by splitting any interval
Ij into two adjacent dyadic intervals is also an RDP.

For instance, the partition P = {[0, 1/2), [1/2, 3/4), [3/4, 1)} is an RDP of the unit interval
while the partition P = {[0, 1/4), [1/4, 3/4), [3/4, 1)} is not. This definition may be ex-
tended to the real line and we will say that P is an RDP if it may be obtained from the
initial partition {[n, n + 1), n ∈ Z} by recursive dyadic partitioning. Among all recursive
dyadic partitions, we distinguish those which we call balanced:

Definition 2.2 We say that an RDP is balanced if any two adjacent dyadic intervals
|I|, |I ′| ∈ P obey

1/2 ≤ |I|/|I ′| ≤ 2. (2.1)

This definition appears explicitly in [35] where it is argued that although the doubling
condition (2.1) is a restriction on the allowed RDP’s, two adjacent intervals in an arbitrary
RDP can be only of very different sizes at special dyadic locations. The essential point here
is that balanced RDP’s (BRDP) allow the use of windows wI which obey a uniform bound
on their time-frequency concentration [35].

The construction begins with a smooth nondecreasing cutoff function ρ ∈ Cd obeying
ρ(t) = 0 for t < −1/2 and ρ(t) = 1 for t > 1/2. We suppose further that ρ obeys
ρ(t)2 + ρ(−t)2 = 1 in the region |t| < 1/2. Let I = [tI , t′I) be a dyadic interval and define
the window

wε,ε′

I (t) = ρ

(
t− tI

ε

)
· ρ
(

t′I − t

ε′

)
(2.2)

For example, for I = [0, 1) and ε = ε′ = 1, wε,ε′

I (t) = w(t) is a smooth window which
vanishes outside of the interval [−1/2, 3/2). Suppose we are given a BRDP P. For each
ordered pair (I, I ′) of adjacent intervals at the dyadic segmentation point t′I , we define the
cut-off

ε′I = min(|I|, |I ′|). (2.3)

With this choice of cut-off, we introduce a family of windows associated with the partition
P

w
εI ,ε′I
I (t) := wαI

(
t− tI
|I|

)
, (2.4)

where wα, α = α±, is the basic window

wα(t) = ρ(2α−t) · ρ(2α+
(1− t)), α± ∈ {0, 1}.

For cutoffs given by the rule (2.3), the parameters obey

2α−I = |I|/εI , 2α+
I = |I|/ε′I .
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Note that the length of the support of wαI
I is at most 2|I|. In the remainder of this paper,

we shall denote by η the pair (ε, ε′) so that we may write our dyadic windows (2.4) as wηI
I .

At times, we will abuse notations and actually drop the dependence on the gender η.
It follows from the properties of the cut-off function ρ, that the family of windows

(wηI
I )I∈P is an orthonormal partition of unity; that is, this collection obeys∑

I∈P
|wηI

I (t)|2 = 1. (2.5)

2.2 Tight Frames of Chirplets

As remarked earlier, the support of each window wηI
I is contained in the interval Ĩ =

[(k − 1/2)2−j , (k + 3/2)2−j) of size 2|I|. Since

uI,n = eiπnt/|I|/
√

2|I|, n ∈ Z, (2.6)

is an orthobasis for L2(Ĩ), we have available the following Parseval relation∑
n

|〈fwI , uI,n〉|2 = ‖fwηI
I ‖

2
L2

valid for any (real or complex-valued) signal f . Then consider the family of multiscale
chirplets

Vb,I,n(t) =
1√
2|I|

· wηI
I (t)eibI t2/2eiπnt/|I|, (2.7)

for all dyadic intervals I, and choices of cutoffs ηI and sequences b = (bI)I . For each interval
I, the parameter bI may only take on a discrete set of values; unless specified otherwise, we
shall assume a scale-dependent discretization of the form

bI = ` · 2j · δj , ` = 0,±1,±2, . . . , and |bI | ≤ B. (2.8)

Hence, chirplets occur at all possible scales 2−j and at all possible dyadic locations k2−j ,
k ∈ Z, and assume a wide array of base frequencies aI = n/|I| and chirping rates bI .

Some subcollections of the dictionary of multiscale chirplets are, of course, of special
interest. Suppose we are given a BRDP P and an arbitrary sequence of chirp rates (bI)I∈P .
Then for any signal f , ∑

n

|〈f, Vb,I,n〉|2 =
∫
|f(t)|2 |wI(t)|2 dt,

and, therefore, it follows from (2.5) that the family of chirplets (Vb,I,n)I∈P, n∈Z obeys∑
I∈P

∑
n

|〈f, Vb,I,n〉|2 = ‖f‖2
L2

. (2.9)

This equality says that (Vb,I,n)I,n is a tight frame and standard arguments give the repro-
ducing formula

f =
∑
I∈P

∑
n

〈f, Vb,I,n〉Vb,I,n, (2.10)
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with equality holding in an L2 sense.
An important issue with the tight frames of chirplets (Vb,I,n)I∈P,n∈Z as defined above

is that in general, they do not provide sparse representation of signals of the form f(t) =
A(t) cos(λϕ(t)) with λ a large parameter. It is possible, however, to adapt to this situation
by considering the richer class

V +
b,I,n = Vb,I,n/

√
2, V −

b,I,n = Vb,I,n/
√

2, (2.11)

where the bar sign indicates complex conjugation. It then follows from (2.9) that the system
(V ±

b,I,n) is also a tight frame. The effect of the conjugation is to allow chirplets with opposite
chirp-rates (bI ,−bI) in each tight frame—a feature which would be desirable to efficiently
represent objects like

A(t) cos(λϕ(t)) = A(t) exp(iλϕ(t)) + A(t) exp(−iλϕ(t)).

We summarize the results collected so far in the following definition.

Definition 2.3 We let DChirplets be the dictionary of all chirplets of the form (2.7) and
denote by

• LChirplets the library of all tight frames of the form (Vb,I,n)I∈P,n∈Z,

• and L+
Chirplets the library of all tight frames of the form (V ±

b,I,n)I∈P,n∈Z,

where as before P ranges over all possible choices of BRDP, and b ranges over all possible
sequences of discrete chirp rates.

Haykin and Mann [31] have proposed the so-called chirplet transform of a signal (we
would also like to mention [4]): starting from the Gaussian multiparameter collection of
linear chirps

gλ(t) = g((t− b)/a)ei(ωt+δt2), λ = (a, b, ω, δ)

with g a Gaussian window and a > 0, b, ω, δ ∈ R, they define the chirplet transform of a
signal f as being the collection of inner products 〈f, gλ〉. In short, the chirplet transform is a
multiscale Gabor type transform with an extra modulation parameter δ. Unlike the wavelet
transform or the Gabor transform, however, there is no real formula for synthesis, i.e. for
reconstructing a signal from the datum of its coefficients 〈f, gλ〉. This lack of synthesis rules
sets their work apart from ours as we have a library of tight frames with trivial formulae
for both analysis and synthesis. In addition, we will address discretization issues below.

2.3 Orthonormal Bases of Chirplets

Following [8], we may introduce a slightly different dictionary of chirplets and consider
objects of the form

UI,n(t) =

√
2
|I|

· wηI
I (t)ei(aI t+bI t2/2) sin

[
π(n + 1/2)

t− tI
|I|

]
, n = 0, 1, 2, . . . . (2.12)
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for all dyadic interval I, and choices of cutoffs ηI and phases aIt + bIt
2/2. Note that [8]

does not mention BRDP’s and the like. A distinguished feature is that under a special
condition, the system (UI,n) is an orthonormal basis.

Theorem 2.4 Suppose we are given a BRDP P and a family of phases such that the
piecewise affine function aI + bIt, t ∈ I, be continuous. Then the collection of chirplets
(UI,n)I∈P,n≥0 is an orthobasis of L2(R).

The proof of this theorem is an adaptation of the argument presented in [8] and is omit-
ted. Suppose that the chirping parameter bI is discretized as before. Then an equivalent
realization of the dictionary of orthonormal chirplets is as follows: for each j0 ≤ j ≤ j1, we
mark out 2j equally spaced vertical lines in the notional time-frequency square [0, 1]2; we
put tick marks along the vertical lines at spacing δj ; we then create a dictionary of ’chirplet
lines’ connecting tick marks on adjacent vertical lines and such that in absolute value, the
slope of each line is less than B. For reference, we will denote this library by LO

Chirplets

where the symbol O is meant for “orthogonal.”
Because exact orthogonality is not critical in this paper, and because this orthogonal

system is more delicate to handle, we shall not make an extensive use of this construction
and merely mention this possibility for the sake of completeness. Indeed, the continuity
constraint would impose a larger dictionary size and more complex search algorithms, see
section 4. In addition, enriching this collection to efficiently deal with real-valued chirps
(2.11) would actually defeat the orthogonality property.

2.4 Discrete Chirplet Analysis

The ideas presented above are readily applicable to the analysis of discrete signals of finite
length as one can, of course, define discrete analogs of chirplet dictionaries and associated
libraries of discrete tight-frames. Suppose N = 2J is dyadic and fix a scale 0 < j < J , so
that the time interval I = [k2−j , (k + 1)2−j) contains N · 2−j sample points. Viewing a
discrete signal (ft), t = 0, . . . , N − 1, as equispaced samples of the form f(t/N), we would
introduce the family of discrete chirplets,

V D
b,I,n[t] = Vb,I,n(t/N), −N2−j ≤ n < N2−j .

The only possible issue might concern the boundary windows; that is those dyadic intervals
which abut the endpoints 0 and 1. For those intervals, one would need to consider special
boundary-adapted windows using ideas such as symmetrization and folding. It is not the
scope of this paper to discuss these issues. There are well-known techniques for constructing
boundary adapted windows, see for example [29] and references therein.

In practical applications, one would need to specify a cut-off function ρ which generates
the family of dyadic windows wI . There is a vast literature [30] about the choice of such
cut-offs and a frequently discussed approach is to take ρ(t) as

ρ(t) = sin
(π

4
(1 + sin(πt))

)
, |t| < 1/2,
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and ρ(t) = 0 for t ≤ −1/2 and ρ(t) = 1 for t ≥ 1/2.
We now discuss the size of the dictionary of multiscale chirplets for signals of size N .

At each scale 2−j , the number Mj of distinct chirplets in DChirplets would not exceed

Mj ≤ 4 · 2j · 2N/2j ·# slopes;

the first term in the product is the number of different window genders, the second is the
number of intervals at scale 2−j and the third is the number of sines for each interval I.
Take

δj = π 2j/N, bI = π · ` · 22j/N (2.13)

in (2.8) so that the number of slopes at scale 2−j is about max(1, N/22j), we would have

Mj ≤ 16 ·N2 · 2−2j .

Unless specified otherwise, we will always assume the special discretization (2.13). Using
the Fast Fourier transform, it is clear that one can compute all chirplet coefficient at a
given scale in O(Mj log N) for a signal of size N .

In the remainder of the paper and for theoretical purposes, we shall primarily be inter-
ested in the range of scales J0 ≤ j ≤ J1, where

2−J0 ∼ N−1/3, 2−J1 ∼ N−1/2.

Assume that the dictionary is restricted to this range of scales. Then

• The number MN of distinct elements in the dictionary obeys MN ≤ 32 ·N4/3.

• The chirplet analysis of a signal f is the collection of inner products 〈f, g〉 for all
g in the dictionary DChirplets. It is possible to compute the chirplet analysis of
a signal of size N in O(N4/3 log N). Moreover, given the chirplet coefficient of an
object in a tight-frame Φ ∈ LChirplets, we can synthesize the corresponding objects
in O(N log N) operations.

• The number of distinct tight frames in LChirplets is, however, exponential in N .

In short, just as cosine packets [9, 10] are libraries of rapidly constructible orthonormal
bases for signal expansions, multiscale chirplets build libraries of tight-frames which are
also rapidly constructible. Moreover, chirplet libraries share a powerful feature with cosine
packets libraries [10], namely, they are rapidly searchable for a “best” tight-frame.

3 Main Result

This section introduces estimation strategies for recovering chirps from noisy data and states
the main results of this paper. Before we develop our ideas, we would like to emphasize that
we are interested in practical and flexible methods which do not heavily rely on modeling
assumptions and can be deployed in a variety of different settings.
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3.1 Complexity Penalized Estimation

Suppose we are given a library L of dictionaries {D1,D2, . . . ,DL}. Here, a dictionary D is
an arbitrary collection of waveforms (gλ)λ∈Λ; e.g., in the discrete setup (1.1), a dictionary
would simply be a collection of finite-dimensional vectors. For a sequence θ, we let N0(θ)
be the number of nonzero entries in θ, N0(θ) = #{|θi| 6= 0} and define the complexity
ND(f) of an object f (with respect to the dictionary D) as the minimum number of terms
in D needed to represent f

ND(f) = inf
θ
N0(θ), f =

∑
λ

θλgλ. (3.1)

Likewise, we let NL(f) be the minimum number of terms needed to represent f in any
dictionary D ∈ L

NL(f) = inf
D∈L

ND(f), (3.2)

as in e.g. [15]. Equipped with these concepts, we now introduce the complexity functional
K

KΛ(y, f̃) = ‖y − f̃‖2
2 + Λ · NL(f̃), (3.3)

and for data (1.1), define the estimator f̂ as that object which minimizes the empirical
complexity

f̂ = argmin
f̃

KΛ(y, f̃). (3.4)

In other words, we seek an estimator which achieves the best trade-off between goodness
of fit and complexity—a central principle in the modern literature on statistical estimation
which is commonly referred to as complexity penalized estimation.

In truth, this estimation procedure is highly unrealistic. Indeed, for each dictionary in
the library, the minimization (3.4) requires solving a combinatorial problem. For a signal
of size N , one would need to compare at least 2N models, assuming each dictionary of size
greater or equal to N . This is not practical. To put it bluntly: we can certainly talk about
f̂ and its properties but this is about it!

3.2 Thresholding in the Best Empirical Tight Frame

Suppose the library L is a collection of tight frames {Φ1,Φ2, . . . ,ΦL}. In a discrete setting,
a tight frame Φ (with frame bounds equal to one) is a collection of vectors gλ obeying

‖Φ∗f‖ = ‖f‖, ∀f ∈ CN ,

where Φ is the matrix whose columns are the vectors gλ (and Φ∗ is the adjoint matrix).
Note that the above tight-frame property implies Φ Φ∗ = I. Define the new complexity
functional

Λ(y; Φ̃, θ̃) = ‖Φ̃∗y − θ̃‖2 + Λ · N0(θ̃). (3.5)
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For data (1.1), we then define the estimator f̂ by

f̂ = Φ̂θ̂, (Φ̂, θ̂) = argmin
Φ̃∈L, θ̃

JΛ(y; Φ̃, θ̃). (3.6)

Observe that if L is a library of orthogonal bases, then both estimation procedures (3.4)–
(3.6) yield the same estimator. Indeed, when Φ is an orthonormal transform, there is a
one-to-one correspondence between θ̃ and f̃ , namely, θ̃ = Φ̃∗f̃ and thus

‖y − f̃‖2
2 + Λ ·NΦ(f̃) = ‖Φ̃∗y − θ̃‖2 + Λ · N0(θ̃),

which shows that the two complexity functionals are actually identical. In general setups,
however, the two proposals (3.4) and (3.6) yield different estimators. There are two aspects
of special interest here: first, the complexity penalized estimator (3.6) provably attains
optimal bounds over our classes of chirps and second, this estimator has a nice interpretation
which makes it computationally attractive.

For convenience, we let θi[Φ] denote the coordinates of the frame coefficients Φ∗f and
define the entropy of an object f in the frame Φ as

EΛ(f,Φ) =
∑

i

min(|θi[Φ]|2,Λ). (3.7)

Given a vector of observations, we let Φ̂ be the basis which minimizes the entropy:

Φ̂ = argmin
Φ

EΛ(y, Φ).

Then the estimator f̂ (3.6) is obtained by hard-thresholding in the “best” empirical tight
frame Φ̂: with ηΛ(t) the scalar nonlinearity ηδ(t) = t · 1{|t|>δ}, we have

θ̂i = η√Λ(yi[Φ̂]), (3.8)

and of course f̂ = Φ̂θ̂. To see why this holds, simply observe that for a fixed Φ, that vector
θ? which minimizes J(y; Φ, θ̃) is given by θ?

i = η√Λ(yi[Φ]) and, therefore, J(y; Φ, θ?) =
EΛ(y, Φ).

The point here is that the hierarchical dyadic structure of LChirplets or L+
Chirplets and

the additivity of the entropy functional makes possible to search these libraries for the best
empirical tight-frame very rapidly. In fact, in section 4 we will see that the computational
cost of the search is in some sense negligible compared to the computational cost of the
chirplet analysis. Hence, at least from a computational viewpoint, (3.5) is a very practical
estimator.

3.3 Main Results

In what follows, we consider the following two estimation problems: first,

yi = fi + zi, i = 0, 1, . . . , N − 1, (3.9)
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where (zi) is a Gaussian White Noise, zi i.i.d. N(0, σ2); and second,

Yi = Fi + Zi, i = 0, 1, . . . , N − 1, (3.10)

where Y is a two-dimensional vector of observations (y1,i, y2,i), F = (F1,i, F2,i) is the object
we wish to recover, and Z is a Gaussian error Z = (z1,i, z2,i), with z1, z2 independent and
each i.i.d. N(0, σ2/2) so that the noise level is the same as in (3.9), E|Zi|2 = σ2 (this will
simplify the exposition). In this setting, the MSE of an estimator F̂ = (F̂1, F̂2) is given by
MSE(F, F̂ ) = E‖F1 − F̂1‖2 + E‖F2 − F̂2‖2. Note that (3.10) is equivalent to recovering
f = F1 + iF2 from the noisy data

y = f + z, (3.11)

where y = y1 + iy2, and z = z1 + iz2. We will refer to these two problems as the real and
complex/bivariate problems.

We are interested in quantifying the best performance attainable over the classes of
chirps and seek estimators which achieve or nearly achieve the minimax risk (1.8) for
F = Chirp(s; λ, R), for some s ∈ [2, 3]. Recall from the introduction section that
f ∈ Chirp(s; λ, R) if f(t) = A(t) cos(λϕ(t)) with the amplitude A and ϕ obeying (1.5),
orf(t) = A(t) exp(iλϕ(t)) with the same assumptions on A and ϕ.

Theorem 3.1 Set λ = N in (1.5). The minimax risk for both the real and complex prob-
lems obeys

M∗(N,F) ≥ cR ·N− 2(s−1)
2s+1 , (3.12)

for F = Chirp(s; N,R) and s ∈ [2, 3]. (The constant cR may be chosen of the form
cR = c ·R2/(2s+1), for some universal c > 0.)

Theorem 3.2 Let L be either LChirplets or L+
Chirplets (or LO

Chirplets), i.e. L is one
of the chirplet libraries defined in section 2 (with the discretization (2.8)). We let MN be
the number of distinct vectors occurring in L and put

√
ΛN = t · σ · (1 +

√
2 log(MN )) with

t > 4 in (3.3) and (3.5).

• Put L = LChirplets or LO
Chirplets for the complex problem and L = L+

Chirplets

for the real problem. Then in both problems, the estimator (3.4) nearly achieves
the minimax risk, simultaneously over the classes of objects F = Chirp(s; N,R),
2 ≤ s ≤ 3:

sup
F

MSE(f, f̂) ≤ AR · log N ·N− 2(s−1)
2s+1 . (3.13)

The constant AR may be chosen of the form AR = A · (R + 1)2/(2s+1), for some
universal A > 0.

• The estimator (3.6) with L = LChirplets or LO
Chirplets obeys (3.13) for the com-

plex problem and, therefore, nearly achieves the minimax risk for the classes F =
Chirp(s; N,R), 2 ≤ s ≤ 3.
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In short, our estimators come within log-factors of the minimax risk

sup
F

MSE(f, f̂) ≤ O(log N) ·M∗(N,F).

In the above theorems, we fixed λ = N as to make the results more concrete and because
this choice allows for signals oscillating at the sampling rate, and has more evocative power.
There are, of course, equivalent formulations of Theorems 3.1 and 3.2 for arbitrary values
of λ.

Theorem 3.3 Let F = Chirp(s; λ, R) for some s ∈ [2, 3]. Then the minimax risk for both
the real and complex problems obeys

M∗(N,F) ≥ c · λ
2

2s+1 ·N− 2s
2s+1 . (3.14)

Theorem 3.4 With the same setup as in Theorem 3.2:

• In the real and complex problems, the estimator (3.4) nearly achieves the minimax
risk, simultaneously over the classes of objects F = Chirp(s; λ, R), 2 ≤ s ≤ 3:

sup
F

MSE(f, f̂) ≤ A · log N · λ
2

2s+1 ·N− 2s
2s+1 . (3.15)

• In the real problem, the estimator (3.6) obeys (3.15) for the complex problem and,
therefore, nearly achieves the minimax risk for the classes F = Chirp(s; λ, R), 2 ≤
s ≤ 3.

Note that for λ = N , the statements of those two theorems are actually identical to those
of Theorems 3.1 and 3.2 while not surprisingly, for λ = 1, the convergence rate is that of
objects with bounded Hölder regularity s, i.e. F = Hölders(C). In fact, the proof of
these last two results are minor modifications of those of Theorems 3.1 and 3.2 and will be
omitted.

We witness one more time a higher degree of adaptivity of our estimators in the sense
that one does not need to know the value of the parameter λ; our estimators are nearly
minimax for any value of the degree of regularity of the chirp, 2 ≤ s ≤ 3 and any value of
the base oscillation frequency λ, 1 ≤ λ ≤ N .

3.4 Real Signals

To study the recovery of real signals with best empirical tight-frame type of ideas, note
that we can transform any arbitrary real-valued signal s(t), t ∈ [0, 1], into a complex signal
by considering the analytic part S(t) of s(t) whose Fourier coefficients

cn(S) =
∫

S(t)e−i2πnt dt
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are defined by

cn(S) =


2cn(s) n > 0
c0(s) n = 0
0 n < 0.

. (3.16)

(There is a discrete analogous for discrete signals which uses the discrete Fourier transform.
Note that one could have alternatively define the analytic part of S by means of the contin-
uous Fourier transform: Ŝ(ξ) = 2ŝ(ξ)1{ξ≥0}, Ŝ(ξ) =

∫
S(t)e−iξt dt. However, the definition

(3.16) is better adapted to objects which live in the interval [0, 1].) It follows from the
definition that s(t) is the real part of the analytic signal S(t)

s(t) = <(S(t)).

Of interest is the fact that this mapping transforms a real-valued and oscillatory chirp
into a corresponding complex-valued and oscillatory chirp. Formally, take s(t) to be a chirp
of the form s(t) = A(t) cos(λϕ(t)). Then

S(t) = A(t)eiλϕ(t) + r(t) (3.17)

where r(t) is a remainder term whose size in some sense decreases as the minimum instan-
taneous frequency inf ϕ′(t) ≥ 0, say, increases.

This transformation provides a mechanism to turn estimation procedures adapted to
complex-valued objects into procedures aimed at recovering real-valued signals. Consider
the following estimation strategy for the real problem (3.9):

1. Apply the transformation (3.16) to the noisy data y (3.9) and obtain Y .

2. Apply the thresholding rule in the best empirical tight-frame Φ ∈ LChirplets yielding
an estimate F̂ .

3. Set f̂ to be the real part of F̂ .

We prove that this estimation procedure is asymptotically nearly optimal as well.

Theorem 3.5 Assume that A(0) = A(1) = 0 or that A and ϕ are periodic. Suppose
|ϕ′(t)| ∈ [ωN , π) with ωN = π · N−1/2+β, β > 1

2(2s+1) . With the same setup as that of
Theorem 3.2, we set L = LChirplets and put

√
ΛN = t · σ · (1 +

√
2 log(MN )) with t > 4 in

(3.5). Then in the real problem, the above estimator obeys

sup
F

MSE(f, f̂) ≤ A · ΛN ·N− 2(s−1)
2s+1 .

Here, the periodicity assumption or the vanishing condition A(0) = A(1) = 0 prevent
the discussion of rather nonessential issues associated with the boundaries of our interval.
Our condition |ϕ′(t)| ∈ [ωN , π) says that the chirp is genuinely oscillatory and does not
have large low-frequency components. Following up on the above discussion, this condition
guarantees that the remainder term in (3.17) is appropriately small.
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3.5 Discussion

A first contribution of this paper is the identification of optimal rates of convergence for
recovering classes of chirps from noisy data, and the construction of estimators which nearly
attain these rates. (We would like to remark that the study of these optimal rates was
inspired by some results in [16] although our results, our models and our methodologies are
very different.) These classes encompass a wide range of phenomena of interest, such as
arbitrary base frequencies λ, roughness s, and regularity R.

Further, our statistical optimality results are stated for discrete models and discrete
algorithms (see sections 2 and 4) and a second contribution is the design of computationally
effective methods which also provably attain these optimal rates of convergence. In fact,
the next section will show that the computational complexity of the estimator (3.6) for
recovering objects from Chirp(s; N,R) is—up to logarithmic factors—of the order of N4/3

operations. Before turning to these issues, we would like briefly to comment on the limits
of this strategy.

Both estimation strategies synthesize a reconstruction by extracting a finite linear com-
bination of a few selected chirplets. The estimator (3.6) extracts such a linear combination
by applying a thresholding rule (in an empirically selected tight-frame). This is expected
to perform well when thresholding provides good partial reconstructions of the underlying
unknown object f , as for any complex-valued chirps, or real-valued chirps with a minimum
degree of oscillation. For slowly varying chirps, however, this is not the case. Optimally
sparse chirplet decompositions of such chirps exist—and this is essentially why (3.4) yields
optimal rates of convergence—but they cannot be synthesized using naive ideas such as
thresholding. This is the reason why our thresholding estimate would not perform well for
slowly varying real chirps. One can of course design other strategies which would adapt to
this situation more effectively. This is, however, not the scope of this paper.

Finally, we would like to discuss possible extensions. Because our libraries of multiscale
chirplets exhibit a dyadic structure, our estimators adapt to other phenomena such as
isolated singularities. For example, it would be possible to extend the results of this paper
as to handle discontinuities in the amplitude A, or in the phase ϕ, or in the instantaneous
ϕ′. We leave the treatment of such natural extensions to a possible future publication.

4 Computational Complexity of the Search

The algorithm for searching the best empirical tight-frame is based on dynamic program-
ming ideas and is similar to the best-basis algorithm for cosine packets [10] and for adapted
bases of local cosines [35].

It is classical to associate an RDP with a binary tree and borrowing a terminology from
[13], we may want to decorate binary trees by associating to each leaf (or equivalently a
dyadic interval) a number bI (our chirping parameter) so that each balanced and decorated
tree is associated with a chirplet tight-frame Φ. With this terminology, we describe an
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algorithm which searches the space of balanced decorated trees and operates by bottom-up
inspection of the complete tree.

To avoid discussing issues related to the endpoints of the interval [0, 1), we will assume
periodic boundary conditions, i.e. that data are given on the circle. There are variants for
other kinds of boundary conditions—which only make the description more technical. To
describe the algorithm, we need to introduce some notations. For each dyadic interval I,
we let L`,r

I be the library of tight-frames Φ which correspond to a BRDP of I with a cut-off
radius equal to 2−` (resp. 2−r) on the left (resp. on the right) of the interval I; j ≤ `, r ≤ J1,
where 2−J1 is some fixed minimum window-size. Note that because of the restriction on
balanced RDPs, the sets L`,r

I are empty if ` = j and r > j + 1 or vice-versa, if r = j and
` > j + 1. There are balanced RDPs corresponding to other pairs (`, r) with `, r ≤ J1. For
each Φ ∈ L`,r

I , we then define the localized entropy

EΛ(I, `, r; Φ) :=
∑

i

min(|θi[Φ]|2,Λ),

where the sum is of course restricted to those coordinates corresponding to dyadic intervals
which are subsets of I. For each (`, r) ∈ {(j, j), (j, j + 1), (j + 1, j), (j + 1, j + 1)}, define
a`,r

I to be the minimum value of the localized entropy corresponding to a tight frame whose
corresponding partition is I and whose cut-offs radii are 2−` and 2−r. With the notations
of section 2, such a tight frame is of the form

Φ = (Vb,I,n)n,

where we recall that the gender of the window wη
I , η = (η−, η+) and η± ∈ {0, 1}, is related

to the cut-offs via η− = j − `, η+ = j − r. Hence,

a`,r
I = inf

b
EΛ(I, `, r; Φ), (4.1)

where Φ is as above .
Define now C`,r

I to be the optimal value of the localized entropy among all Φ ∈ L`,r
I :

C`,r
I = min

Φ∈L`,r
I

EΛ(I, `, r; Φ).

For simplicity, we set C`,r
I = ∞ if L`,r

I = ∅, e.g. Cj,j+2
I = ∞. Consider a dyadic interval I

and its two children IL and IR, the left and right halves of I. We let Φ be that tight-frame
with minimal cost in L`,r

I . The corresponding partition is either I, or is composed by two
balanced dyadic partitions on IL and IR. With

d`,r
I = min

s∈{j+1,...,J1}

(
C`,s

IL
+ Cs,r

IR

)
,

it follows from the additivity property of the entropy that

C`,r
I =


a`,r

I (`, r) ∈ {(j, j), (j + 1, j), (j, j + 1)}
min(a`,r

I , d`,r
I ), (`, r) = (j + 1, j + 1)

d`,r
I otherwise.

. (4.2)
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This formula (4.2) shows that one can compute all the costs C`,r
I using a hierarchically

organized algorithm which is described below.
Algorithm:

• Step 1: we initialize the full binary tree of depth J1 by computing for each node I,
|I| ≥ 2−J1 , and each pair (`, r), the quantities a`,r

I (4.1) and b`,r
I —the optimal value

b∗ of the chirping parameter.

• Step2: starting from the finer level, we move up the tree by computing all the costs.
Loop: for each I of sidelength 2−j ,

– Compute C`,r
I using the formula (4.2).

– At each node I, store the following array (indexed by (`, r)) of information:

∗ Record the value C`,r
I

∗ If the minimum is achieved by a`,r
I , mark the node I (for this value of (`, r))

“Terminal” and record the value of b`,r
I .

∗ If the minimum is achieved by d`,r
I , mark the node I (for this value of (`, r))

“Interior” and record the value s of the optimal cut-off at the middle-point.

– Set j = j − 1.

– If j > 0 goto Loop.

• Step 3: When the loop terminates, all the global costs C`,r
[0,1] (or C`,`

[0,1] assuming peri-
odic boundary conditions) are computed and one can then find the global minimum
cost C`∗,r∗

[0,1] (or C`∗,`∗

[0,1] ). To find the optimal BRDP and optimal tight-frame, we march
down the tree, following the optimal splitting rules (which are stored) and stop when-
ever we find a node marked “Terminal.” At each terminal node, we have available
the optimal value of the chirping parameter b`,r

I .

Hence, when the algorithm terminates, we hold a tight-frame Φ∗ from our library L which
minimizes the entropy E among all tight-frames. The optimality follows from the relation
4.2); that is, from of the additivity of the entropy functional.

The most expensive part of the algorithm is the initialization step (Step 1), i.e. the
computation of the localized entropies. Note that the cost of this step is at most of the
order of MN additions/multiplications and comparisons. As far as the the complexity of
the search algorithm (Step 2) is concerned, observe that for each interval of length 2−j ,
we have to compute O((J1 − j)2) costs and each calculation requires at most O(J1 − j)
additions and comparisons. There are 2j dyadic intervals of length 2−j and, therefore, the
cost of each loop is of the order of O((J1 − j)3) · 2j so that the total number of operations
is of the order of

J1∑
j=J0

O((J1 − j)3)2j = O(2J1).
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Hence, the cost of the search in a complete tree of depth [J0, J1] = [log2 N, 0] is at most
of the order of N operations. In section 2, we argued that it would not make much sense
to consider intervals of size smaller than N−1/2, i.e. N−1/2 ∼ 2−J1 . Hence, the complexity
of the search restricted to this range would be much less, namely, of the order of

√
N

operations.
Therefore, in a full chirplet algorithm, the workload associated with the search is negli-

gible compared to the computational cost of the chirplet analysis.

5 Oracle Inequalities

In the next three sections, we will assume that the noise level obeys σ = 1. A simple
rescaling argument extends our discussion to arbitrary values of σ.

5.1 Oracle Inequalities

A key ingredient for proving the upper-bound are the so-called oracle inequalities. [15, 19, 3].
Suppose we are given a library of tight frames L = {Φ1, . . . ,ΦL}, and let (f̂Φ)Φ∈L be the
family of estimators obtained by applying hard-thresholding rules in the frame Φ ∈ L as in
(3.8). Then the best performance this family may achieve is the so-called ideal MSE [19]

MSE(f,L) = inf
Φ

MSE(f, f̂Φ). (5.1)

This is called ideal because, of course, we would not know which estimator f̂Φ is best; that
is, to achieve the ideal MSE, one would need an oracle which would tell us which frame to
choose. In this setup, an oracle inequality would be an inequality of the form

MSE(f, f̂) ≤ O(log N) · (1/N + MSE(f,L)), ∀f. (5.2)

In other words, an estimator f̂ obeying an oracle inequality would attain a MSE which,
ignoring log-like factors, would be close to the ideal MSE.

5.2 Thresholding with Noisy Data

Consider a model (complex or real) of the form

yt = ft + zt, t = 0, . . . , n− 1, (5.3)

where z = (zt) is Gaussian White Noise, E|zt|2, and f is the vector of unknown sampled
values. Let Φ be a tight-frame. Note that this estimation problem is equivalent to

Φ∗y = Φ∗f + Φ∗z

which we rewrite as
yi[Φ] = θi[Φ] + zi[Φ], i = 1, . . . , p. (5.4)
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Here yi[Φ] (resp. θi[Φ]) are the coordinates of the vector y (resp. f) in the frame Φ and
the stochastic term z[Φ] is a Gaussian vector with mean zero and covariance matrix Φ∗Φ.
In particular, it follows from the tight-frame property that Var(zi[Φ]) ≤ 1, ∀i. Models like
(5.4) have been extensively studied [19, 27, 12, 5] where it is suggested that one applies a
thresholding rule, say

θ̂i[Φ] = η√Λ(yi[Φ]),

with Λ ∼ 2 log p. Assuming that p = O(n), it is now well-known that this rule yields an
estimator obeying [19, 5]

E‖f − f̂‖2
`2 ≤ E‖θ[Φ]− θ̂[Φ]‖2

`2

≤ O(log n) ·

(
1 +

∑
i

min(|θi[Φ]|2, 1)

)
,

with ‖ · ‖`2 the usual Euclidean norm. The first inequality follows from the fact that for
any tight-frame Φ and object f = Φθ, we have

‖f‖ ≤ ‖θ‖,

which we apply to f − f̂ = Φ(θ[Φ]− θ̂[Φ]). The second inequality is an oracle inequality of
the type developed in [19] which provides a bound about the performance of thresholding
rules.

Ignoring for the moment the logarithmic factor and the constant term immediately
inside brackets, we focus attention on the expression

R(f,Φ) =
∑

i

min(|θi[Φ]|2, 1). (5.5)

This acts as proxy for the mean-squared error of estimation of a threshold estimator; in
studies [19, 11] it has been shown that its behavior mimics, to within logarithmic factors,
the true mean-squared error of estimation.

The risk proxy (5.5) enjoys a natural interpretation in terms of the classical bias-variance
trade-off. We let |θ[Φ]|(i) denote the decreasing rearrangement of the coefficients of f in
the frame Φ and define C(θ[Φ],m) be the compression number

C(θ[Φ],m) =
∑
k>m

|θ[Φ]|2(k) (5.6)

measuring the error of reconstruction of the signal f from its m-largest terms in an expan-
sion in the frame Φ. Letting m∗ be the number of coefficients exceeding in absolute value
the threshold t = 1, we may rewrite (5.5) as

R(f,Φ) = C(θ[Φ],m∗) + m∗ = inf
m

C(θ[Φ],m) + m. (5.7)

In other words, the risk proxy is the sum of the number of the terms in the expansion
(which we may think of as a variance term) and the squared approximation error from the
linear combination of its m-largest terms in an expansion in Φ (which we may think of as
a squared-bias term).
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5.3 Thresholding in a Library of Tight-Frames

Suppose we have a library of tight frames L and let Mn be the number of distinct vectors
occurring among all tight frames in the library. We now develop an oracle inequality.

Theorem 5.1 Pick λ > 4 and set
√

Λn = λ · (1 +
√

2 log Mn). Then the MSE of the
estimator obtained by hard-thresholding in the best empirical tight-frame with threshold t =
√

Λn obeys
E‖f̂ − f‖2

2 ≤ (1− 4/λ)−1 · Λn · R∗(f,L). (5.8)

Although this inequality bears some resemblance with that stated in [15], it is actually quite
different. First and foremost, our inequality applies to a library of tight frames whereas
[15] is concerned with orthonormal bases. This is significant because it led us to construct
an estimator which is different than that studied in that reference and those which are
commonly studied, see section 3. Second, (5.8) develops a bound on the risk of f̂ while
instead, [15] gives a probability inequality between the loss ‖f̂ −f‖2

2 (which is random) and
the ideal MSE which we recall is equal to infΦ MSE(f, f̂Φ). Therefore, (5.8) is new and
of independent interest, especially in light of the fact that it may be more applicable since
tight-frames are usually much easier to construct than orthobases.

Proof of Theorem. With the notations of section 3, we recall the definition of the
complexity

J(f ; Φ̃, θ̃) = ‖Φ̃∗f − θ̃‖2
2 + Λn · N (θ̂)

and consider a pair (Φ0, f0) which achieves the minimum theoretical complexity

Φ0 = argmin J(f ; Φ0, θ0), f0 = Φ0θ0.

Since the pair (Φ̂, f̂) has minimum empirical complexity, (Φ̂, f̂) obeys

JΛn(y; Φ̂, θ̂) ≤ JΛn(y; Φ0, θ0). (5.9)

For convenience, put Ĵ = JΛn(f ; Φ̂, θ̂) and J0 = JΛn(f ; Φ0, θ0). It follows from the decom-
position y = f + z that

JΛn(y; Φ̂, θ̂) = ‖Φ̂∗f − θ̂‖2
2 + 2<(〈Φ̂∗z, Φ̂∗f − θ̂〉) + ‖Φ̂∗z‖2

2 + Λn · N (θ̂)

= ‖Φ̂∗f − θ̂‖2
2 + 2<(〈z, f − f̂〉) + ‖z‖2

2 + Λn · N (θ̂)

= Ĵ + 2<(〈z, f − f̂〉) + ‖z‖2
2.

Here we used the tight frame-property which says that ΦΦ∗ = I or equivalently that for any
pair (f, g), 〈Φ∗f,Φ∗g〉 = 〈f, g〉. We may develop a similar expression for J0 and plugging
these equalities on both sides of (5.9) gives

Ĵ ≤ J0 + 2<(〈z, f̂ − f0〉). (5.10)

We now let X be the random variable defined by X = <(〈z, f̂ − f0〉). The following
lemma gives a bound on the expectation of X.
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Lemma 5.2
E(X) ≤ 2 · λ−1 · E(Ĵ). (5.11)

Taking expectation on both sides of (5.10) and applying (5.11) gives

E(Ĵ) ≤ (1− 4/λ)−1 · J0. (5.12)

The oracle inequality (5.8) now easily follows from (5.12) and

‖f − f̂‖2 ≤ ‖θ − θ̂‖2 ≤ Ĵ ,

together with

J0 = min
Φ

∑
i

(|θi[Φ]|2,Λn)

≤ Λn ·min
Φ

∑
i

(|θi[Φ]|2, 1) = Λn · R∗(f,L).

The theorem is established provided we verify Lemma 5.2.
Proof of Lemma 5.2. Observe that J0 ≤ Ĵ and consider the event A = {Ĵ ≤ t}. On

this event, we have ‖f̂ − f‖2 ≤ Ĵ ≤ t and ‖f0 − f‖2 ≤ J0 ≤ Ĵ ≤ t. Next, set m = bt/Λnc.
Note that each element f̂ , f0 is a linear combination of at most m nonzero vectors and
therefore the difference f̂ − f0 is a linear combination of at most 2m distinct vectors from
our dictionary; we let π be the linear space of dimension at most 2m spanned by those
vectors and denote by Pπ the orthogonal projection onto π. On the event A, the Cauchy-
Schwartz inequality gives

|〈z, f̂ − f0〉| ≤ ‖Pπz‖ · ‖f̂ − f0‖ ≤ 2
√

t · ‖Pπz‖.

Obviously,
E‖Pπz‖ ≤

√
t/Λn · E sup

g
|〈g, z〉|,

where g ranges over all possible vectors from our dictionary D. Since

E sup
g
|〈g, z〉| ≤ (1 +

√
2 log Mn),

the projection Pπz obeys
E‖Pπz‖ ≤

√
t/λ.

Hence, we proved that
E(X|Ĵ) ≤ 2 · λ−1 · Ĵ .

Taking expectations gives the lemma.
It is possible to develop oracle inequalities for other complexity functionals. Consider

for example the complexity functional (3.3)

K(y, f̃) = ‖y − f̃‖2 + Λn · NL(f̃)

and let f̂ denote that object which minimizes the empirical complexity (3.4). Then, the
same argument would also give
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Corollary 5.3 Pick λ > 4 and set
√

Λn = λ · (1 +
√

2 log Mn). Then the MSE of the
estimator (3.4) obeys

E‖f̂ − f‖2
2 ≤ (1− 4/λ)−1 · Λn · inf

f̃
K(f, f̃). (5.13)

The proof would merely follows that of Theorem 5.1 and is omitted.

6 Upper Bounds

6.1 Proof of Theorem 3.2.

We will see below that for a complex chirp in f ∈ Chirp(s; N,R), there is a tight frame
Φ ∈ L where, L is either LChirplets or LO

Chirplets, in which the approximation error (5.6)
obtained from the m-largest term in that frame obeys

N−1 · C(θ[Φ],m) ≤ C · (1 + R)2 ·min(N2m−2s, 1), (6.1)

for each m > 0, and for some universal constant C which does not depend upon R, N , and
m. Hence

N−1 · R(f,Φ) ≤ C · (1 + R)2 · inf
m

(
min(N2m−2s, 1) + N−1m

)
. (6.2)

Pick m∗ = b(1 + R)2/(2s+1) ·N3/(2s+1)c. Evaluating the right-hand side of (6.2) shows that
for this frame, the risk proxy (5.5)–(5.7) obeys

N−1R(f,L) ≤ N−1R(f,Φ) ≤ C · (1 + R)2/(2s+1) ·N− 2(s−1)
2s+1 .

Consider LChirplets. Then MN = O(N4/3) so that ΛN = 8λ2/3 · log(N)(1 + o(1)), and
the oracle inequality (5.8) proves the second part of the Theorem. (For LO

Chirplets, MN =
O(N2), and the conclusion is identical.)

The first part of the Theorem is essentially a consequence of (5.13) together with (6.1).
Indeed, observe that (6.1) says that for f(t) = A(t)eiNϕ(t), f ∈ Chirp(s; N,R), there is
Φ ∈ L+

Chirplets such that for each m, there is an m-term linear combination fm[Φ] of
elements of Φ with the property

N−1 · ‖f − fm[Φ]‖2 ≤ C · (1 + R)2 ·N2m−2s

and hence

N−1 · inf
f̃

K(f, f̃) ≤ C · inf
m

(
(1 + R)2 ·N2m−2s + N−1m

)
≤ C · (1 + R)2/(2s+1) ·N− 2(s−1)

2s+1 .

Note that for f(t) = A(t) cos(Nϕ(t)), the same basic estimates would apply since we could
take (fm[Φ]+f [Φ]m)/2 (with fm as before) as a linear combination of at most 2m elements
taken from Φ. The first part of the Theorem then follows from (5.13). The theorem is
proved —provided of course that one verifies the claim (6.1).
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6.2 Ideal Risk Calculations

Recall our assumptions which say that f ∈ Chirp(s; N,R), if f is of the form f(t) =
A(t) cos(Nϕ(t)) where the phase ϕ and amplitude A belong to Hölders(R). In the re-
mainder of this paper, we will denote by ‖ · ‖s the homogeneous Hölder norm

‖g‖s = sup
t,t′

|g(m)(t)− g(m)(t′)|
|t− t′|s−m

, m < s ≤ m + 1.

To approximate f ∈ Chirp(s; N,R), we select j such 2j ≤ N1/s < 2j+1, i.e. 2−j ∼ N−1/s,
and consider the uniform dyadic partition Pj at that scale; that is the collection of intervals
of the form I = [k2−j , (k + 1)2−j), k = 0, 1, . . . , 2j − 1. Associated with Pj is a collection
of windows we shall simply denote by wI . In the sequel, Ĩ will stand for the support of wI .
Note that |Ĩ| ≤ 2−j+1.

Lemma 6.1 Assume that bI is discretized as in section 2, namely, bI = π ·` ·22j/N , ` ∈ Z,
|bI | ≤ B, where B ≤ R, say. Then, there is a continuous broken line (aI + bIt)I∈Pj obeying
the following two properties:

(i) for each dyadic interval I,

sup
Ĩ

|ϕ′′(t)− bI | ≤ (2R + π) · 2−j(s−2); (6.3)

(ii) and for each dyadic interval I,

sup
Ĩ

|ϕ′(t)− (aI + bIt)| ≤ (R + π) · 2−j(s−1). (6.4)

In the above, aI may be taken of the form π · ` · 2j/N for some interval dependent integer `.

Proof of Lemma. Both (6.3) and (6.4) follow from the assumptions about the phase and the
fact that the collection of “phaselets” (aI + bIt)I is appropriately discretized. We let tI , t

′
I ,

be the dyadic points k/2−j , (k + 1)2−j . For each k = 0, . . . 2j − 1, we define (tI , ϕ′I) such
that ϕ′I is the point on the lattice ` ·π2j/N , ` ∈ Z, closest to ϕ′(tI); the broken line aI + bIt

is the piecewise linear and continuous function which goes through the points (tI , ϕ′I). This
approximation obeys (6.3) and (6.4).

To see why this is true, let g be a Cα function, i.e. such that ‖g‖α is finite for some
1 ≤ α ≤ 2, and such that g(0) = g(1) = 0. Then

sup
[−1/2,3/2]

|g′(t)| ≤ 2‖g‖α, and sup
[−1/2,3/2]

|g(t)| ≤ ‖g‖α. (6.5)

Now for each I, let
δI(t) = ϕ′(tI) + 2j

(
ϕ′(t′I)− ϕ′(tI)

)
(t− tI).

Following (6.5), a simple rescaling argument gives

sup
Ĩ

|ϕ′′(t)− δ′I(t)| ≤ 2−j(s−2) · 2‖ϕ‖s, and sup
Ĩ

|ϕ′(t)− δI(t)| ≤ 2−j(s−1) · ‖ϕ‖s.
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Put ωI(t) = aI + bIt = ϕ′I + bI(t− tI). At scale 2−j , the spacing ∆ between two consecutive
intercepts obeys ∆ ≤ π · 2j/N and hence,

|ϕ′(tI)− ωI(tI)| ≤ π · 2j/2N, |ϕ′(t′I)− ωI(t′I)| ≤ π · 2j/2N.

It then follows that
|δI(t)− ωI(t)| ≤ π · 2j/N, ∀t ∈ Ĩ ,

and the triangle inequality then gives

|ϕ′(t)− ωI(t)| ≤ 2−j(s−1) · ‖ϕ‖s + π · 2j/N.

Likewise, |δ′I(t)− ω′I(t)| is less or equal to π · 22j/N and, therefore,

|ϕ′′(t)− ω′I(t)| ≤ 2−j(s−2) · 2‖ϕ‖s + π · 22j/N.

The last two displays prove (6.3) and (6.3), since by assumption N ≥ 2js, and ‖ϕ‖s ≤ R.

In the remainder of this section, we will let Φ ∈ LChirplets be the tight-frame implied
by Lemma 6.1; that is, that frame with chirping rate bI over the interval I. Put hI to be
the phase difference

hI(t) = ϕ(t)− aIt−
1
2
bIt

2.

It follows from Lemma 6.1 that ‖hI‖s ≤ R, and

sup
Ĩ

|h′I(t)| ≤ (R + π) · 2−j(s−1), sup
I
|h′′I (t)| ≤ (2R + π) · 2−j(s−2). (6.6)

Put nI = N · 2−j · aI/π and note that our discretization implies nI ∈ Z. With these
notations and for each dyadic interval, the coefficients of f in Φ are given by

θI,n = 2(j−1)/2

∫
A(t)eiNhI(t)wI(t) e−iπ(n−nI)2jt dt. (6.7)

Lemma 6.2 Let I be a fixed interval. The sequence (θI,n)n obeys∑
n: |n−nI |>M

|θI,n|2 ≤ C · (R + 1)2 · 2−j ·M−2s, (6.8)

for some constant C > 0.

Remark. The previous calculations assumed we were working with a tight-frame Φ ∈
LChirplets. Suppose instead that Φ is an orthobasis in LO

Chirplets, then

θI,n = 2(j+1)/2

∫
A(t)eiNhI(t)wI(t) sin

[
π(n + 1/2)(2jt− k)

]
dt, n = 0, 1, . . . , (6.9)

and the statement (6.8) of Lemma would need to be replaced with∑
n>M

|θI,n|2 ≤ C · (R + 1)2 · 2−j ·M−2s,

whose proof consists in a minor modification of that of Lemma 6.2. We postpone the proof
of this lemma to a later section and state a consequence of (6.8).
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Theorem 6.3 Suppose that f ∈ Fs and let Φ be the tight-frame (or basis) implied in
Lemma 6.1. Then the partial reconstruction obtained by keeping the m largest terms in the
expansion of f obeys

‖f − fm[Φ]‖2
L2
≤ C · (R + 1)2 ·min(N2m−2s, 1). (6.10)

Proof of Theorem. Lemma 6.2 gives∑
I∈Pj

∑
n:|n−nI |>M

|θI,n|2 ≤ C · (R + 1)2 ·M−2s.

Let |θ|(k) be the kth largest entry in the sequence (|θI,n|)I,n and set m = 2j ·M . We then
just established that∑

k>m

|θ|2(k) ≤
∑
I∈Pj

∑
|n|>M

|θI,n|2 ≤ C · (R + 1)2 · 22js ·m−2s,

which proves (6.10) since 2j ≤ N1/s < 2j+1.

6.3 Analysis of Demodulated Chirps

In this section, we will give a proof of Lemma 6.2. Suppose we have a chirp A(t)eiNϕ(t).
We demodulate and window the chirp, multiplying by e−iN(aI+ 1

2
bI t)t2j/2w(2jt − k), where

w is smooth and compactly supported. We then rescale the domain so the resulting object
is supported in a unit-scale interval. An equivalent realization of this object is of the form,

f̃(t) = w(t)Ã(t)eiNδ(t), (6.11)

so that the coefficient (6.9) is given by

θI,n = 2−(j+1)/2

∫
w(t)Ã(t)eiNδ(t) e−iπ(n−nI)t dt.

For such an object to correspond to a rescaling of the type discussed above, we must impose
constraints on the function Ã and on the phase δ. As for A we impose

‖A‖∞ ≤ R, ‖A‖s ≤ R · 2−js. (6.12)

As for δ we impose

2js · ‖δ′‖L∞ ≤ (R + π), 2js · ‖δ′′‖L∞ ≤ (R + π), 2js · ‖δ‖s ≤ R. (6.13)

Indeed this follows from (6.4) and (6.6) by a simple rescaling. In this sense, the phase δ is
nearly non-oscillatory.

Set g(t) = w(t)Ã(t) so that f(t) = g(t)eiNδ(t). One the one hand, g clearly belongs to
Hölders(γR), and on the other

‖eiNδ‖s ≤ γ · (R + 1),
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for some positive γ > 0. The latter statement is a simple consequence of the condition
(6.13). Indeed, we calculate the second derivative

D2eiNδ(t) = ([iNδ′(t)]2 + iNδ′′(t))eiNδ(t) = T0(t) + T1(t).

(Recall that 2j ≤ N1/s < 2j+1). The first term is differentiable and obeys |(DT0)(t)| ≤
γ · (R + 1) and, therefore, |T0(t)− T0(t′)| ≤ γ · (R + 1) · |t− t′|. For the second, note that
(6.13) gives N |δ′′(t)−δ′′(t′)| ≤ (2R+π) · |t− t′|s−2 and obviously, T1 obeys |T1(t)−T1(t′)| ≤
γ · (R + 1) · |t− t′|s−2. We then conclude that f̃ obeys the smoothness estimate

‖f̃‖s ≤ γ · (R + 1). (6.14)

For a fixed I, the coefficients θI,n are the shifted Fourier coefficient of 2−j/2f̃ where
f̃ ∈ Hölders(γ · (R + 1)), supported on the interval [−1/2, 3/2] and obeying (6.14). With
cn(f̃) the Fourier coefficients of f̃ ,

cn(f̃) =
1√
2

∫
f̃(t) exp(−iπnt) dt,

it is well-known that (6.14) implies the decay∑
|n|>m

|cn(f̃)|2 ≤ C · (R + 1)2 ·m−2s · ‖f̃‖2
s.

The claim (6.8) then follows from θI,n = 2−j/2cn−nI (f̃). Lemma 6.2 is established.

6.4 Accuracy of Trapezoidal Quadrature Rules

The reader may have been surprised by the argument underlying the proof of Lemma
6.2. Indeed, the expression for the chirplet coefficients were given by integrals and thus,
assumed signals on the continuum. Because our model is discrete, this is a distortion of
reality. Before deriving a version of Theorem 6.3 for sampled signals, we would like to point
out that we are guilty of a common “crime” as many papers in the literature of statistics
claim results for discrete models while the proofs operate at the level of the continuum, see
the discussion in [26] and references therein.

With the notations of the previous section, we considered

θI,n =
2−j/2

√
2

·
∫

f̃(t)e−iπnt dt,

while we should have considered, instead,

θD
I,n =

2−j/2

√
2

· 1
Nj

∑
t

f̃(t/Nj)e−iπnt/Nj .

The point here is that the discrete coefficients are very accurate approximations of the
underlying continuous coefficients. This is a well-known phenomenon in numerical analysis
which is briefly explained below.
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Consider for example a periodic function g on the interval [0, 1]. We let I denote the
integral I =

∫ 1
0 g(t) dt and let IN be the discrete approximation given by the trapezoidal

rule

IN =
1
N

N−1∑
t=0

g(t/N).

Then a classical result [2] states that the accuracy of the trapezoidal rule obeys

|I − IN | ≤ C · ‖g‖s ·N−s, (6.15)

for some uniform constant C. Now, let (ĝn), −N/2 ≤ n < N/2, be the discrete Fourier
transform of the sampled values of g

ĝn =
1
N

N−1∑
t=0

g(t/N)ei2πnt/N .

Then the accuracy estimate (6.15) generalizes to Fourier coefficients (observe that for n = 0,
ĝ0 = IN ) and there is a constant C such that for all −N/2 ≤ n < N/2

|ĝn − ĝ(2πn)| ≤ C ·N−s. (6.16)

In our setup, note that f̃ is zero at the endpoint of the interval of interest (and hence
periodic). We then apply (6.16) and obtain

θD
I,n = θI,n + εI,n, |εI,n| ≤ C(R) · 2−j/2 ·N−2s

j ,

where here and below, the constant C(R) may be taken to be of the form C · (R + 1) for
some C whose value may change from line to line. It then follows from∑

I

∑
−Nj/2≤n<Nj/2, |n|>M

|θD
I,n − θI,n|2 ≤

∑
I

∑
|n|>M

|εI,n|2 ≤ C(R)2 ·N−(2s−1)
j

together with (6.8) that∑
I

∑
−Nj/2≤n<Nj/2, |n|>M

|θD
I,n|2 ≤ C(R)2 · (M−2s + N

−(2s−1)
j ).

Recall that Nj is the number of sampled values in an interval of length 2−j ∼ N−1/s, i.e.
Nj ∼ N (s−1)/s. Hence, following the proof of Theorem 6.3, one obtains that the tail of θD

obeys ∑
k>m

|θD|2(k) ≤ C(R)2 ·
(
22js ·m−2s + N−α

)
, α = (2s− 1)(s− 1)/s.

We then conclude by observing that for our discrete model, the previous analysis gives

1
N
· R(f,Φ) ≤ C(R)2 · inf

m

(
min(N2m−2s, 1) + N−1m

)
+ C(R)2 ·N−α. (6.17)

Since on the one hand we calculated earlier that infm min(N2m−2s, 1)+N−1m ∼ N− 2(s−1)
2s+1 ,

and on the other α > 2(s−1)
2s+1 for 2 ≤ s ≤ 3, we see that the discretization error is negligible

as compared to the minimax risk (1.8). Hence, our discrete algorithm provably attains the
optimal estimation bounds.
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6.5 Proof of Theorem 3.5

This theorem relies on the following lemma.

Lemma 6.4 Let f(t) = A(t) cos(Nϕ(t)) be a chirp in Chirp(s; N,R) with A(0) = A(1) =
0 or with A and ϕ periodic. Put F to be the analytic part of f as in (3.16). Then under
the assumptions of Theorem 3.5

F (t) = A(t)eiNϕ(t) + r(t),

where
‖r‖2 ≤ B ·N− 2(s−1)

2s+1 . (6.18)

The proof of (6.18) involves a delicate estimate whose proof in the Appendix. We first
explain, however, how Theorem 3.5 follows from this lemma.

Put FIdeal(t) = A(t)eiλϕ(t). Since f(t) = <(F (t)), our estimator obeys

‖f̂ − f‖2 ≤ ‖F̂ − F‖2.

We then use the risk proxy (5.5) to bound the MSE E‖F̂ −F‖2. (Because the noise is now
lower-dimensional, we could actually derive an oracle inequality with better bounds than
(5.8).) Letting θ(F ) be the coefficients of F in the tight-frame Φ, the proxy obeys∑

i

min
(
|θi(FIdeal) + θi(r)|2 , 1

)
≤

∑
i

min(2|θi(FIdeal)|2, 1) + min(2|θi(r)|2, 1)

≤
∑

i

min(2|θi(FIdeal)|2, 1) + 2
∑

i

|θi(r)|2

≤ 2
∑

i

min(|θi(FIdeal)|2, 1) + 2‖r‖2.

To conclude, we simply observe that an earlier section proved that∑
i

min(|θi(FIdeal)|2, 1) ≤ C · (R2 + 1) ·N− 2(s−1)
2s+1 ,

in some frame Φ, while Lemma 6.4 gives a bound on the second term which is of the same

order, namely ‖r‖2 = O

(
N− 2(s−1)

2s+1

)
. The oracle inequality allows to conclude that

E‖f̂ − f‖2 ≤ E‖F̂ − F‖2 ≤ O(log N) ·N− 2(s−1)
2s+1 ,

which establishes the theorem.
We now turn our attention to Lemma 6.4. Let cn(g) be the Fourier coefficients of an

object g ∈ L2[0, 1]

cn(g) =
∫

g(t) e−iπnt dt.
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The coefficients of r are then simply given by

cn(r) =


c−n(FIdeal) n > 0
−i= (c0(FIdeal)) n = 0
−cn(FIdeal)) n < 0

.

This follows from the definition. Indeed, for n ≥ 0, 2f = FIdeal + FIdeal which gives
2cn(f) = cn(FIdeal)+cn(FIdeal) and, therefore, cn(r) = 2cn(f)−cn(FIdeal) = c−n(FIdeal).
The claim for n = 0 and n < 0 are similar. Hence,

‖r‖2 =
∑
n≤0

|cn(FIdeal)|2,

and we then need to verify that the right-hand side is appropriately bounded.
Suppose now that A and ϕ are members of the class Hölders(R), and obey the as-

sumptions of Lemma 6.4. Assume without loss of generality that ϕ′ ≥ 0. Set Ω such that
Ω ≤ Nϕ′(t) and suppose Ω ≥ N1/2. Then for any δ > 0, there is a constant Cδ such that∑

n<0

|cn(FIdeal)|2 ≤ Cδ · Ωδ ·
(

N

Ω2

)2(s−1)

. (6.19)

This inequality is the difficult part of the argument and the proof may be found in the
Appendix. We now specialize this inequality by selecting Ω = N1/2+β/2 with β > 1/(2s+1)
as in Theorem 3.5. This gives∑

n<0

|cn(FIdeal)|2 ≤ Cδ ·N δ(1+β)/2 ·N−2(s−1)β

= Cδ ·N−2(s−1)(β−δ∗), δ∗ = δ(1 + β)/(4(s− 1)).

Picking δ small enough so that δ∗ < β − 1/(2s + 1) gives (6.18).

7 Lower Bounds

In this section, we provide a proof of Theorem 3.1 and establish lower bounds of estimation
for F = Chirp(s, N,R), with s ≥ 2. We assume that λ = N as the proofs for arbitrary
values of λ are identical. We follow a standard strategy for establishing lower bounds and
construct a family of hypercubes Hm which are embedded in F , see [16, 14, 5] and perhaps
[28]. We then study the subproblem of estimation when the object comes from one of the
vertices of the hypercube. Suitable choices of hypercubes then allow to derive sharp lower
bounds on the minimax mean-squared error of this subproblem. We begin by considering
the case of real signals, and later explain why the complex problem is not easier.

7.1 Hypercubes

We let ϕ be a smooth function supported in the interval [0, 1] and obeying ‖ϕ‖s ≤ R. We
then define ‘phaselets’ by the rule

ϕi,m(t) = m−sϕ(m(t− ti)), ti = i/m, i = 0, 1, . . . ,m− 1. (7.1)
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Of course, each phaselet also obeys ‖ϕi,m‖s ≤ R and for t ∈ [0, 1], we then consider
superpositions of such phaselets

Φξ(t) =
m−1∑
i=0

ξiϕi,m(t), ξ ∈ {0, 1}.

We will use these linear combinations to synthesize a collection of chirps as follows:

Hm = {f(t), f(t) = sin (NΦξ(t)) , t ∈ [0, 1]}. (7.2)

Note that the embedding Hm ⊂ F is obviously a consequence of the membership of Φξ to
Hölders(R). Moreover, the set Hm is indeed a hypercube. Indeed, observe that for any
t, there is at most one term in the sum Φξ(t) =

∑
i ξiϕi,m(t) which is nonzero and that we

can thus rewrite f ∈ Hm as

f(t) =
m−1∑
i=0

ξi sin(Nϕi,m(t)) :=
m−1∑
i=0

ξi ai,m(t)

with
ai,m(t) = sin(Nϕi,m(t)).

The vertices ai,m of the set Hm are ’little chirps’ which are orthogonal because of their
disjoint support. Hence, we are entitled to think of Hm as a functional hypercube in L2.

7.2 Lower Bound Calculations

When restricted to the set Hm, the estimation problem (1.1) becomes simply the problem of
determining which of the many vertices of the hypercube may have generated the observed
data. First, letting P be the orthogonal projection onto the span of the ai,m’s, we have

‖P f̂ − f‖2
L2

= ‖P f̂ − Pf‖2
L2
≤ ‖f̂ − f‖2

L2
,

and, therefore, we may restrict attention to estimators which are linear combinations of
ai,m’s, i.e. of the form

f̂ =
∑

i

ξ̂iai,m.

Second, owing to the orthogonality of the chirps ai,m, we have that for these estimators

‖f̂ − f‖2
L2 = ‖ξ̂ − ξ‖2

`2 · ‖ai,m‖2
L2

, (7.3)

and so the problem reduces to one of estimating ξ.
Next, define the statistic X = (X1, . . . , Xm) by Xi = 〈Y, ai,m〉/‖ai,m‖2

L2
; that is, Yi is

the inner product between the data Y and the renormalized blobs ai,m. In vector notations,
X ∼ N(ξ, σ2

m · I), where
1/σ2

m = N · ‖ai,m‖2
L2

.
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This construction is valid for any m and we now select m such that the ’noise’ level σm

is approximately equal to the size of the coordinates to be estimated, i.e. σm ∼ 1. Formally,
we choose a noise-dependent m(N) such that

m(N) = inf {m, σm ≥ 1}. (7.4)

To specify the value of m(N), we now develop a result about the size of the elements ai,m.

Lemma 7.1 The norm of ai,m obeys the following size estimate:

‖ai,m‖2 ≥ A ·m−1 ·min(N2m−2s, 1) (7.5)

for some fixed positive constant A.

Here the norm is either the continuous L2-norm ‖f‖2 =
∫ 1
0 |f(t)|2 dt or the analogous

discrete Euclidean norm ‖f‖2 = N−1
∑N−1

t=0 |f(t/N)|2. The proof of this lemma consists of
a simple calculation and is omitted.

Hence, selecting m(N) ≥ N1/s as

m(N) ∼ N3/(2s+1)

gives σm ≥ 1 as in (7.4). Now for σm ≥ 1, it is intuitively obvious that the minimax
mean-squared error in estimating the vector ξ from the observations X ∼ N(ξ, σ2

m · I) is
bounded below by by a constant times the number of coordinates m. Formally,

inf
ξ̂

sup
ξ

E‖ξ̂ − ξ‖2
`2 ≥ B ·m. (7.6)

This last inequality is indeed classical. In a nutshell, note that our problem is harder than
that of estimating the mean vector ξ from the data X = N(ξ, I). For this latter problem,
consider the prior π where the ξi’s are i.i.d. with P (ξi = 1) = 1/2. Then the minimax
mean-squared error is bounded below by the Bayes risk which for this specific prior is
of the form B · m—with B the Bayes risk of estimating any coordinate ξi ∈ {0, 1} from
Xi ∼ N(ξ, 1) and the one-dimensional prior P (ξi = 1) = 1/2. To see why this is true,
observe that the Bayes estimate is of the form

ξ̂i = E(ξi|X) = E(ξi|Xi)

and, therefore, the Bayes estimate obeys

E‖ξ̂ − ξ‖2 =
∑

i

E(ξ̂i − ξi) = m · E(ξ̂i − ξi) = B ·m.

Specializing (7.6) to the choice m(N) of (7.4) and invoking the isometry (7.3) gives
Theorem 3.1.
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7.3 Complex Signals

Suppose now that we wish to recover a complex signal f(t) = A(t) exp(iNϕ(t)) from noisy
data as in (3.10) or (3.11). It turns out that this problem is about just as hard as the
corresponding real problem. With the same phase function as before, we consider the
embedded hypercube

Hm = {f(t), f(t) = exp (iNΦξ(t)) , t ∈ [0, 1]}; (7.7)

Hm is a hypercube since we can rewrite a generic element f ∈ Hm as

f(t) = 1 +
m−1∑
i=0

ξi (eiNϕi,m(t) − 1) := 1 +
m−1∑
i=0

ξi ui,m(t)

with
ui,m(t) =

(
eiNϕi,m(t) − 1

)
1[i/m,(i+1)/m)(t).

The vertices ui,m of the set Hm are orthogonal since they have disjoint supports. For
t ∈ [i/m, (i + 1)/m), rewrite ui,m as

ui,m(t) = (cos(Nϕi,m(t))− 1) + i sin(Nϕi,m(t)) = bi,m(t) + iai,m(t)

(ai,m(t) is as before). Our problem then consists in recovering the bivariate signal (
∑

i ξiai,m,
∑

i ξibi,m)
from the noisy data

Y1[t] =
∑

i

ξiai,m[t] + z1[t]

Y2[t] =
∑

i

ξibi,m[t] + z2[t].

Following our earlier argument, consider the random vector Xi,j = 〈Yj , ai,m〉/‖ai,m‖2, j =
1, 2,

Xi,1 = ξi + σm z1,i

Xi,2 = εm · ξi + σm z2,i

. (7.8)

Here εm = 〈bi,m, ai,m〉/‖ai,m‖2. Because ‖bi,m‖ is much smaller than ‖ai,m‖ over the range
of m’s of interest, εm is very small; selecting m as before gives

|εm| ≤ ‖bi,m‖/‖ai,m‖ ≤ C ·N−(s−1)/(2s+1).

Note that our problem is obviously harder than just recovering the first component of∑
i ξiai,m (or equivalently recovering the vector ξ) from the above data which is nearly the

problem we studied in the previous section; the only difference is that we have additional
data about ξi in the form of the second component of (7.8). However, since we argued that
εm is negligible, these additional data do not make the problem any easier; in other words,
the vector X2 contains practically no information about ξ.
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Formally, we proceed as before and observe that our our problem is harder than that of
estimating the mean vector (ξi) from the independent observations Xi = N((ξi, εmξi), I).
For this latter problem, consider the prior π where the ξi’s are i.i.d. with P (ξi = 1) = 1/2.
Then the Bayes estimate ξ̂i is again of the form ξ̂i = E(ξi|Xi) and obeys E(ξ̂i − ξi) = B′

which gives
E‖ξ̂ − ξ‖2 = B′ ·m;

in fact because εm → 0 as N → ∞, B′ = B(1 + o(1)) where the second term goes to zero
as N tends to infinity. The rest of the argument is as before.

8 Discussion

The main contribution of this paper is merely to establish a bridge between between con-
cepts in time-frequency analysis and statistical estimation by showing how well one can
hope to recover a class of rapidly oscillating signals. Next, building upon ideas Compu-
tational Harmonic Analysis (CHA), we have been able to derive reasonable, flexible, and
low-complexity algorithms which come close to the best theoretical performances. Encour-
aged by the excellent track-record of CHA for applications, we look forward to testing
the potential of these ideas for practical significance. In this direction, the author has re-
cently engaged in the development of computational tools and hope to report on numerical
experiments shortly.

8.1 Further Issues

The methodology presented in this paper relies on the assumption that the signal we wish
to recover is a single chirp, i.e. a signal of the form f(t) = A(t) cos(λϕ(t)), and would be
ineffective in situations where the unknown signal is actually a superposition of a finite
number of chirps, with distinct amplitudes and phases, e.g. f(t) =

∑m
i=1 Ai(t) cos(λϕi(t)).

It would certainly be of importance to extend and develop other ideas to adapt to such
signals effectively.

It might very well be possible to find algorithms with lower computational complexity
than those we discussed in this paper. In particular, we may not need to compute all chirplet
coefficients as one might imagine quickly scanning the time-frequency plane to identify
regions in the plane or subsets of the chirplet parameter space in order to narrow the search.
A relevant problem in this line of research would concern the design of algorithms with
minimum computational complexity, and which would still arguably produce estimators
with nearly optimal asymptotic properties.

Suppose we have noisy data Y (t) = αf(t) + z(t), t = 0, 1, . . . , N where α is unknown
and f is chirping. Then a problem of interest is to detect whether α = 0. Work in progress
also develops a statistical theory for problems of this kind. Assume for example that the
chirp has unit-energy ‖f‖ = 1 and Gaussian white noise with noise level E‖z‖2 = 1. Then
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preliminary calculations suggest the existence of constants (α0
N , α1

N ) such that no procedure
can detect if α < α0

N and that one can detect with asymptotically full power if α ≥ α1
N

with again low complexity algorithms.

8.2 Challenge

In some sense, there is a higher-level question that we have not addressed here: Is there
an optimal representation for chirps? That is, is there a fixed basis or tight-frame in which
thresholding would be asymptotically nearly optimal over our classes of chirps. To our
knowledge, no pre-existing basis or tight-frames would yield convergence rates that could
come even close to the optimal convergence rates we identified in this paper. In fact, the best
published nonadaptive result is given by the thresholding of Gabor type of expansions which
gives markedly suboptimal convergence rates, as we have seen. Hence, we conclude with
this important challenge: Is there a nonadaptive representation which provides optimally
sparse decompositions of chirps? In other words, is there something beyond Gabor?

9 Appendix

In the appendix, we study properties of analytic chirps and prove (6.19).

Theorem 9.1 Let f(t) = A(t) exp(i2πNϕ(t)) be a chirp such that A,ϕ ∈ Hölders(R)
with A(0) = A(1) = 0 or with A and ϕ periodic. Suppose that 2π ·Nϕ′(t) > π ·Ω ≥ π ·N1/2.
Then, for any δ > 0, the Fourier coefficients cn(f) obey

∑
n≤0

|cn(f)|2 ≤ Cδ · Ωδ ·
(

N

Ω2

)2(s−1)

. (9.1)

We prove the result for s = 2 (the extension to arbitrary values of s is treated similarly).
An integration by parts gives

cn(f) =
∫

A(t)ei2πNϕ(t)e−i2πnt dt

=
∫

ei2πNϕ(t)e−i2πnt d

dt

(
A(t)

2πi(Nϕ′(t)− n)

)
.

That is,

cn(f) =
1

2πi
(an + bn)

where

an =
∫

ei2πNϕ(t)e−i2πnt A′(t)
(Nϕ′(t)− n)

dt

bn =
∫

ei2πNϕ(t)e−i2πnt NA(t)ϕ′′(t)
(Nϕ′(t)− n)2

dt.
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It then suffices to prove that both sequences obey (9.1). We begin with the difficult estimate,
namely, bn. From now on, g will denote the function

g(t) = ei2πNϕ(t) NA(t)ϕ′′(t)

so that bn =
∫

e−i2πnt g(t) (Nϕ′(t)− n)−2 dt.
We introduce block of indices and say that n ∈ B` if

−n ∈ [` · Ω, (` + 1) · Ω), ` = 0, 1, . . . .

We may think of this partitioning as a kind of Littlewood-Paley decomposition with a
further decomposition within each dyadic block. For n ∈ B`, set

n = n` + n′, n` = −` · Ω.

Now recall that for x < 1

1
(1 + x)2

=
K−1∑
k=0

(k + 1)xk + O(xK).

Suppose that n ∈ B`, then

(Nϕ′(t)− n)−2 = (Nϕ′(t)− n`)−2

(
K−1∑
k=0

(k + 1)(n′)k

(Nϕ′(t)− n`)k
+ hK(t)

)
, hK(t) = O(Ω−αk).

The last assertion comes from the fact that for n ∈ B`, Nϕ′(t) − n` ≥ Ω · (1 + ` · Ω−α)
together with |n′| ≤ ·Ω(1−α).

With these notations

bn =
K−1∑
k=0

bk,n + bK,n

where for k = 0, 1, . . . ,K − 1,

bk,n = (k + 1)(n′)k

∫
e−i2πnt g(t) (Nϕ′(t)− n`)−(2+k) dt.

and
bK,n =

∫
e−i2πnt g(t) hK(t) (Nϕ′(t)− n`)−2 dt.

We set K(α) to be the smallest integer such that α ·K > 1/2. We show that each sequence
bk,n obeys ∑

n≤0

|bk,n|2 ≤ Cα · Ωα ·N2 · Ω−4. (9.2)

Since K is finite, this gives ∑
n≤0

|bn|2 ≤ C ′
α · Ωα ·N2 · Ω−4,

which is what we are seeking to establish.
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Begin with bK,n. The function hK obeys hK(t) ≤ Cα ·Ω−αK ≤ Cα ·Ω−1/2 and, therefore,

|bK,n| ≤ Cα ·N · Ω−2 · (1 + ` · Ω−α)−2 · Ω−1/2.

Because the number of elements in B` is less or equal to Ω1−α, this gives∑
n∈B`

|bK,n|2 ≤ Cα · Ω1−α · (1 + ` · Ω−α)−4 · Ω−1 · (N2/Ω4).

Further, from the summation

∞∑
`=0

(1 + ` · Ω−α)−4 ≤ B · Ωα,

we conclude that ∑
n≤0

|bK,n|2 ≤ Cα ·N2/Ω4,

which is actually better than (9.2).
Next, for k = 0, 1, . . . ,K − 1, we have∫ ∣∣∣g(t) (Nϕ′(t)− n`)−(2+k)

∣∣∣2 dt ≤ Ck · Ω−2k(1 + ` · Ω−α)−2(2+k) ·N2/Ω4.

Therefore, the Plancherel formula gives∑
n∈B`

(1 + |n′|)−2k|bk,n|2 ≤ Ck · Ω−2k(1 + ` · Ω−α)−2(2+k) ·N2/Ω4.

Since |n′| ≤ Ω1−α, this gives∑
n∈B`

|bk,n|2 ≤ Ck · Ω−2αk(1 + ` · Ω−α)−2(2+k) ·N2/Ω4.

We conclude as before and obtain∑
n

|bk,n|2 ≤ Ck · Ωα(1−2k) ·N2/Ω4 ≤ Ck · Ωα ·N2/Ω4.

as claimed.
We need turn attention to an. Note that we can integrate this term by parts and obtain

an =
1

2πi

(
a0

n + a1
n

)
where

a0
n =

∫
ei2πNϕ(t)e−i2πnt A′′(t)

(Nϕ′(t)− n)2
dt

a1
n =

∫
ei2πNϕ(t)e−i2πnt NA′(t)ϕ′′(t)

(Nϕ′(t)− n)3
dt.
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The first term obeys

|a0
n| ≤

∫
|A′′(t)|

(Nϕ′(t)− n)2
dt ≤ C · (Ω− n)−2.

Therefore, ∑
n<0

|a0
n|2 ≤ C · Ω−3;

since Ω ≤ N , this bound is better than N2/Ω4. The second term obeys

|a1
n| ≤

∫
|NA′(t)ϕ′′(t)|
(Nϕ′(t)− n)3

dt ≤ C ·N · (Ω− n)−3.

Therefore, ∑
n<0

|a1
n|2 ≤ C ·N2 · Ω−5,

which again is of course better than N2/Ω4. This finishes the proof of the Theorem.
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