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ABSTRACT

The problem of recovering an input signal from noisy and linearly distorted data arises in many different
areas of scientific investigation; e.g., noisy Radon inversion (tomography) is a problem of special interest
and considerable practical relevance in medical imaging. We will argue that traditional methods for solving
inverse problems – damping of the singular value decomposition (SVD) or cognate methods – behave poorly
when the object to recover has edges.

We apply a new system of representation, namely, the curvelets in this setting. Curvelets provide near-
optimal representations of otherwise smooth objects with discontinuities along smooth C2 edges. Inspired
by some recent work on nonlinear estimation, we construct a curvelet-based biorthogonal decomposition
of the Radon operator and build a reconstruction based on the shrinkage (or thresholding) of the noisy
curvelet coefficients. This novel approach is shown to give a new theoretical understanding of the problem
of edges in the Radon inversion problem.
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1. INTRODUCTION

A classical problem is the reconstruction of images from indirect noisy measurements; that is, we wish to
recover an object f ∈ L2(R2) from data y of the form

y(u) = (Kf)(u) + z(u), u ∈ U ; (1)

f(x) is the object of interest; K is a linear operator (we are able to observe data about (Kf)(u) only)

(Kf)(u) =
∫
k(u, x)f(x) dx,

K might be a convolution transform, a Radon transform or an Abel transform; z is a noise contribution
that might be stochastic or deterministic. Such problems are called linear inverse problems and their study
is a very active area of scientific investigation. Singular value decomposition (SVD) methods constitute the
standard approach for linear inverse problems. However, there is a conceptual problem associated with this
approach: the SVD is driven by the structure of the forward operator, with no input from the structure
of the object to be recovered. A byproduct is that the standard approach is suboptimal for recovering
spatially inhomogeneous objects.
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Although our theory supports general homogeneous or quasi-homogeneous operators, we will consider
the case where the linear operator is the Radon transform, whose inversion has for instance wide ranging
applications in tomography. The Radon transform of f is the collection of line integrals

(Kf)(u) = (Rf)(θ, t) =
∫
Lθ,t

f(x) dx,

where Lθ,t is the line defined by {x1 cos θ + x2 sin θ = t}. The Radon inversion problem arises in various
fields of scientific inquiry like medical or seismic imaging.

1.1. Edge-Preserving Regularization

Images exhibit edges and recovering those edges is a very important topic in many scientific applications.
In biological imagery, say, edges may indicate the boundary of a tumor and, therefore, it is essential to
gather information about their locations and sizes as precisely as possible. The goal is then to develop
reconstruction techniques that would smooth out the ‘flat’ part of the image under study without blurring
the edges. The importance of edges is illustrated by the fact that in tomography for instance, reconstruction
of images are tested on piecewise constant images –the popular phantoms. Basically, for such test images,
the only information to recover is contained in the edges.

Motivated by problems of considerable practical relevance, the existing literature of edge-preserving
deconvolution/ tomography is immense. A partial listing of articles specifically devoted to this theme
would include Refs. 1–8. This is an imaginative literature without much fundamental knowledge, but
with many experiments and much energy and enthusiasm. For example, while PDE methods and especially
total-variation based image processing methods are claimed to be better than wavelets, there is no known
theory that actually explains why this should be so.

1.2. Curvelets and Singularities Along Curves

In recent work,9,10 we introduced tight frames of curvelets for representing arbitrary functions in L2(R2).
Curvelets provide a new multiresolution representation with several features that set them apart from
existing representations such as wavelets. The keypoint here is that there exists a profound connection
between curvelets and edges. In fact curvelets were originally tailored for providing efficient representations
of images with edges.

Let us consider an object f supported in [0, 1]2 which is smooth away from a discontinuity across a C2

curve. We may think of f as a sophisticated phantom; like phantoms, f is edge-dominated but it is not
necessarily piecewise constant. The point is that curvelets provide an optimal representation of objects
like f . Consider the class F of all such objects –this class is of special interest to researchers working
in the area of edge-preserving deconvolution/tomography. Then it is proved in Ref. 9 that the curvelet
representation of the class F is as sparse as possible. In other words, no basis gives a sparser or more
‘economical’ representation of our class F .

In statistics and signal processing, the potential for sparsity has a well-known meaning for signal
estimation; e.g., here, image restoration and reconstruction, see Ref. 11 for example. An optimally sparse
representation concentrates the energy in as few coefficients as possible. This viewpoint is interesting
because it effectively reduces the dimension of the object to be recovered: reconstructions based on the
estimation of a relatively small number of coefficients (the largest ones) can be quite accurate. In many
interesting situations however including the special situation of curvelet representations of objects with
edges, the location of the big coefficients is not known a priori. This phenomenon calls for nonlinear
procedures. This is in stark contrast with standard SVD methods, see section 2.1.



1.3. Curvelets and Radon Inversion

This paper applies curvelets to the problem of noisy Radon inversion, exploiting the sparsity of such repre-
sentations. To deploy them in the Radon setting, we construct a curvelet-based biorthogonal decomposition
of the Radon operator and build “curvelet shrinkage” estimators based on thresholding of the noisy curvelet
coefficients.

We have two main objectives in this paper:

1. To explain that our curvelet-based method corresponds to a new way of processing Radon data,
unlike any in practice.

2. To develop the idea that curvelets give a rigid analysis of objects which can be used to give a new
theoretical understanding of the problem of edges in the Radon inversion problem.

(a) An analysis which is very amenable to rigorous proof. In the past, singular value decompositions
gave rigorous results, and were suited to proofs, but they did not give much information about
reconstructing edges.

(b) There is a beautiful representation of the inverse problem which shows that the analysis detects
edges at certain locations and orientations in the Radon domain and automatically synthesizes
edges at corresponding locations and directions in the original domain.

2. CURVELETS

Because of space limitation, we shall limit ourselves to listing a few properties of the curvelet frame.
A detailed account of the curvelet construction is given in Ref. 9. Ref. 10 contains contains a rather
coarser description. In addition, the authors signed another paper in these proceedings, namely, ‘Curvelets,
Multiresolution Representation, and Scaling Laws,’ which also presents an overview of the curvelet system.

• There is a collection (γµ) with µ running through a discrete index setM which makes a tight frame
for L2(R2). This means there is a reproducing formula

f =
∑
µ

〈f, γµ〉γµ

and a Parseval-type relation

‖f‖2L2(R2) =
∑
µ

|〈f, γµ〉|2.

• The setM has a seven-index structure µ = (s, k1, k2; j, k; i, `, ε) whose indices include parameters for
scale, location, direction, and microlocation.

• The elements of the tight frame with substantial L2-norm obey a special “anisotropic scaling law”:
the width of the effective support of these elements is effectively proportional to the length squared.
The frame elements become successively more anisotropic at progressively finer scales.

• The number of distinct directions at a given scale grows as scale−1.

The last two properties are quite different from those of pre-existing multiscale representations such as
wavelets, where the aspect ratios of basis/frame elements remain fixed as one moves to finer scales and the
number of distinct directions remains fixed also.

Figure 1 displays a few curvelets at different scales, i.e. different values of the parameter s. We hope
that they will provide the reader with an idea of the main geometric features of this new system.
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Figure 1. Representation of a few curvelets at two different scales. The scale of the curvelets displayed
on the left panel is coarser than the scale of those displayed on the right panel.

3. CURVELETS AND BCD

3.1. SVD

The singular system decomposition is the well-established approach for solving problems of the form (1),
see Refs. 12,13 for example. We let (eν(x)) denote the eigenfunctions of the Gram operator K∗K (we
assume that K∗K is compact) and k2

ν its eigenvalues, i.e. K∗Keν = k2
νeν . Further, letting hν be the

normalized image of the eigenfunction eν through the forward operator K, Keν = kνhν , with ‖hν‖ = 1,
we have available the following reproducing formula

f =
∑

k−1
ν [Kf, hν ]eν , (2)

whenever none of the eigenvalues is zero; [, ] stands for the inner product of L2(du) while in the remainder
of the paper, the notation 〈, 〉 will refer to the inner product of L2(dx). The SVD explains the possibly
ill-posedness of the problem. In many interesting situations (including the case where K is the Radon
transform) kν → 0 when ν →∞.

It would be unrealistic to substitute Kf in the formula (2) with the observed data y as the noise would
get amplified by a factor tending to infinity. A possible solution is to downweight the coefficients in the
expansion associated with small values of kν ; picking weights that are large for large values of kν and small
for small values kν , we get a windowed SVD reconstruction

f̂w =
∑

wνk
−1
ν [y, hν ]eν ;

for instance, one should pick the weights such that the reconstruction f̂w has at least finite variance. The
choice of window has been the subject of some extensive development and special cases of windowed SVD
include the method of LandWeber Strand, the method of quadratic regularization and the iterative damped
backprojection.

3.2. Curvelets and BCD

Roughly speaking, the singular system for the Radon inversion problem is composed of sinusoids eν(x)
with the double ν = (ν1, ν2), ν1, ν2 ∈ Z, indexing the two-dimensional frequencies and their eigenvalues
obey |kν | ∼ |ν|−1/2. The windowed SVD paradigm then suggests damping high-frequencies. Unfortunately,



images with edges are only slowly decaying in frequency-space. In less sophisticated language, one may say
that, because of edges, a significant fraction of the energy of the image is located at very high-frequency.
From a reconstruction viewpoint, this says that desperately many terms are necessary for reconstructing
an edge with good accuracy. Both from a theoretic and practical viewpoint, linear procedures such as
the windowed SVD approach are do not perform very well as they tend to smooth out the edges. In this
direction, very concrete mathematical results are given in Ref. 14.

Donoho15 then observed that the singular system approach is entirely driven by the operator K and
has very little to do with the object f one attempts to recover. He suggested replacing the singular system
by any representation system that would simultaneously achieve two goals:

1. the new system would nearly diagonalize the Gram operator K∗K, and

2. the new system would provide a sparse representation of the class of objects one wish to reconstruct.

He further developed the Wavelet-Vaguelette-Decomposition where this paradigm is applied to the inversion
of homogeneous or quasi-homogeneous operators K using wavelet bases.

We present the Operator-Biorthogonal Curvelet Decomposition (BCD) for the Radon operator. Similar
decompositions are available, however, for arbitrary homogeneous or quasi-homogeneous operators K. The
BCD is based on the curvelet frame and obeys the same philosophy as the WVD. It relies on

1. the fact that the curvelet frame nearly diagonalizes the Gram operator K∗K, and

2. the fact that the curvelet frame provides a sparse representation of otherwise smooth functions with
discontinuities along curves, i.e. images with edges.

We first recall that curvelets provide a decomposition of any object in L2(R2) of the form

f =
∑
µ

〈f, γµ〉γµ.

We next introduce quasi-singular value relations: that is, putting κs = 2−s, we construct companions
(uµ), (vµ) to the curvelet frame implicitly defined –in the Radon domain– by the following relations:

[Rf, uµ] = κs〈f, γµ〉 (3)

and

Rγµ = κsvµ, R∗uµ = κsγµ; (4)

In the SVD approach the coefficient 〈f, eν〉 could be calculated via the identity 〈f, eν〉 = k−1
ν [Kf, hν ].

Likewise, the curvelet coefficient 〈f, γµ〉 of an object f –up to a multiplicative constant– is obtained by
simply integrating the Radon transform Rf against the companion uµ; the κs’ play the role of quasi-
singular values so that the uµ’s are approximatively of unit norm. With these notations, the BCD is the
decomposition of the Radon transform given by

f =
∑
µ

[Rf, uµ]κ−1
s γµ. (5)



3.3. Details

We recall a few facts about the Radon transform.16 First, letting ∆ be the Laplacian operator, it is
well-known that R∗R = (−∆)−1/2; i.e., viewed in Fourier space, R∗R is a multiplication by the inverse of
the modulus of the frequency. Second, put

R̃ = (D1/2 ⊗ I)R

where {(D1/2⊗ I)g}(t, θ) is the fractional derivative of order 1/2 acting on the t-variable (and the identity
I on the angular variable θ). Then R̃ is an isometry and

[R̃f, R̃g] = 〈f, g〉.

Define now (uµ) and (vµ) via

uµ = R̃c+
µ , vµ = R̃c−µ .

It is easy to verify that both sequences (uµ) and (vµ) obey the relations (3) and (4) introduced in the
previous section. The BCD is introduced in far greater details in Ref. 14.

3.4. The Dual Curvelets

The pair (uµ, vµ) provides a system of analysis and synthesis of ‘sinograms.’ For instance, pushing the
decomposition (5) through the Radon operator gives

Rf =
∑
µ

[Rf, uµ]vµ,

with equality holding in an L2 sense. In addition, the decomposition is stable in the sense that for any
g ∈ L2(dtdθ), we have

‖g‖2L2(dtdθ) ∼
∑
µ

[g, uµ]2,

and similarly for vµ (the symbol ∼ means that the ratio is bounded away from zero and infinity). The
pair (uµ), (vµ) is then said to build a system of dual frames for L2(dtdθ).17 Furthermore, they obey
quasi-biorthogonality relations

[uµ, vµ′ ] = 2s
′−s 〈γµ, γµ′〉.

In the (t, θ)-plane, both the elements uµ and vµ have the visual appearance of curvelets. They have
a scale, an orientation, obey a scaling law, etc. Hence, they are especially adapted for the analysis and
synthesis of edges in the Radon domain. In fact, the next section will develop a micro-local there is a
microlocal correspondence between the dual system and the curvelet frame. A few of these dual elements
are displayed on Figure 2.
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Figure 2. The left panel represents a few curvelets γµ at a given scale. The right panel displays the
associated dual curvelets vµ in the Radon domain. The dual system shares the same features as the
original system: i.e., scale, direction, location, anisotropy, etc.

4. MICRO-LOCAL CORRESPONDENCE

In this section, we develop the concept of ‘micro-local’ correspondence. Microlocal correspondence is the
idea that the dual curvelets pick up information from certain places/ directional orientations in the Radon
domain and use that to reconstruct at certain places/directional orientations in the original domain.

The decomposition formula (5) directly associates behavior in the Radon domain with behavior in
the object domain. The Radon domain data are analyzed by a bank of functions (uµ) and each output
coefficient scales a corresponding synthesized behavior γµ in the object domain. Since the γµ correspond at
fine scales to highly localized directionally-oriented elements, the formula may be said at fine scales to be
reading off the existence of edges at certain locations and orientations in the object domain from behavior
of the Radon transform.

The correspondence between curvelets and dual curvelets as given in the reproducing formula has, at
fine scales, an explicit geometric description. Let us consider a curvelet localized near spatial position x0

and codirection θ0; the curvelet is aligned with the line

(x1 − x0,1) cos θ0 + (x2 − x0,2) sin θ0 = 0.

Then the corresponding dual curvelet is localized in the Radon plane at (t0, θ0) and with direction τ0,
where

t0(x0, θ0) = x0,1 cos(θ0) + x0,2 sin(θ0) (6)

and

τ0(x0, θ0) = tan−1 [−x0,1 sin(θ0) + x0,2 cos(θ0)] . (7)

This correspondence is illustrated on the diagram 3.

Pushing further the analysis, one comes to realize that the Radon transform maps edges in the original
domain into edges in the Radon domain. To understand this point, let f be the indicator function of the
unit disk

f(x) = 1{|x|≤1}.
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Figure 3. Correspondence between spatial domain and Radon domain. A curvelet localized near x0 =
(x0,1, x0,2) in the spatial domain and oriented in direction θ0, corresponds to a dual curvelet localized near
(t0, θ0) in the Radon domain oriented with slope u0. (τ0 is the direction, in radians, corresponding to slope
u0.)

The Radon transform of f is given by

Rf(θ, t) =
{

2 (1− t2)1/2 −1 ≤ t ≤ 1
0 |t| > 1

.

Hence, in the (t, θ) plane, the Radon transform is singular along t = ±1. This is not a step-discontinuity,
however, but rather a more gentle kind of discontinuity; it is said to be of order 1/2 which says that the
Radon transform locally behaves like a square root function. Suppose that we wish to reconstruct –from
Radon data– the boundary of the disk in the vicinity of a point x0 such that |x0| = 1. Curvelets located
near x0 and aligned, with the edge, i.e. of codirection parallel to x0 such that (cos θ0, sin θ0) = ±(x0,1, x0,2)
will then be especially useful (they will be associated with big coefficients). Applying (6)− (7) gives

t0 = ±1, τ0 = 0.

Hence, the corresponding dual elements are aligned with the edge in the Radon domain. This is the
micro-local principle at work: in effect, the analysis detects edges at certain locations and orientations in
the Radon domain and automatically synthesizes edges at corresponding locations and directions in the
original domain.

The micro-local correspondence we just introduced is a powerful representation of the inverse problem.
For instance, it gives a new understanding of limited angle tomography. In limited angle tomography,
the range of angular values for which Radon data are available is restricted. For instance, it may be a
subinterval of [0, 2π). The micro-local correspondence then gives a very precise description of the kind of
features one may hope to recover.

5. STATISTICAL ESTIMATION

5.1. Applications to Noisy Data

In the reproducing formula (5), the κs in (5) are tending to zero as s → ∞, so the reproducing formula
is very sensitive to the presence of nonzero terms at large values of s. In particular, it would be rather



foolish to use this formula as is on inaccurate data. For dealing with noisy data, we propose a rule of the
general form

f̂ =
∑
µ

δ([Y, Uµ]κ−1
s , ts)γµ,

where δ(·, t) is a scalar thresholding nonlinearity with threshold t, and ts are appropriate scale-dependent
thresholds.

This makes sense: because the curvelet transform has its big coefficients at unpredictable locations
(depending on the location of the edge curve), we cannot say a priori where the ‘important coefficients’
will be; therefore we apply thresholding.

5.2. Statistical Near-Optimality

In the introduction, we claimed that the method was amenable to rigorous proof. Suppose that the problem
is to recover a function f from noisy Radon data. The object to be recovered is a function on R2 assumed
smooth apart from a discontinuity along a C2 curve – i.e. an edge. In Ref. 14, we used a continuum
white noise model and proved that the shrinkage can be tuned so that the estimator will attain, within
logarithmic factors, the optimal estimation rate. In comparison, linear procedures – SVD included – obtain
markedly suboptimal rates of convergence, as do ‘wavelet-like’ shrinkage methods.

6. CONCLUSION

In this paper, we showed how a new set of ideas could be applied for solving linear inverse problems. At this
time however, we do not want to claim anything practical about our approach and leave the development
of concrete applications for future work. Rather, our intention here was to establish our new methodology
as a significant intellectual contribution –a contribution that gives some fresh insights about a problem
that received an enormous degree of attention.

We simply want to express the belief that some day these theoretical results may translate into improved
representations in practical tomography, although right now in dealing with real data we only have made
experiments with small-scale problems. Success or failure in these experiments should not be taken as
anything other than an indication of our software development skills and dedication.

ACKNOWLEDGMENTS

This research was supported by National Science Foundation grants DMS 98–72890 (KDI) and DMS 95–
05151; and by AFOSR MURI-95-P49620-96-1-0028.

REFERENCES
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