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1 Introduction

1.1 Ideal representations of Sobolev classes

It is well known that trigonometric series and wavelets are well adapted to represent functions taken

from L2 Sobolev classes [1]. For a nonnegative integer s, the L2 Sobolev norm is

‖f‖2Hs = ‖f‖22 + ‖f (s)‖22

where f (s) is the s-th derivative of f ; and, more generally, the norm of f is defined by means of the

Fourier transform; let F be the classical Fourier transform,

(Ff)(ξ) = f̂(ξ) =
∫
f(x)e−ix·ξ dx; (1.1)

then,

‖f‖2Hs =
∫
|f̂(ξ)|2(1 + |ξ|2s) dξ

when s > 0 is not necessarily an integer. (Of course, when s is an integer, the two definitions are

equivalent thanks to the Plancherel formula, see [13], for example.)

Both wavelet and Fourier bases provide unconditional bases for these Sobolev spaces Hs defined

on the torus, say. Abstractly, a basis (φi)i∈I is an unconditional basis for a functional class F if

shrinking the coefficients preserves the norm of the object: i.e., if we let

θi(f) = 〈f, φi〉

and consider

f̃ =
∑
i

θ′iφi, |θ′i| ≤ |θi|,

then

‖f̃‖F ≤ C ‖f‖F .

We quote Donoho [8], “An orthogonal basis of L2 which is also an unconditional basis of a functional

space F is an optimal basis for compressing, estimating, and recovering functions in F .”

For instance, suppose that f is a function defined on the circle T with bounded Sobolev norm and

let fn be the n-term trigonometric nonlinear approximation of f obtained by keeping the terms

corresponding to the n largest coefficients in the expansion. Then,

‖f − fn‖2 ≤ C n−s‖f‖Hs(T ).
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The same is true for nice periodic wavelets and essentially, no orthogonal basis would give a better

rate of approximation: that is, for any orthobasis (φi)i∈I , let Qn(f) be the best n-term approxi-

mation in that basis

Qn(f) = arg min ‖f − g‖2, g =
n∑

m=1

λmφim ;

then, letting F be the Sobolev ball F = {f, ‖f‖Hs(T ) ≤ 1}, there is a lower bound on the error of

approximation

sup
f∈F
‖f −Qn(f)‖2 ≥ C n−s.

Another instance of this property is that in any orthobasis (φi)i∈I the number of terms greater

than 1/n is greater than c · n2/(2s+1). In both Fourier and wavelet bases, n2/(2s+1) is the order of

the number of coefficients that exceed 1/n and in this sense, we may say that these bases are the

most “economical” for representing elements from Hs(T ).

1.2 Singularities: the one-dimensional case

However, these nice properties are very fragile. For instance, it is well known that trigonometric

series provide poor reconstructions of discontinuous functions. On the interval [0, 1], let f be the

periodic function defined by f(t) = t−H(t−t0) where H(t) is the step function 1{t>0}. The best L2

n-term approximation of f by trigonometric series gives only an L2 error of order O(n−1/2). This

is a general fact: if g is a nice function taken from the Sobolev class Hs (with support contained in

(0,1)), then the rate of approximation of H(t−b)g(t) is no better than O(n−1/2). The discontinuity

spoils the representation, and we need a lot of different terms to reconstruct the discontinuity with

good accuracy. (This phenomenon is well known from engineers and is often referred to as the

Gibbs phenomenon or ringing effect.)

One of the reasons why wavelets are so attractive is that they are the best bases for representing

objects composed with singularities (see the discussion of Mallat’s heuristics in [8]). As an example,

our simple discontinuous object H(· − b)g(·) has a rate of approximation in a nice wavelet basis of

order O(n−s). Whereas the singularity had a dramatic effect on the sparsity of Fourier coefficients,

it does not affect the sparsity of wavelet coefficients as the number of wavelet coefficients exceeding

1/n is still of order n2/(2s+1). The singularity does not spoil the wavelet representation. This

miracle may explain the spread of wavelet methods in data compression, statistical estimation,

inverse problems, etc., as in practical applications, the signals that are to be recovered exhibit

these kinds of discontinuities (see the survey paper [11]).
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1.3 Singularities: the higher-dimensional case

Under a certain viewpoint, however, the picture changes dramatically when the dimension is greater

than one. On [0, 1]d, suppose now that we want to represent the simple object

f(x) = H(u · x− t0)g(x), g ∈ Hs and supp g ⊂ [0, 1]d. (1.2)

The object f is singular on the hyperplane u · x = t0 (u is a unit vector) but may be very smooth

elsewhere. Then, the number of wavelet coefficients exceeding 1/n is greater than n2(1−1/d) yielding

L2 rates of approximation only of order O(n−
1

2(d−1) ). This lower bound holds even when g is as nice

as we want, i.e., g ∈ C∞. Translated into the framework of image compression, it says that both

wavelet bases and Fourier bases are severely inefficient at representing edges in images. Wavelets

can deal with point-like phenomena, but cannot deal with line-like phenomena in dimension 2,

plane-like phenomena in dimension 3, etc.

In harmonic analysis, there has recently been much interest in finding new dictionaries and ways

of representing functions by linear combinations of elements of those. Examples include wavelets,

wavelet-packets, Gabor functions, brushlets, etc. The purpose of this paper is to show that ridgelets,

a system introduced by [4], are as efficient for representing objects with discontinuities like (1.2) as

wavelets are for representing discontinuous functions in one dimension.

1.4 Achievements and overview

The ridgelet construction will briefly be reviewed in section 2. In a nutshell, a ridgelet is a ridge

function of the form

ψa,u,b(x) =
1
a1/2

ψ

(
u · x− b

a

)
, a > 0, u ∈ Sd−1, b ∈ R, (1.3)

where ψ is univariate and oscillatory. The fundamental result is that there is a discrete family

(ψan,un,bn) which is a frame for L2 spaces of compactly supported functions. (We will simply refer

to this family as ψn.) The frame property says that for any element f ∈ L2[0, 1]d there exist two

constants A,B > 0 with the property

A ‖f‖2 ≤
∑
n

|〈f, ψn〉|2 ≤ B ‖f‖2.

A consequence of the previous display is the existence of a dual set of ridgelets (ψ̃n) (the dual

frame) and of the decomposition

f =
∑
n

〈f, ψ̃n〉ψn =
∑
n

〈f, ψn〉, ψ̃n (1.4)

with equality holding in an L2 sense.
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To measure the sparsity of a sequence (θn), we will use the weak-`p or Marcinkiewicz quasi-norm,

defined as follows: let |θ|(n) be the nth largest entry in the sequence (|θn|); we set

|θ|w`p = sup
n>0

n1/p|θ|(n). (1.5)

Equipped with a nice ridgelet frame, the key result of our paper (section 4) is the following: let us

consider a template f like in (1.2) and let α (αn = 〈f, ψn〉) denote the ridgelet coefficient sequence

of f . Then, the sequence α is sparse as if f were not singular in the sense that

‖α‖w`p ≤ C ‖g‖Hs , with 1/p = s/d+ 1/2, (1.6)

where the constant C does not depend on f ; or equivalently, the number of ridgelet coefficients

exceeding 1/n is bounded by C np ‖g‖Hs . (Throughout the paper, the letter C will denote a positive

constant whose value may differ at different occurrences, even within a single formula.) There might

be some ambiguity about the notation ‖g‖Hs since g is not uniquely determined by f . In this paper,

we will implicitly take the norm ‖g‖Hs as being the minimum norm of all those elements in Hs

whose restriction to {u · x > t0} coincide with f ; i.e.,

‖g‖Hs := inf{‖h‖Hs , f(x) = H(u · x− t0)h(x), supph ⊂ [0, 1]d}.

There is a direct consequence of this result. Consider the n-term fn ridgelet approximation obtained

by extracting from the exact series (1.4) the terms corresponding to the n largest coefficients. Then,

‖f − fn‖ ≤ C n−s/d ‖g‖Hs , (1.7)

where, again, the constant C is independent of f . The presence of the singularity does not ruin the

sparsity of the ridgelet series. This is unlike wavelet or Fourier analysis. Hence, we have a very

concrete, constructive and stable procedure – namely, the thresholding of ridgelet coefficients – to

obtain near-optimal nonlinear approximations. The author is not aware of any other system with

similar features.

In dimension 2, Donoho introduced an orthonormal basis, closely related to the ridgelet system,

that he calls “orthonormal ridgelets.” Section 5 will show that both results (1.6) and (1.7) continue

to hold with orthonormal ridgelets in place of ‘pure’ ridgelets.

1.5 Methodology

The method that is used to prove (1.6) and (1.7) involves the study of the Fourier transform along

rays going through the origin (section 3). Before we proceed further, (r, θ) will index the standard

polar coordinates system and throughout the paper we will abuse notation in writing f(r, θ) instead
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of (f ◦ C)(r, θ) where C is the change of coordinates from polar to cartesian. In two dimensions, let

us now consider the singular function f defined by

f(x1, x2) = 1{x1>0} g(x1, x2),

with g in Hs, s ∈ N and supp g ⊂ [0, 1]d. The argument relies on a bound that is available on

the integral over the ‘polar’ segment {(r, θ), 2j ≤ r ≤ 2j+1} of the squared modulus of the Fourier

transform. Indeed, there exists a constant C not depending on f such that∫
2j≤r≤2j+1

|f̂(r, θ)|2 dr ≤ C ε2j (θ)2−j2−2js‖g‖2Hs + C 2−j min(1, 2−2js| sin θ|−2s)‖g‖2Hs , (1.8)

with
∑

j

∫ 2π
0 ε2j (θ) dθ ≤ 1. A d-dimensional version of (1.8) will be given in section 3.

The singularity 1{x1>0} causes the Fourier transform to decay very slowly in the critical directions

θ = 0, π (this set of directions is sometimes referred to as the wavefront). Indeed, for θ = 0, say,

|f̂(r, θ)| ∼ r−1 and, therefore, for this critical value of θ,
∫

2j≤r≤2j+1 |f̂(r, θ)|2 dr ∼ 2−j which is the

content of (1.8). However, this effect is really local and our estimate (1.8) pictures the decay of

the Fourier transform as θ moves away from the singular rays. The result is nonasymptotic since

it describes the situation at a finite distance 2j (j ≥ 0) of the origin. For instance, in dimension 2

the order of magnitude of the modulus of the Fourier transform at a point with polar coordinates

(2j , θ) is 2−j(s+1)| sin θ|−s. It is interesting to observe that the smoothness of the object governs

the size of the Fourier transform as θ approaches 0, π. Although this phenomenon may not have

been extensively studied in the literature, it perhaps corresponds to some new kind of microlocal

analysis and we believe that this is of independent interest.

The localization of the Fourier transform near the wavefront is the key property driving our main

results (1.6) and (1.7). Extensions and limitations of these results will be discussed in section 6.

2 Ridgelets

In this section, ĝ will denote the Fourier transform of g. In d dimensions, the ridgelet construction

starts with a univariate function ψ satisfying an oscillatory condition, namely,∫
|ψ̂(ξ)|2/|ξ|d dξ <∞. (2.1)

A ridgelet is a function of the form

1
a1/2

ψ

(
u · x− b

a

)
, (2.2)

where a and b are scalar parameters and u is a vector of unit length. In the sequel, we will suppose

that ψ is normalized so that
∫
|ψ̂(ξ)|2|ξ|−ddξ = 1. Of course, a ridgelet is a ridge function whose
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profile displays an oscillatory behavior (like a wavelet). A ridgelet has a scale a, an orientation u,

and a location parameter b. Ridgelets are concentrated around hyperplanes: roughly speaking the

ridgelet (2.2) is supported near the strip {x, |u · x− b| ≤ a}.

Remarkably, one can represent any function as a superposition of these ridgelets. Define the ridgelet

coefficients

Rf (a, u, b) =
∫
f(x) a−1/2ψ(

u · x− b
a

) dx; (2.3)

then, for any f ∈ L1 ∩ L2(Rd), we have

f(x) = (2π)−(d−1)

∫
Rf (a, u, b)a−1/2ψ(

u · x− b
a

) dµ(a, u, b), (2.4)

where dµ(a, u, b) = da/ad+1 du db (du being the uniform measure on the sphere). Furthermore, this

formula is stable as one has a Parseval relation

‖f‖22 = (2π)−(d−1)

∫
|Rf (a, u, b)|2dµ(a, u, b). (2.5)

Similar to the continuous transform, there is a discrete transform. Consider the following discrete

collection of ridgelets

{ψj,`,k(x) = 2j/2ψ(2juj,` · x− kb0), j ≥ j0, uj,` ∈ Σj , k ∈ Z}. (2.6)

The scale a and location parameter b are discretized dyadically, as in the theory of wavelets. How-

ever, unlike wavelets, ridgelets are directional and, here, the interesting aspect is the discretization

of the directional variable u. This variable is sampled at increasing resolution, so that at scale j

the discretized set Σj is a net of nearly equispaced points at a distance of order 2−j . A detailed

exposition on the ridgelet construction is given in [4]. In two dimensions, for instance, a ridgelet is

of the following form

{ 2j/2ψ(2j(x1 cos θj,` + x2 sin θj,` − 2πk2−j)) }(j≥j0,`,k),

where the directional parameter θj,` is sampled with increasing angular resolution at increasingly

fine scales, something like the following:

θj,` = 2π`2−j .

The key result [4] is that the discrete collection (ψj,`,k) is a frame for square integrable functions

supported on the the unit cube. There exists two constants A and B such that for any f ∈
L2([0, 1]d), we have

A ‖f‖2L2
≤
∑
j,`,k

|〈f, ψj,`,k〉|2 ≤ B ‖f‖2L2
. (2.7)
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The previous equation says that the datum of the ridgelet transform at the points (a, u, b) =

(2j , uj,`, k2−j) –with the parameter range as in (2.6)– suffices to reconstruct the function perfectly.

In this sense, this is analogous to the Shannon sampling theorem for the reconstruction of bandlim-

ited functions. Indeed, standard arguments show that there exists a dual collection (ψ̃j,`,k with the

property

f =
∑
j,`,k

〈f, ψ̃j,`,k〉ψj,`,k =
∑
j,`,k

〈f, ψj,`,k〉ψ̃j,`,k, (2.8)

where the notation 〈·, ·〉 stands here and throughout the remainder of this paper for the usual inner

product of L2: 〈f, g〉 =
∫
f(x)g(x)dx.

At times, we will use the compact notation ψν (ν ∈ N ) for our ridgelet frames and, therefore, we

will keep in mind that the index runs ν through an enumeration of the triples (j, `, k).

3 Localization of the Fourier transform

The purpose of this section is to quantify the size of the Fourier transform of an object f , where f

is given by

f(x) = H(x1) g(x)

where g is compactly supported and with finite Sobolev norm (recall H(t) = 1{t>0}).

To formulate our statement in d dimensions, we need to introduce the spherical coordinates defined

by x1 = r cos θ1, x2 = r sin θ1 cos θ2, . . . , xd = r sin θ1 sin θ2 . . . sin θd−1, 0 ≤ θ1, . . . , θd−2 ≤ π,

0 ≤ θd−1 < 2π. In what follows, we will simply refer to (θ2, . . . , θd−1) as ϕ, and dϕ will denote

the element of the surface area on Sd−2, i.e. dϕ = sin θd−3
2 . . . sin θd−2dθ2 . . . dθd−1. With these

notations, the uniform measure du on the sphere may thus be rewritten as du = (sin θ1)d−2 dθ1dϕ.

From now on, we will often refer to a unit vector u by means of its polar coordinates (θ, ϕ), θ ∈ [0, π],

ϕ ∈ Sd−2.

We now state our d-dimensional localization result about the modulus of the Fourier transform.

Theorem 3.1 Let f be given by f(x) = H(x1) g(x) with g in Hs, s = 0, 1, 2, . . . , and supp g ⊂
[−1, 1]d, and put σ = s + (d − 2)/2. Then, there exists a universal constant C such that for any

j ≥ 0,∫
2j≤r≤2j+1

∫
|f̂(r, θ, ϕ)|2 drdϕ ≤

C ε2j (θ)2
−j2−2jσ‖g‖2Hs + C 2−j min(1, 2−2jσ| sin θ|−2σ)‖g‖2Hs , (3.1)

where
∑

j |Sd−2|
∫
ε2j (θ)(sin θ)

d−2dθ ≤ 1.
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As we emphasized earlier, the Fourier transform decays very slowly in the directions θ = 0, π

because of the singularity H. However, (3.1) is not a statement about the decay of f̂ along the

singular rays θ = 0, π, rather it is about the decay of the Fourier transform as θ moves away from

the critical directions θ = 0, π. Roughly speaking, the order of magnitude of the modulus of the

Fourier transform at a point with polar coordinates (2j , θ) is 2−j(σ+1)| sin θ|−σ with σ = s+(d−2)/2.

Remark. The inequality involves a regular term (the first term of the right-hand side of (3.1)) as if

one were simply analyzing an object from Hs and a singular term (the second one) essentially due

to the discontinuity across the hyperplane x1 = 0.

Proof of Theorem 3.1. We will prove the result by induction. The result is true for s = 0 since

letting Ij(θ) be the left-hand side of (3.1)

Ij(θ) ≡
∫

2j≤r≤2j+1

∫
|f̂(r, θ, ϕ)|2 drdϕ,

we have, by definition,

∑
j≥0

2j(d−1)

∫
Ij(θ)(sin θ)d−2 dθ =

∑
j≥0

2j(d−1)

∫ 2j+1

2j

∫
|f̂(r, θ, ϕ)|2 drdθdϕ

≤
∑
j≥0

∫
2j≤|ξ|≤2j+1

|f̂(ξ)|2 dξ ≤ ‖f‖2L2
≤ ‖g‖2L2

.

Assume now that the result holds until n − 1 (n ∈ N), and take g ∈ Hn. For any tempered

distribution in Rd S, we have the well-known relationship

F{∂`S} = iξ`Ŝ,

where in the previous display i2 = −1 , and ∂` is the partial derivative with respect to the `th

coordinate. We will simply apply this formula to the tempered distribution f = H g. First, for any

1 ≤ ` ≤ d, we have

∂`f = H ∂`g + g ∂`H. (3.2)

We observe that the second term, g ∂`H, is nonzero only if ` = 1 in which case it is a distribution

supported on x1 = 0, namely, g δ{x1=0}. Let h be the restriction of g on x1 = 0. By the trace

theorem [15] we know that h is in Hn−1/2(Rd−1) and, more precisely,

‖h‖Hn−1/2 ≤ C ‖g‖Hn .

Let us now choose u = ξ/|ξ| and let ξ = (ξ1, ξ
′) so that ξ′ = π(ξ), where π is the orthogonal

projection onto ξ1 = 0. For this particular choice of u, we have

i|ξ|f̂(ξ) = u · F{∇f}(ξ) = u · F{H∇g}(ξ) + ξ1/|ξ| ĥ(π(ξ)) (3.3)
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since the Fourier transform of g δ{x1=0} is given by ĥ(π(ξ)) = (ĥ ◦ π)(ξ). The first term of the

right-hand side of (3.3) is effortlessly going through the induction step. Indeed, we have

|u · F{H∇g}|2(ξ) ≤
d∑
i=1

|F{H ∂`g}|2(ξ);

it is clear that for any `, ∂`g ∈ Hn−1 and therefore the induction hypothesis implies that∫
2j≤r≤2j+1

∫
|u · F{H∇g}|2(r, θ, ϕ) drdϕ ≤

C 2−jε2j (θ)2
−2j(σ−1) + C 2−j min(1, 2−2j(σ−1)| sin θ|−2(σ−1)). (3.4)

We split the analysis of the second term of the right-hand side of (3.3) into two separate cases:

namely, sin θ ≥ 2−j and sin θ < 2−j . In the former case, we have∫ 2j+1

2j

∫
|(ĥ ◦ π)(r, θ, ϕ)|2 drdϕ =

∫ 2j+1

2j

∫
|ĥ(r sin θ, ϕ)|2 drdϕ

= | sin θ|−1

∫ 2j+1| sin θ|

2j | sin θ|

∫
|ĥ(ρ, ϕ)|2 dρdϕ

≤ | sin θ|−1|2j sin θ|−(d−2)

∫
2j | sin θ|≤|ξ′|≤2j+1| sin θ|

|ĥ(ξ′)|2 dξ′.

The degree of smoothness of h (h ∈ Hn−1/2) now allows us to bound the right-hand side of the

previous display; i.e.,

∞∑
j=−∞

|2j sin θ|2(n−1/2)

∫
2j | sin θ|≤|ξ′|≤2j+1| sin θ|

|ĥ(ξ′)|2 dξ′ ∼ ‖h‖2
Ḣn−1/2 ≤ C ‖g‖2Hn ,

which implies ∫
2j | sin θ|≤|ξ′|≤2j+1| sin θ|

|ĥ(ξ′)|2 dξ′ ≤ C η2
j (θ) |2j sin θ|−2(n−1/2) ‖g‖2Hn

with
∑

j η
2
j (θ) ≤ 1.

To summarize, we have∫
2j≤r≤2j+1

∫
|(ĥ ◦ π)(r, θ, ϕ)|2 drdϕ ≤ C 2−2j(σ−1/2)| sin θ|−2σ ‖g‖2Hs (3.5)

in any dimension d ≥ 2.

To finish the proof, we simply recall (3.3) which gives the inequality

|f̂(ξ)|2 = 2|ξ|−2
(
|u · F{H∇g}(ξ)|2 + |ĥ(π(ξ))|2

)
.
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The polar integral of each term of the right-hand side of this inequality is bounded via (3.4) and

(3.5), respectively, yielding the desired conclusion. The case sin θ ≥ 2−j is now fully proved.

We finally treat the case sin θ < 2−j . On one hand h is bounded in Hn−1/2 and therefore in L2,

since n ≥ 1. On the other h is compactly supported and hence

sup
|ξ′|≤1

|ĥ(ξ′)| ≤ ‖h‖L1 ≤ C ‖h‖L2 ≤ C ‖g‖Hn .

In this case, we simply write∫
2j≤r≤2j+1

∫
|ĥ(r sin θ, ϕ)|2 drdϕ ≤ 2j |Sd−2| sup

2j | sin θ|≤|ξ′|≤2j+1| sin θ|
|ĥ(ξ′)|2

≤ C 2j‖g‖2Hn ,

and the result for sin θ < 2−j now follows from (3.3). The proof of the theorem is complete.

4 Main result

In this section, we will suppose that we are given a ridgelet frame satisfying the following mild

assumptions:

1. ψ is R times differentiable and has vanishing moments through order D; min(R,D) ≥ s +

(d− 1)/2.

2. ψ is of rapid decay, namely, for any γ > 0 and 0 ≤ r ≤ R, one can find a constant C such

that

|ψ(r)(t)| ≤ C · (1 + |t|)−γ .

The sequence of ridgelet coefficients of a given function f will be denoted by α: αj,`,k = 〈f, ψj,`,k〉.

We state our main result.

Theorem 4.1 Let g ∈ Hs, s > 0, with supp g ⊂ [−1, 1]d and put f(x) = H(u · x − b) g(x) where

H is the step function H(t) = 1{t>0}. Then, the ridgelet coefficient sequence α of f satisfies

‖α‖w`p∗ ≤ C ‖g‖Hs , with 1/p∗ = s/d+ 1/2,

where d is the dimension of the space.

Preliminary remark. For any (j, `, k), we have the following basic inequality:

|αj,`,k| ≤ 2j/2(1 + |k|)−γ‖f‖2, |k| ≥ 2j+1
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because of the rapid decay of ψ. Indeed, we have

|ψj,`,k(x)| ≤ C (1 + 2j |uj,` · x− k2−j |)−γ ,

and, therefore, is is not hard to check that for |k| ≥ 2j+1

sup
[−1,1]d

|ψj,`,k(x)| ≤ C 2j/2(1 + |k|)−γ .

Our claim is then a simple consequence of this last inequality. Thus, if ψ has a sufficient decay,

then the subsequence {(αj,`,k), k ≥ 2j+1} is in `p, for any p > 0; hence it is enough to restrict our

attention to the set |k| ≤ 2j+1.

In order to prove the theorem, we will need a result which is a corollary of Theorem 3.1.

Corollary 4.2 Under the assumptions of Theorem 3.1, the ridgelet coefficient sequence α of f may

be decomposed as

αj,`,k = aj,`,k + bj,`,k,

where the sequences a and b enjoy the following properties:

1. the sequence a verifies ∑
`,k

|aj,`,k|2 ≤ C ε2j2−2js ‖g‖2Hs (4.1)

with
∑

j ε
2
j ≤ 1 and,

2. the sequence b is localized both in angle and in location.

(a) Localization in angle. For 1 ≤ m < j, let Λj,m be the set of indices such that

Λj,m := {`, 2−m ≤ | sin θj,`| ≤ 2−m+1} (4.2)

(for m = j, we will take Λj,m to be {`, | sin θj,`| ≤ 2−(j−1)}); then,∑
`∈Λj,m

∑
k

|bj,`,k|2 ≤ C 2−j 2−(j−m)(2s−1) ‖g‖2Hs . (4.3)

(b) Localization in ridge location. For any n > 0, there is a constant C (independent

of f) such that

|bj,`,k| ≤ C 2j/2
(
1 +

∣∣|k| − |2j sin θj,`|
∣∣)−n ‖g‖Hs . (4.4)
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Not surprisingly, this decomposition involves a regular and a singular contribution as well.

Proof of Corollary. Again, we prove the result by induction. For any compactly supported element

of L2, we have ∑
j

∑
`,k

|αj,`,k|2 ≤ C ‖f‖2L2
≤ C ‖g‖2L2

,

which proves the claim in this case since one can simply take b ≡ 0.

Suppose now that the claim is true up to s− 1 ∈ N and take g in Hs. Recall that the ridgelet ψj,`,k
is given by 2j/2ψ(2juj,` · x− k). The starting point is to express the ridgelet coefficient αj,`,k as a

line integral in the Fourier domain [4]

αj,`,k =
∫
R

f̂(λ, uj,`)2−j/2ψ̂(2−jλ)e−ik2−jλ dλ. (4.5)

where f̂(λ, u) = f̂(λu1, . . . , λud). In the previous equation, the range of λ is the real line and

not only the positive axis (polar coordinates). However, we can convert (λ, u) to classical polar

coordinates (r, θ, ϕ) via the obvious relationship (λ, u) = (−λ,−u). The decomposition (3.3) then

suggests rewriting αj,`,k as

αj,`,k = a
(0)
j,`,k + b

(0)
j,`,k,

where

a
(0)
j,`,k = 2−j uj,` ·

∫
R

F{H∇g}(λ, uj,`)2−j/2
ψ̂(2−jλ)

2−jλ
e−ik2−jλ dλ

and

b
(0)
j,`,k = 2−j cos θj,`

∫
R

ĥ(λ sin θj,`, ϕj,`)
ψ̂(2−jλ)

2−jλ
e−ik2−jλ dλ.

Let Ψ be the primitive of ψ defined by Ψ(x) =
∫ x
−∞ ψ(t) dt. Then, Ψ satisfies the conditions listed

at the beginning of the section (with the obvious modification min(R,D) ≥ s− 1 + (d− 1)/2) and

Ψ̂(λ) = −iψ̂(λ)/λ. Therefore, we may apply the induction hypothesis to the sequence a and obtain

a
(0)
j,`,k = 2−ja(1)

j,`,k + 2−jb(1)
j,`,k,

where a(1) and b(1), respectively, satisfy properties (4.1) and (4.3)–(4.4) with (s− 1) in place of s.

Now, define the sequences a and b by

aj,`,k = 2−ja(1)
j,`,k

and

bj,`,k = 2−jb(1)
j,`,k + b

(0)
j,`,k.

13



It is clear that aj,`,k and 2−jb(1)
j,`,k satisfy conditions (4.1) and (4.3)–(4.4), respectively. Thus we

only need to check that the sequence b(0) verifies (4.3) and (4.4). In the original domain, b(0)
j,`,k is

given by

b
(0)
j,`,k = 〈g δ{x1=0},Ψj,`,k〉.

On the support of g δ{x1=0}, it is easy to see that Ψj,`,k is bounded by C 2j/2
(
1 +

∣∣|k| − |2j sin θj,`|
∣∣)−n.

Therefore, with the notations of section 3, we have

|b(0)
j,`,k| ≤ ‖h‖L1 sup

x∈ supp gδ{x1=0}

|Ψj,`,k(x)| ≤ C 2j/2
(
1 +

∣∣|k| − |2j sin θj,`|
∣∣)−n ‖h‖L2

≤ C 2j/2
(
1 +

∣∣|k| − |2j sin θj,`|
∣∣)−n ‖g‖H1/2

which is bounded since g ∈ Hs, s ≥ 1. This finishes the verification of (4.4). It remains to check

(4.3).

Sampling results. In a separate paper, we have established the following sampling results: let αj,`,k
be the ridgelet coefficients of a compactly supported distribution S; first,∑

k

|αj,`,k|2 ≤ C
∫
R

|Ŝ(λ, uj,`)|2|ψ̂(2−jλ)|2(1 + |2−jλ|2) dλ; (4.6)

second, we recall that at scale j, the set of discrete angular variables {uj,`, ` ∈ Λj} consists of points

approximately uniformly distributed on the sphere; for any subset Λ′j of Λj , we have∑
`∈Λ′j

∑
k

|αj,`,k|2 ≤ C 2j(d−1)

∫
R

|ψ̂(2−jλ)|2(1 + |2−jλ|2d) dλ
∫

Σ′j

∑
|α|≤d−1

|DαŜ(λ, u)|2 du, (4.7)

where Σ′j is the set of points on the sphere defined by

Σ′j ≡ {u ∈ Sd−1, inf
`∈Λ′j

‖u− uj,`‖2 ≤ 2−j}.

Here α is a multi-index α = (α1, . . . , αd) and Dα stands for the classical partial derivative with

respect to the cartesian coordinate system DαS = ∂α1
1 . . . ∂αdd . Thus, (4.7) is a kind of uniform

sampling inequality. In a nutshell, (4.7) holds because the points {uj,`, ` ∈ Λj} are quasi uniformly

distributed on the sphere (at a distance of order 2−j); that is, for any point u ∈ Sd−1,

#{`, ‖uj,` − u‖2 ≤ δ} ≤ C 2j(d−1)δd−1.

We apply this result to the distribution S = g δ{x1=0}; that is, to the restriction of f to the

hyperplane {x1 = 0} (see section 3 for details). The Fourier transform of S is the function Ŝ = ĥ◦π
that we introduced in section 3. With Λj,m, 0 ≤ m < j, as in (4.2), we have

{u ∈ Sd−1, inf
`∈Λj,m

‖u− uj,`‖2 ≤ 2−j} ⊂ {u ∈ Sd−1, 2−m − 2−j ≤ sin θ ≤ 2−m+1 + 2−j}
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and we omit the proof of this simple inclusion. Therefore, in this context (4.7) gives∑
`∈Λj,m

∑
k

|b(0)
j,`,k|

2 ≤ C 2j(d−1)

∫
2−m−2−j≤sin θ≤2−m+1+2−j

I(θ) (sin θ)d−2 dθ, (4.8)

where I(θ) is given by:∫
Sd−2

∫
R

∑
|α|≤d−1

|DαŜ(λ, θ, ϕ)|2|ψ̂(2−jλ)|2(1 + |2−jλ|2d) dλdϕ.

Now, if ψ has r vanishing moments and is of regularity r, we have

sup
2`≤|λ|≤2`+1

|ψ̂(2−jλ)| ≤ C 2−|j−`|r. (4.9)

It is then easy to check that

I(θ) ≤ C 2−j2−2jσ| sin θ|−2σ ‖g‖2Hs . (4.10)

To see why this is true, we simply write

I(θ) ≤
∑
`

sup
2`≤|λ|≤2`+1

|ψ̂(2−jλ)|2(1 + |2−jλ|2d)I`(θ),

where

I`(θ) =
∫

2`≤|λ|≤2`+1

∫ ∑
|α|≤d−1

|DαŜ(λ, θ, ϕ)|2 dλdϕ.

In the proof of Theorem 3.1 (3.5), we obtained∫
2`≤|λ|≤2`+1

∫
|Ŝ(λ, θ, ϕ)|2 dλdϕ ≤ C 2`2−2`σ| sin θ|−2σ‖g‖2Hs . (4.11)

Now, DαŜ is the Fourier transform of the distribution (−i)|α| xα S, which is the restriction of

(−i)|α| xα g to the hyperplane {x1 = 0}. Because g is compactly supported, we have that

‖xα g‖Hs ≤ C ‖g‖Hs

since the multiplication by a C∞0 function is a bounded operation from Hs onto itself. Therefore,

inequality applies (4.11) DαŜ and we have the upper bound

I`(θ) ≤ C 2`2−2`σ| sin θ|−2σ‖g‖2Hs .

Inequality (4.10) comes from the previous inequality together with the size estimate (4.9).

Combining (4.10) and (4.8) finally gives (recall 2σ = 2s+ d− 2)∑
`∈Λj,m

∑
k

|b(0)
j,`,k|

2 ≤ C 2−2js ‖g‖2Hs

∫
2−m−2−j≤sin θ≤2−m+1+2−j

| sin θ|−2s dθ,
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which, in turn, gives the desired conclusion∑
`∈Λj,m

∑
k

|b(0)
j,`,k|

2 ≤ C 2−m2−2(j−m)s ‖g‖2Hs .

The corollary is established.

Proof of Theorem 4.1. Let s be a positive integer. Following on Corollary 4.2, to prove that α is in

w`p∗ (1/p∗ = s/d+ 1/2), it is sufficient to prove that both a and b are in w`p∗ . The membership of

a to w`p∗ follows from well-known arguments and is straightforward.

The w`p∗ boundedness of the sequence (bj,`,k) will be deduced from Corollary 4.2. We identify two

subsequences corresponding, respectively, to the indices |k| > 2j+1| sin θj,`| and |k| ≤ 2j+1| sin θj,`|;
the interesting contribution concerns the latter subsequence. We prove that

1. the subsequence {bj,`,k, |k| ≤ 2j+1| sin θj,`|} has a finite w`p∗ norm, and

2. the `p norm of the subsequence {bj,`,k, |k| > 2j+1| sin θj,`|} is bounded for any p > 0.

We prove the first assertion. Letting N(ε) be the cardinality of those elements whose absolute value

exceeds ε, namely,

N(ε) = # ε {(j, `, k), |k| ≤ 2j+1| sin θj,`|, s.t.|bj,`,k| ≥ ε},

we want to show that

sup
ε>0

εN1/p∗(ε) ≤ C ‖g‖Hs .

since the left-hand side is an equivalent definition of the weak-`p∗ norm (1.5).

Put

Nj,m(ε) = #{(`, k), ` ∈ Λj,m, |k| ≤ 2j+1| sin θj,`|, s.t.|bj,`,k| ≥ ε}.

Corollary 4.2 posits the existence of a constant K such that |bj,`,k|2 ≤ K 2−j‖g‖2Hs (4.3) and

therefore, it is clear that Nj,m(ε) = 0 if 2j ≥ K ε−2‖g‖2Hs . In what follows, we will let η be

defined by η = ε/‖g‖Hs . Regardless of the condition |bj,`,k| ≥ ε, the cardinality of the index set

{(`, k), ` ∈ Λj,m, |k| ≤ 2j+1| sin θj,`|} is bounded by C 2d(j−m). Further, the bound on the `2 norm

of the bj,`,k’s (Corollary 4.2) gives

Nj,m(ε) ≤ C min(2(j−m)d, η−22−j2(j−m)(1−2s))

whenever 2j ≤ K η−2.

Let Nj(ε) be the number of coefficients whose absolute values exceed ε, i.e.,

Nj(ε) = #{(`, k), |k| ≤ 2j+1| sin θj,`|, |bj,`,k| ≥ ε}.
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Then, a simple calculation gives

Nj(ε) =
∑
m

Nj,m(ε) ≤ C
∑
m

min(2(j−m)d, η−22−j2(j−m)(1−2s))

≤ C min(2jd, η−2d/α2−jd/α),

where α = d+ 2s− 1. To summarize, we have

Nj(ε) ≤ C


0 2j ≥ K η−2

η−2d/α2−jd/α η−2/(1+α) ≤ 2j ≤ K η−2

2jd 2j ≤ η−2/(1+α)

.

Summing over the scales yields

N(ε) =
∞∑
j=0

Nj(ε) ≤ C
∑

j:2j≤η−2/(1+α)

2jd + C
∑

j:η−2/(1+α)≤2j≤K η−2

η−2d/α2−jd/α

≤ C η−2d/(1+α) = C η−p
∗

= C ε−p
∗ ‖g‖p

∗

Hs ,

with 1/p∗ = s/d+ 1/2. This finishes the proof of the first assertion.

We now turn to the second assertion. It clearly follows from (4.4) that for any q > 0 we have∑
k:|k|>2j+1| sin θj,`|

|bj,`,k|q ≤ C 2jq/2(2j | sin θj,`|)1−nq‖g‖qHs ,

since n may be chosen arbitrarily large and, in particular, greater than 1/q. Summing over the `’s,

` ∈ Λj,m gives ∑
`∈Λj,m

∑
k:|k|>2j+1| sin θj,`|

|bj,`,k|q ≤ C 2jq/22(1−nq)(j−m)2(j−m)(d−1)‖g‖qHs .

Now, we must keep in mind that we have available a bound on the `2 norm (4.3); i.e.,∑
`∈Λj,m

∑
k:|k|>2j+1| sin θj,`|

|bj,`,k|2 ≤ C 2−j2−(j−m)(2s−1)‖g‖2Hs .

The interpolation inequality will yield the `p boundedness. Recall that for any sequence an we have

‖a‖`p ≤ ‖a‖θ`q ‖a‖
1−θ
`2

, 1/p = θ/q + (1− θ)/2. (4.12)

This interpolation inequality applied to our subsequence gives ∑
`∈Λj,m

∑
k:|k|>2j+1| sin θj,`|

|bj,`,k|p
1/p

≤ C
[
2j/22−(j−m)(n−d/q)

]θ [
2−j/22−(j−m)(s−1/2)

]1−θ
‖g‖Hs .
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In the previous inequality, the value of n may be chosen arbitrarily large and, hence, summing up

the previous inequalities results in the upper bound∑
`

∑
k:|k|>2j+1| sin θj,`|

|bj,`,k|p ≤ C 2−jp(1/2−θ) ‖g‖pHs . (4.13)

This establishes the boundedness in `p for any p > 0. Indeed for p > 0, choose q small enough

so that θ < 1/2 (4.12) – i.e., 1/q > 2/p + 1/2 – and apply (4.13). The theorem is proved for

s = 1, 2, . . . .

Interpolation theory allows us to extend the result to the half line s > 0. Indeed, let T be the

operator

T : g 7→ (αν)

that maps g into the ridgelet coefficient sequence (αν) of f , f(x) = H(u · x− b)g(x), with u and b

fixed. We abuse notations –as it is understood that we are concerned with elements supported on

the unit cube– and let Hs be the Banach space defined by

Hs := {g, g ∈ Hs and supp g ⊂ [0, 1]d}

equipped with the norm ‖ · ‖Hs . We proved that for any n ≥ 1, ‖T‖ is a bounded operator from

Hn to w`p, 1/p = n/d+ 1/2. In addition, T is bounded from L2 to `2 (where again we understand

L2([0, 1]d)). On one hand, it is well-known that (L2,H
n) is an interpolation couple [2] and that for

any n > 0 and any 0 < θ < 1, we have

(L2,H
n)θ,2 = Hnθ,

see [14], for example. On the other, letting `2 be the space of real valued sequences

`2 = {a,
∑
n≥1

|an|2 <∞},

and similarly for w`p, p > 0, we have

(`2, w`p)θ,2 = `p∗,2, 1/p∗ = (1− θ)/2 + θ/p.

Here, `p,2, p > 0 is the Lorentz space of real sequences∑
n≥1

|a|2(n)n
2/p−1

1/2

<∞,

where we recall that |a|(n) is the nth largest entry in the sequence (|an|). The interpolation theorem

[2] gives that

T : Hnθ → `p∗,2
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is bounded and further

‖T‖Hnθ→`p∗,2 ≤ C ‖T‖
1−θ
L2→`2‖T‖

θ
Hn→w`p .

Hence, for any s > 0, pick n > s and put θ = s/n. We have

1
p∗

=
1
2

(
1− s

n

)
+
s

n
(
n

d
+

1
2

) =
s

d
+

1
2
,

and, therefore, our analysis gives that T is bounded from Hs to `p∗,2. This completes the proof of

our theorem since for any sequence a and any p > 0, we have

‖a‖`p,2 ≤ ‖w`p‖.

Remark: We proved a slightly stronger result than that announced in our theorem since for any

s ≥ 0 the ridgelet coefficient sequence obeys

‖α‖`p,2 ≤ C ‖g‖Hs , 1/p = s/d+ 1/2.

4.1 Finite approximations

We now exploit Theorem 4.1 to derive nonlinear approximation bounds. The compact notation

(ψν)ν∈N introduced in section 2 will be used to denote the frame elements.

Suppose that f is of the form

f(x) = g0(x) +H(u · x− b)g1(x), (4.14)

where

‖gi‖Hs ≤ C, i = 0, 1.

From the exact series

f =
∑
ν∈N

ανψ̃ν ,

extract the n-term approximation fn obtained by keeping the n terms corresponding to the n largest

coefficients. Then, we have the following result:

Corollary 4.3 With the previous assumptions, there exists a constant C (not depending on f)

such that

‖f − fn‖2 ≤ C n−s/d sup
i=0,1

‖gi‖Hs(Rd). (4.15)
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As we will see below, the convergence rate of n-term ridgelet approximations is, in some sense,

optimal.

Theorem 4.1 gives that the coefficients (αν) of f are bounded in w`p∗ . Letting |α|(n) be the nth

largest entry in α (in absolute values), we have

f − fn =
∑
ν

αν1{|αν |≥|α|(n)}ψ̃ν .

The lemma stated below then gives the desired conclusion, namely

‖f − fn‖22 ≤ A−1
∑
m>n

|α|2(m) ≤ A
−1C n−2s/d‖α‖2w`p∗ ,

where A is the constant appearing on the left-hand side of (2.7).

Lemma 4.4 Let (aν)ν∈N be a sequence in `2 and let

f̃ =
∑
ν∈N

aνψ̃ν .

Then,

‖f̃‖22 ≤ A−1‖a‖2`2 .

Proof of Lemma. We let F̃ be the synthesis operator defined by F̃ a =
∑
aνψ̃ν and F be the analysis

operator Ff = (〈f, ψν〉)ν∈N . The property (2.7) gives

‖f̃‖2 = ‖F̃ a‖2 ≤ A−1‖F F̃a‖2`2 .

Now, it is easy to see that F F̃ is the orthogonal projector onto the range of F and has, therefore,

a norm (as an operator from `2 onto itself) bounded by 1. Consequently, we have

‖f̃‖2 ≤ A−1‖F F̃a‖2`2 ≤ A
−1‖a‖2`2 ,

which is what needed to be shown.

4.2 Optimality

In this section, we detail the sense in which Corollary 4.3 is optimal. Consider a class of templates

of the form (4.14): i.e., let F(C) be the class defined by

F(C) = {f, f satisfies (4.14), ‖gi‖Hs ≤ C, and supp gi ⊂ [0, 1]d, i = 0, 1}. (4.16)

In the above definition, the singular hyperplane is not fixed; two elements from F(C) may be

singular along two different hyperplanes.
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The class F(C) contains, of course, the Sobolev ball Hs(C) = {f, ‖f‖Hs ≤ C, and supp f ⊂
[0, 1]d}. In any orthobasis (φ)i∈I , there is a lower bound on the convergence of the best n-term

approximation Qn(f) in that basis,

sup
f∈Hs(C)

‖f −Qn(f)‖2 ≥ C n−s/2.

As a consequence, no orthobasis exits that provides better rates than those obtained in Corollary

4.3. There is even a broader notion of optimality based on information theoretic concepts such as

the Kolmogorov ε-entropy or the Minimum Description Length (MDL) paradigm.

Let F be a compact set of functions in L2([0, 1]d). The Kolmogorov ε-entropy N(ε,F) of the class

F is the minimum number of bits that is required to specify any element f from F within an

accuracy of ε. In other words, let ` be a fixed counting number and let E` : F → {0, 1}` be a

functional which assigns a bit string of length ` to each f ∈ F . Let D` : {0, 1}` → L2[0, 1]d be a

mapping which assigns to each bit string of length ` a function. The coder-decoder pair (E`, D`)

will be said to achieve a distortion ≤ ε over F if

sup
f∈F
‖D`(E`(f))− f‖ ≤ ε.

The Kolmogorov ε-entropy (minimax description length) may then be defined as

L∗(ε,F) = min{` : ∃(E`, D`) achieving distortion ≤ ε over F}.

The minimum number of bits needed to reconstruct any f taken from our class of templates F(C)

(4.16) satisfies

N(ε,F(C)) ≥ N(ε,Hs) ≥ C ε2/s.

A strategy identical to that developed in [9][Theorem 2], however, gives a simple way to exploit the

sparsity of the ridgelet sequence to construct a coder-decoder pair of length O(log(ε−1)ε2/s) that

achieves a distortion of ε. The construction is based on simple uniform quantization of the ridgelet

coefficients αi, followed by simple run length coding. Hence, we have available a very concrete way

of obtaining near-optimal (possibly within log-like factors) compression rates.

5 Orthonormal ridgelets

In dimension 2, Donoho [10] introduced a new orthonormal basis whose elements he called ‘or-

thonormal ridgelets.’ We will not detail why these elements relate to ridgelets. We quote from [7]:

“Such a system can be defined as follows: let (ψj,k(t) : j ∈ Z, k ∈ Z) be an orthonormal basis of

Meyer wavelets for L2(R) [12], and let (w0
i0,`

(θ), `= 0, . . . , 2i0−1; w1
i,`(θ), i ≥ i0, `= 0, . . . , 2i−1)
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be an orthonormal basis for L2[0, 2π) made of periodized Lemarié scaling functions w0
i0,`

at level

i0 and periodized Meyer wavelets w1
i,` at levels i ≥ i0. (We suppose a particular normalization of

these functions). Let ψ̂j,k(ω) denote the Fourier transform of ψj,k(t), and define ridgelets ρλ(x),

λ = (j, k; i, `, ε) as functions of x ∈ R2 using the frequency-domain definition

ρ̂λ(ξ) = |ξ|−
1
2 (ψ̂j,k(|ξ|)wεi,`(θ) + ψ̂j,k(−|ξ|)wεi,`(θ + π))/2 . (5.1)

Here the indices run as follows: j, k ∈ Z, ` = 0, . . . , 2i−1 − 1; i ≥ i0, i ≥ j. Notice the restrictions

on the range of ` and on i. Let λ denote the set of all such indices λ. It turns out that (ρλ)λ∈Λ is

a complete orthonormal system for L2(R2).”

There is a close connection between ‘pure’ and orthonormal ridgelets. Pure ridgelets are supported

on lines in the Fourier domain: that is, the frequency representation of a pure ridgelet is given by

(provided that the profile ψ is real valued)

ψ̂j,`,k(ξ) = (ψ̂j,k(|ξ|)δ(θ − 2π2−j`) + ψ̂j,k(−|ξ|)δ(θ + π − 2π2−j`))/2 (5.2)

using a formulation emphasizing the resemblance with (5.1). In the ridgelet construction, the

angular variable θ is uniformly sampled at each scale; the sampling step being inversely proportional

to the scale. In contrast, the sampling idea is replaced by the wavelet transform for orthonormal

ridgelets. This is the reason why orthonormal ridgelets can perfectly reconstruct objects from

L2(R2) without support constraints. It is interesting to note that the restriction on the range,

namely, i ≥ j in the definition (5.1), gives angular scaling functions at scales inversely proportional

to the sampling steps of pure ridgelets.

Theorem 5.1 Let g ∈ Hs(R2), s > 0, with compact support and put f(x) = H(u · x − b) g(x).

Then the orthonormal ridgelet coefficient sequence α of f obeys

‖α‖w`p ≤ C ‖g‖Hs , with 1/p = s/2 + 1/2,

for some constant C not depending on f . It then follows that the truncated n-term partial recon-

struction fn achieves the error bound

‖f − fn‖2 ≤ C n−s/2‖g‖Hs .

The proof is an application of Theorem 3.1 and consists of minor modifications to the proof of

Theorem 4.1. In the following, we outline the essential steps, thus avoiding worthless repetition.

First, observe that for ε = 0 (i = j) and any choice of γ > 0, the localization of the angular scaling
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function gives the upper bound

|〈f, ρλ〉| =
∣∣∣∣∫ f̂(λ, θ) |λ|1/2(ψ̂j,k(|λ|)wε=0

j,` (θ) + ψ̂j,k(−|λ|)wε=0
j,` (θ + π))/2 dλdθ

∣∣∣∣
≤ C 2j

∫
(1 + 2j |θ − 2π `2−j |)−γ dθ

∣∣∣∣∫ f̂(λ, θ) |2−jλ|1/2ψ̂j,k(|λ|)dλ
∣∣∣∣

+C 2j
∫

(1 + 2j |θ + π − 2π `2−j |)−γ dθ
∣∣∣∣∫ f̂(λ, θ) |2−jλ|1/2ψ̂j,k(−|λ|)dλ

∣∣∣∣ , (5.3)

where γ > 0 may be chosen arbitrarily large. (The previous inequality used the fact |wε=0
j,` (θ)| ≤

C 2j/2(1 + 2j |θ − 2π `2−j |)−γ .) The point of this paper has been precisely to bound quantities like∣∣∣∫ f̂(λ, θ) |2−jλ|1/2ψ̂j,k(|λ|)dλ
∣∣∣. For instance, let Ij,` = {θ, |θ − 2π 2−j`| ≤ 2−j} and set

βj,`,k = 2j
∫
Ij,`

∣∣∣∣∫ f̂(λ, θ)|2−jλ|1/2ψ̂j,k(|λ|)dλ
∣∣∣∣ .

Then, we proved that (dimension 2)

‖β‖w`p ≤ C ‖g‖Hs , 1/p = s/2 + 1/2.

Compare with (4.5) and Theorem 4.1. Hence, a reasoning similar to the one developed for Theorem

4.1 gives

‖αε=0‖w`p ≤ C ‖g‖Hs , 1/p = s/2 + 1/2. (5.4)

The point is that the contributions associated with the orthonormal ridgelets corresponding to

parameter values i > j become negligible as i goes to infinity. This is due to the compactness of

the support of f . Indeed, standard wavelet calculations give

|〈f, ρλ〉| =
∣∣∣∣∫ f̂(λ, θ) |λ|1/2(ψ̂j,k(|λ|)wε=1

i,` (θ) + ψ̂j,k(−|λ|)wε=1
i,` (θ + π))/2 dλdθ

∣∣∣∣
≤ C 2−in2i/22j/2

∫
(1 + 2i|θ − 2π `2−i|)−γ dθ

∣∣∣∣∫ (∂nθ f̂)(λ, θ) |2−jλ|1/2ψ̂j,k(|λ|)dλ
∣∣∣∣

+C 2−in2i/22j/2
∫

(1 + 2i|θ + π − 2π `2−i|)−γ dθ
∣∣∣∣∫ (∂nθ f̂)(λ, θ) |2−jλ|1/2ψ̂j,k(−|λ|)dλ

∣∣∣∣ .
The proof of the previous inequality follows from integration by parts together with the vanishing

moment properties and the localization of the wavelets wε=1
i,` (θ). (We used the trivial bound on the

size of the angular wavelets wε=1
i,` ; i.e., |wε=1

i,` (θ)| ≤ C 2i/2(1 + 2i|θ + π − 2π `2−i|)−γ .)

Observe now that

∂θf̂(λ, θ) = λ(− sin θ(∂1f̂)(λ, θ) + cos θ(∂2f̂)(λ, θ)),

and this formula may be iterated to obtain derivatives with respect to the angular variable θ of

higher orders.
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We may then substitute polar derivatives with respect to θ by cartesian derivatives and obtain

|〈f, ρλ〉| ≤ C 2j2−(i−j)(n−1/2)

∫
(1+2i|θ−2π `2−i|)−γ dθ

∑
|α|≤n

∣∣∣∣∫ (Dαf̂)(λ, θ) |2−jλ||α|+1/2ψ̂j,k(|λ|)dλ
∣∣∣∣

+C 2j2−(i−j)(n−1/2)

∫
(1+2i|θ+π−2π `2−i|)−γ dθ

∑
|α|≤n

∣∣∣∣∫ (Dαf̂)(λ, θ) |2−jλ||α|+1/2ψ̂j,k(−|λ|)dλ
∣∣∣∣ .

We already argued in the proof of Corollary 4.2 that, because of the compactness of the support

of the distribution f , the estimates we obtained for f̂ are valid for the derivatives Dαf̂ . Hence, we

essentially have the same bound as in (5.3) but for an exponentially decaying factor 2−(i−j)(n−1/2)

where n might be chosen as large as we want. It is then not too difficult to check that the sequence

αε=1 satisfies

‖αε=1‖w`p ≤ C ‖g‖Hs , 1/p = s/2 + 1/2.

The w`p boundedness of the sequence α naturally follows from this last display and (5.4).

6 Discussion

Unlike any known system, ridgelets allow optimal partial reconstructions of L2 Sobolev functions

with linear singularities. These good approximations are, moreover, simply obtained by threshold-

ing the exact ridgelet series (1.4).

6.1 Ridgelets and functional classes

As we pointed out in the introduction, wavelets are optimal to represent smooth functions with

point-singularities. From a functional viewpoint, we may say that wavelets provide unconditional

bases for the Besov spaces and the Triebel spaces [13] and, therefore, provide near-optimal ap-

proximations to elements taken from functional balls of such spaces. A natural question would be:

what are the functional spaces that are naturally associated with ridgelets? The analysis that we

presented already suggests an answer. It is certainly possible to build new functional spaces whose

typical elements resemble our mutilated Sobolev objects. In this direction, we might be tempted

to consider, for instance, convex combinations of objects like (1.2); let

SH = {f =
∑
i

aifi,
∑
i

|ai| ≤ 1},

where the fi’s are our templates; i.e., functions of the form

fi(x) = H(ui · x− bi)gi(x), ‖gi‖Hs ≤ 1, supp g ⊂ [0, 1]d.
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Our functional class SH would then be meant to represent objects composed of singularities across

hyperplanes: typical elements of this class are smooth away and discontinuous across these same

hyperplanes. There may be an arbitrary number of singularities which may be located in all

orientations and positions. In the author’s unpublished thesis [3], it is then proved that ridgelets

provide near-optimal representations of objects of this kind, as expected.

This is, indeed, part of a larger picture. A new notion of smoothness may be introduced leading to

new functional classes that are naturally associated with ridgelets. This new notion of smoothness

is nonclassical; it is discussed in [3] and briefly exposed in [7]. Full details will be provided in a

separate paper.

6.2 Curved singularities

We would like to emphasize that this paper only considered linear singularities. Ridgelets are not

able efficiently to represent smooth functions with curved singularities. For instance, in dimension

d, consider the indicator function of the unit ball

f(x) = 1{|x|≤1},

and let α denote the ridgelet coefficient sequence of f . Then, [3] shows that

#{n, s.t. |αn| ≥ 1/n} ≥ C n2(1−1/d), (6.1)

yielding partial reconstructions converging only at the rate n
− 1

2(d−1) . We quote from [7]: “Un-

fortunately, the task that ridgelets must face is somewhat more difficult that the task which

wavelets must face, since zero-dimensional singularities are inherently simpler objects that higher-

dimensional singularities. In effect, zero-dimensional singularities are all the same – points – while

a one-dimensional singularity – lying along a 1-dimensional set – can be curved or straight.” It is

remarkable, however, that both wavelet and ridgelets, two fundamentally different systems achieve

the same degree of sparsity.

The method of localization enables us to obtain sharper approximation bounds on objects with

curved singularities. The localization idea is rather straightforward and has been for instance

previously deployed in the time frequency literature. We outline this idea in dimension 2: first,

partition the unit square into small squares, and smoothly localize the function into smooth pieces

supported on or near those squares; then take the ridgelet transform on each piece. This is the basis

of the so called monoscale ridgelet transform [5]. Again, partial reconstructions simply obtained by

keeping the largest coefficients are shown to provide good approximation bounds (of higher order

than wavelet or ridgelet approximations).

Further, [6] developed a new approach, namely, the curvelet transform that combines ideas from

ridgelet analysis and wavelet analysis. In two dimensions, the curvelet transform provides optimal
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representations of smooth functions with twice differentiable singularities, a fact whose roots are

grounded on the results presented in this paper.
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