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In dimensions two and higher, wavelets can efficiently represent only a small
range of the full diversity of interesting behavior. In effect, wavelets are well-
adapted for pointlike phenomena, whereas in dimensions greater than one, in-
teresting phenomena can be organized along lines, hyperplanes, and other non-
pointlike structures, for which wavelets are poorly adapted.

We discuss in this paper a new subject, ridgelet analysis, which can effectively
deal with linelike phenomena in dimension 2, planelike phenomena in dimension
3 and so on. It encompasses a collection of tools which all begin from the idea of
analysis by ridge functions ¢ (uyx1+. . .4+u, 2y, ) whose ridge profiles ¢ are wavelets,
or alternatively from performing a wavelet analysis in the Radon domain.

The paper reviews recent work on the continuous ridgelet transform (CRT),
ridgelet frames, ridgelet orthonormal bases, ridgelets and edges and describes a
new notion of smoothness naturally attached to this new representation.

1. Introduction

The theme of this meeting — “Wavelets: a key to intermittent information?”
— raises a fundamental question; in this paper we shall argue that the answer is
both No and Yes. We say No because wavelets per se only address a portion of the
intermittency challenge; we intend to make clear how much larger the question
is than just the portion which wavelets can face effectively. Roughly speaking,
wavelets deal efficiently only with one type of intermittency — singularities at
points — and in higher dimensions there are many other kinds of intermittency
— singularities along lines, along hyperplanes, etc — which wavelets do not deal
with efficiently. But we also say Yes, because by using wavelets in a novel way,
we have been able to build new systems of representations — ridgelets — which are
efficient at many of the tasks where wavelets fail.

In this expository paper, we will primarily focus on the study of objects defined
in two-dimensional space since, on one hand, this case already exhibits the main
concepts underlying the ridgelet analysis and, on the other, it is a very practical
setting, because of the connection with image analysis. However, we will refer to
extensions to higher dimensions wherever it is conceptually straightforward to do
S0.

(a) Wavelets and Point Singularities
To begin, we call the reader’s attention to one of the really remarkable facts
about wavelet bases. Suppose that we have a function f(t) of a single real variable
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2 E. J. Candeés and D. L. Donoho

t € [0,1] and that f is smooth apart from a discontinuity at a single point ty. For
example, let f(t) =t — Lit>40)- In some sense this is a very simple object, and
we would like to find an expansion that reveals its simplicity. However, in tradi-
tional types of expansions, the representation of this object is quite complicated,
involving contributions from many terms. This is so of the Fourier representa-
tion; viewing [0, 1] as the circle, we can calculate the appropriate Fourier series
on [0, 1]; the number of the Fourier coefficients of f exceeding 1/N in absolute
value exceeds ¢- N as N — oo. It is true of traditional orthogonal series esti-
mates; an expansion of f in Legendre polynomials has at least ¢ - N coefficients
exceeding 1/N. In stark contrast, in a nice wavelet orthonormal basis, such as
the Lemarié-Meyer inhomogenous periodized wavelet basis, the number of coeffi-
cients exceeding 1/N in amplitude grows more slowly that N” for any positive p.
In effect, the singularity at ty causes widespread effects throughout the Fourier
and Legendre representations; but the singularity causes highly localized, or con-
centrated effects to the wavelet representation. Alternately, we can say that in
analyzing an object exhibiting punctuated smoothness, the wavelet coefficients are
sparse, while the coefficients of classical transforms are not sparse.

The potential for sparsity of wavelet representations has had a wide impact,
both in theory and in practice. It has a well-understood meaning for non-linear ap-
proximation and for data compression of objects exhibiting punctuated smooth-
ness: since the energy associated with the singularity is mostly concentrated in
just a few big coefficients, partial reconstruction using a relatively small number
of wavelet terms (the terms associated with the biggest wavelets coefficients) can
give excellent approximations. The recognition that wavelets deal successfully
with functions which are smooth away from singularities has led to a great deal
of interest in their applications in image coding, where a great deal of the im-
portant structure consists of singularities — namely edges. Wavelet based-coders
have found wide application in various ‘niche’ data compression applications,
and are now being considered for inclusion in the JPEG-2000 still picture data-
compression standard.

(b) Singularities along Lines

Unfortunately some claims for wavelets have been overstated, and wavelets
are sometimes being used for applications well outside their actual domain of
expertise. To understand this point requires a more careful look at the notion of
singularity. A function f(z) of n-variables may have singularities of any integer
dimension d in the range 0,...,n — 1. A 0-dimensional singularity is a point of
bad behavior. A 1-dimensional singularity is a curve of bad behavior. An n — 1-
dimensional singularity is a hypersurface of bad behavior. Wavelets are fully
efficient at dealing with O-dimensional singularities only. Unfortunately, in higher
dimensions, other kinds of singularities can be present, or even dominant: in
typical images, the edges represent 1-dimensional singularities, and there are no
0-dimensional singularities to speak of.

To be more concrete, consider the function g supported in the unit square

9(x1,22) = Lz 4ap>1/2y (w1, T2), reR?. (1.1)

where w(x1, z2) is a smooth function tending to zero together with its derivatives
at the boundary of the unit square. This simple object has a singularity along the
line x1 + 22 = 1/2. Such an object poses a difficult problem of approximation both
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for two-dimensional Fourier analysis and for two-dimensional wavelet analysis.
Although the object is very simple, its wavelet transform does not decay rapidly:
as N — oo, there are > ¢ - N orthonormal wavelet coefficients exceeding 1/N in
size. Its bivariate Fourier series does not decay rapidly either: as N — oo, there
are > c- N Fourier coefficients exceeding 1/N in size. Neither wavelets nor Fourier
methods perform really well here. For example, if we used either approach as the
basis of transform coders (Donoho, 1996), we would have, as direct corollary of
the fact that at least ¢- N coefficients of g have amplitude > 1/N, that the number
of bits one must retain to achieve a distortion < e for wavelet transform coding
— grows as € — 0 at least as rapidly as c- e~ !, and the number of bits one must
retain to achieve a distortion e for Fourier transform coding grows as e — 0 at
least as rapidly as c- e 1.

In effect, wavelets are being used in image data compression although their
theoretical properties are not nearly as favorable as one might have imagined,
given the degree of attention they have received.

The titular theme of this gathering is intermittency, but this is a nonstandard
term. Whatever the organizers may have had in mind, we now take the liberty of
identifying the concept of intermittency with a situation where objects of interest
are typically smooth apart from occasional singularities on, say, a set of measure
zero. From this point of view, we can say that wavelets have a role to play in
dealing with a particular kind of intermittency — unusual behavior at one point
(or occasional points) — but not with every kind of intermittency; in dimension
two they already fail when asked to deal efficiently with unusual behavior on a
line.

We are entitled here to say that wavelets ‘fail’ because we know of representing
systems which, in a precise sense, can succeed in dealing with unusual behavior
on a line.

(¢) Ridgelet Analysis

In this paper we describe a recently-developed approach to problems of func-
tional representation — ridgelet analysis. Ridgelet analysis makes available repre-
sentations of functions by superpositions of ridge functions or by simple elements
that are in some way related to ridge functions r(ajx1 + ... + apxzy,); these are
functions of n variables, constant along hyperplanes ayx1 + ... + apx, = ¢; the
graph of such a function in dimension two looks like a ‘ridge’. The terminology
‘Ridge function’ arose first in tomography, and ridgelet analysis makes use of a
key tomographic concept, the Radon transform.

But multiscale ideas as found in the work of Littlewood and Paley or Calderon
and culminating in wavelet theory appear as a crucial tool in the story as well.
From wavelet theory, ridgelet analysis borrows the localization idea: fine scale
ridgelets are concentrated near hyperplanes at all possible locations and orienta-
tions.

As an example of what this family of ideas can do, consider the function g of
(2.1). It will turn out that there are ridgelet expansions — by frames and even by
orthonormal sets — having the property that the number of coefficients exceeding
1/N in amplitude grows more slowly that N for any positive p. In effect, the
singularity in g across the line x; + 9 = 1/2 has widespread effects in the Fourier
and wavelet representation, but the singularity causes highly concentrated effects
in the ridgelet representation. Moreover, a ridgelet transform coding method,
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based on scalar quantization and run-length coding, can code such objects with
a bitlength that grows more slowly as ¢ — 0 than any fractional power of e~!.
Hence ridgelets do for linear singularities in dimension two what wavelets did for
point singularities in dimension one — provide an extremely sparse representation;
neither wavelets nor Fourier can manage a similar feat in representing linear
singularities in dimension two.

(d) Ridgelets and Ridge Functions

The ability of ridgelets to give a sparse analysis of singularities is just one point
of entry into our topic. Another interesting entry point is provided by the con-
nection of ridgelet analysis with the theory of approximation by superpositions
of ridge functions. Since the 1970’s, it has been proposed that superpositions of
ridge functions could offer interesting alternatives to standard methods of mul-
tivariate approximation. Friedman and Stuetzle (1981) introduced into statistics
the topic of Projection Pursuit Regression, specifically suggesting that by such
means one might perhaps evade the curse of dimensionality as suffered by then-
typical methods of function approximation. Approximation by superpositions of
ridge functions acquired further interest in the late 1980’s under the guise of ap-
proximation by single-hidden-layer feedforward neural nets. In such neural nets,
one considers the m-term approximation

m

flxy,... ) =~ Z cio(aiizr + ...+ ajnty)
i=1

Celebrated results in the Neural nets literature include Cybenko’s result that ev-
ery nice function of n-variables can be approximated arbitrarily well in a suitable
norm by a sequence of such m-term approximations, and results of Barron and
Jones that describe function classes and algorithms under which such m-term
approximations converge at given rates, including specific situations in which the
rates do not worsen with increasing dimension.

Ridgelet analysis provides an alternate approach to obtaining approximations
by superpositions of ridge functions, one which is quantitative, constructive, and
stable. Roughly speaking, the earlier theory of m-term ridge function approxima-
tions assures us only of the existence of superpositions with prescribed features;
the theory of ridgelet analysis, growing as it does out of wavelets and compu-
tational harmonic analysis, goes to a new level, and gives a particular way to
build an approximation which is both constructive, and stable. It also gives the-
oretical insights, previously unavailable, about those objects which can be well-
represented by ridge functions.

2. The Continuous Ridgelet Transform

The (continuous) ridgelet transform in R? can be defined as follows (Candes,
1996). Pick a smooth univariate function ¥ : R — R with sufficient decay and
vanishing mean, [(t)dt = 0. for each a > 0, each b € R and each 6 € [0, 27),
define the bivariate function g6 : R? — R? by

Vapo(r) = a2 p((cos(0)xy + sin(f)zg — b)/a).
Phil. Trans. R. Soc. Lond. A (1999)
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this function is constant along “ridges” cos(6)z1+sin(f)z2 = const. Transverse to
these ridges it is a wavelet; hence the name ridgelet. Given an integrable bivariate
function f(z), define its ridgelet coefficients

Ry(a:6,0) = [ Bupp(w)f(a)do.

Our hypotheses on v guarantee that f|@@()\)\2)\_2d)\ < 00, and we suppose
further that v is normalized so that

/WA)PA‘%M =1.

Candes proves the exact reconstruction formula

/%/ /Rfa69¢ab9() dbd—g

valid a.e. for functions which are both integrable and square integrable. This
shows that “any” function may be written as a superposition of ‘ridge’ func-
tions. such integral representations have been independently discovered by Mu-
rata (1996). In addition, our representation is stable, as we have a Parseval rela-

tion:
2
/|f |dx—/ / / ]Rfab9|2dadb—

(this relation is, however, absent from Murata’s papers.) This approach general-
izes to any dimension. Given a 1 obeying [ [{)(A\)[2A™"d\ = 1, define 9,4 (2) =
Y((v'z —b)/a)/\/a and Rs(a,b,0) = (f,1qpu). Then there is an n-dimensional

reconstruction formula

—cn///Rfabu¢abu( ) anbdu

with du the uniform measure on the sphere; and a Parseval relation

da
£ 172 (rm) :cn///mf(a, b,0)[* "y dbdu.

(a) Relation to Radon Transform

The continuous ridgelet transform is intimately connected with the Radon
transformation. If we put Rf(u,t) = [ f(x)d(u'z — t)dz for the integral of f
over the hyperplane v’z = t, then R¢(a,b,u) = (qp, Rf(u,-)), where g (t) =
Y((t — b)/a)/+/a is a one-dimensional wavelet. Hence the Ridgelet transform is
precisely the application of a 1-dimensional wavelet transform to the slices of the
Radon transform where u is constant and ¢ is varying .

(b) An Example

Let g be the mutilated Gaussian
g(z1,22) = 1{12>0}e_z§_w§, r € R?. (2.1)

This is discontinuous along the line x5 = 0 and smooth away from that line. One
can calculate immediately the Radon transform of such a function; it is

(Rg)(t,0) = e " ®(—tsinb/|cosb]) teR, 0€l0,2n] (2.2)
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where ®(v) = [ e du.

We can get iznmediate insight into the form of the CRT from this formula.

Remember that the wavelet transform <wa7b,e*t2 - ®(—t sinf/|cosf])) needs to

be computed. Effectively, the Gaussian window e~ makes little difference; it is
smooth and of rapid decay, so it does little of interest; in effect the object of
real interest to us is (g5, P(—s(6)t)), where s(0) = sinf/|cosf|. Define then
W(a,b) = (ap, ®(—t)); this is the wavelet transform of a smooth sigmoidal
function. By the scale-invariance of the wavelet transform, (1,4, ®(—s(0)t)) =
W (s(0)a, s(0)b) - |s(8)|~1/2 for § € (0,7) and, of course, a similar relationship
holds for (,27). In short, for a caricature of Ry(a,b, ), we have, for each fixed
¢ a function of a and b which is a simple rescaling of the wavelet transform of
® as function of . This rescaling is smooth and gentle away from 6 = 7/2 and
6 = 37w /2, where it has singularities.

We remark that in a certain sense the CRT of g is sparse; if we use a sufficiently
nice wavelet, such as a Meyer wavelet, the CRT belongs to LP(da/a3dbdf) for
every p > 0. This is a fancy way of saying that the CRT decays rapidly as one
moves either spatially away from b = 0 or § € {w/2,37/2} as one goes to fine
scales a — 0.

3. Discrete Ridgelet Transform: Frames

It is important for applications that one obtains a discrete representation us-
ing ridgelets. Typical discrete representations include expansions in orthonormal
bases. Here we describe an expansion in two dimensions by frames; see also Candes
(1996), where the case for all dimensions n > 2 is treated.

We now develop a formula for the CRT of f using the Fourier domain. Obvi-
ously, with f denoting Fourier transform,

Rp(a,0,0) = o [ Dune(©F(€)de

where Qﬁ%b,g(f) is interpreted as a distribution supported on the radial line in the
frequency plane. Letting £(X,0) = (A - cos(f), A - sin(f)) we may write
1 00 - N
Rylab,0) = 5 [ aliane ™ FE 0)x. (3.1)

™

This says that the CRT is obtainable by integrating the weighted Fourier trans-

form w, () f(€) along a radial line in the frequency domain, with weight w, (&)

given by a!/ 25(a|£ |) times a complex exponential in e~*?. Alternatively, we can
see that the function of b (with a and 6 considered fixed) p,0(b) = Rs(a,b,0),
satisfies

pa.0(b) = F1 {pas(N)}
where Fi stands for the 1 — d Fourier transform, and

Pas(N) = /(@) f(E(N0))  —oco<A<oo

is the restriction of wq 0(€)f(§) to the radial line. Hence, conceptually, the CRT
at a certain scale a and angle 6 can be obtained by the following steps:
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e 2 — d Fourier Transform, obtaining f(£).

~

e Radial Windowing, obtaining wq0(£)f(£), say.
e 1 — d Inverse Fourier Transform along radial lines, obtaining pg¢(b), for all
beR.

We are interested in finding a method for sampling (a;, b, 6;,) so that we
obtain frame bounds, i.e. so we have equivalence

Z|Rf(aj,bk,9j7g)]2x///|Rf(a,b,9)\2da/a3dbd9. (3.2)

JkL

To simplify our exposition, we will suppose that ¢ ()) = 1 {1<|¢|<2} although the
frame result holds for a large class of ¢’s as exposed in Candes (1996). Guided by
the Littlewood-Paley and the wavelet theories, the scale a and location parameter
b are discretized dyadically, as a; = ap2’ and b, = 2rk27/. Following (3.1) the
ridgelet coefficients may be written as

1

Ry(aj; bjx, 0) = %27”2 /2j<|/\<2j+1 e T FE 0)dN,

and hence, the Plancherel theorem gives

2 1 2) 7 2
S IRsasbinsOF = = [ Jwmol € 0D
In short, at a fixed scale and angular location, the sum of squares of ridgelet
coefficientsa across varying spatial location amounts to integrating the square of
the Fourier transform along a dyadic segment.

Discretizing the angular variable § amounts to performing a sampling of such
segment-integrals from which the integral of | f (€)|> over the whole frequency
domain needs to be inferred. This is not possible without support constraints
on f, as functions f can always be constructed with f(z) having slow decay as
|x| — oo so that f will vanish on a collection of disjoint segments without being
identically zero. However, under a support restriction, so that f is supported
inside the unit disk (or any other compact set), the integrals over the segments
can provide sufficient information to infer [ |f(€)[2de.

Indeed, under a support constraint, the Fourier transform f (£) is a bandlimited
function, and over ‘cells’ of appropriate size can only display very banal behavior.
If we sample once per cell, we will capture sufficiently much of the behavior of this
object that we will be in a position to infer the size of the function from those
samples. The solution found by Candes is to sample with increasing angular
resolution at increasingly fine scales, something like the following:

00 =2m0277.
This strategy gives the equivalence (3.2). It then follows that the collection
{29/20(27 (21 cos(,0) + w2 8in(0)0) — 27k279)) }j>jo.tk)
is a frame for the unit disk; for any f supported in the disk with finite L? norm,

Z ’<waj,bj,k"9j,l7f>|2 = HfH2

Jik,l
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The construction generalizes to any dimension n; in two dimensions, the dis-
cretization involved the sampling of angles from the circle, in n dimensions the
sampling of angles from the unit sphere. The angular variable is also sampled
at increasing resolution so that at scale j, the discretized set is a net of nearly
equispaced points at a distance of order 277, see Candes (1996) for details.

The existence of frame bounds implies, by soft analysis, that there are ‘dual
ridgelets’ ;1. ¢ so that

F=> Dim )i

gkl
and

F=> A ima)bjne

3kt

with equality in a an L?-sense, and so that

S UL irol? =Y K ima) =< 1172

j7k7£ j7k7£

At the moment, only qualitative properties of the dual ridgelets ”(Ej’k’g are known;
for example there are no closed-form expressions for their structure.

4. Orthonormal Ridgelets in Dimension 2

Donoho (1998) had the idea to broaden somewhat the notion of ridgelet, to
allow the possibility of systems obeying certain frequency/angle localization prop-
erties, and showed that if we allow this broader notion, then it becomes possible
to have orthonormal ridgelets whose elements can be specified in closed form.
Such a system can be defined as follows: let (v;x(t) : 7 € Z,k € Z) be an or-
thonormal basis of Meyer wavelets for L?(R) (Lemarié & Meyer, 1986), and let
(w?oj(@), £=0,...,20—1; wiljz(H), i > 19, £=0,...,2"—1) be an orthonormal
basis for L?[0,27) made of periodized Lemarié scaling functions w?ol at level ig
and periodized Meyer wavelets wil’g at levels ¢ > ig. (We suppose a particular

normalization of these functions). Let 7/;‘7'7]@(00) denote the Fourier transform of
¥ (t), and define ridgelets py(z), A = (j, k; i, ¢, €) as functions of 2 € R? using
the frequency-domain definition

PA(E) = 1E172 (W (1€DWS(6) + Dy (—[EwE (0 + 7)) /2 (4.1)

Here the indices run as follows: j,k € Z, £ =0,...,2""1 —1;4 > iy, i > j. Notice
the restrictions on the range of ¢ and on i. Let A denote the set of all such indices
A. It turns out that (py)aea is a complete orthonormal system for L?(R?).

In the present form, the system is not visibly related to ridgelets as defined ear-
lier, but two connections can be exhibited. First, define a fractionally-differentiated

1 [ - ;
Meyer wavelet: 1&%(75) = 2—/ |w\%1/1j7k(w) e“!dw. Then for x = (z1,72) € R?,
) T J—0o
1 27

pa(x) w;fk (21 cos O + z2sin O)w; ,(6)do . (4.2)

Arw Jo
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Each wjk(xl cos ) + w2 sin @) is a ridge function of x € R?, i.e., a function of the

form r(z1 cos @+ 9 sin f). Therefore p) is obtained by “averaging” ridge functions
with ridge angles 6 localized near 6,, = 2n¢/ 2!, A second connection comes
by considering the sampling scheme underlying ridgelet frames as described in
Section 3. This scheme, says that one should sample behavior along line segments
and that those segments should be spaced in the angular variable proportional
to the scale 277 of the wavelet index. The orthonormal ridgelet system consists
of elements which are organized angularly in just such a fashion; the elements py
are localized ‘near’ such line segments because the wavelets wf ,(0) are localized
‘near’ specific points 6; 4.

Orthonormal ridgelet analysis can be viewed as a kind of wavelet analysis in the
Radon domain; if we let Rf(6,t) denote the Radon transform and if we let 7, (¢, 0)
denote the function (w;tk(t)wf’l(é?) +¢Ik(—t)wf7l(9+7r))/2, the (7a : A € A) give a
system of antipodally symmetrized nonorthogonal tensor wavelets. The ridgelet
coefficients ) are given by analysis of the Radon transform via ay = [Rf, 7]
This means that the ridgelet coefficients contain within them information about
the smoothness in ¢ and 6 of the Radon transform. In particular, if the Radon
transform exhibits a certain degree of of smoothness, we can immediately see that
the ridgelet coefficients exhibit a corresponding rate of decay.

5. Ridgelet Synthesis of Linear Singularities

Consider again the Gaussian-windowed halfspace (2.1). The CRT of this object

is sparse, which suggests that a discrete ridgelet series can be made which gives
a sparse representation of g. This can be seen in two ways.
o Using Dual Frames. It can be shown that there exist constructive and sim-
ple approximations using dual frames (which are not pure ridge functions) which
achieve any desired rate of approximation on compact sets (Candes, 1998, [Chap-
ter 5]). Indeed, let A be compact and v; be a ridgelet-frame for Ly(A). Out of
the exact series

9= (g, ¢, (5.1)

(2

extract the m-term approximation g, where one only keeps the dual-ridgelet
terms corresponding to the m largest ridgelet coefficients (g, ;); then, the ap-
proximant g, achieves the rate

19 = Gmllroay < Com™"  for any r > 0,

provided say v is a nice function whose Fourier transform is supported away from
0 (like the Meyer wavelet). The result generalizes to any dimension n and is not
limited to the Gaussian window. The argument behind this fact is the sparsity of
the ridgelet coefficient sequence; each ridgelet coefficient (1;, Rg(6;,-)) being
the one-dimensional wavelet coefficient of the Radon transform Rg(f;,-) — for

fixed 6. From the relation Rg(6,t) = e *"®(—t - sin 0/| cosb]), it is easy to see
that the coefficients (f,1q04) decay rapidly as 6 and/or b move away from the
singularities (# = 7/2,t = 0) and (§ = 37/2,t = 0).

e Using Orthonormal Ridgelets. Donoho (1998) shows that the orthonormal ridgelet
coefficients of g belong to ¢/ for every p > 0. This means that if we form an m-
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term approximation by selecting the m terms with the m-largest coefficients, the
reconstruction fp, = > i ay,py, has any desired rate of approximation.

The argument for the orthonormal ridgelet approximation goes as follows. Be-
cause orthonormal ridgelet expansion amounts to a special wavelet expansion in
the Radon domain, the question reduces to considering the sparsity of the wavelet
coefficients of the Radon transform of g. Now, the Radon transform of g, as indi-
cated above, will have singularities of order 0 (discontinuities) at (t = 0,6 = 7/2)
and at (t = 0,0 = 37/2). Away from these points the Radon transform is in-
finitely differentiable, uniformly so, outside any neighborhood of the singularties.
If we ‘zoom in’ to fine scales one of the singularities and make a smooth change
of coordinates, the picture we see is that of a function S(u,v) = |v|~20(u/|v|)
for a certain smooth bounded function o(-). The wavelet coefficients of such an
object are sparse.

6. Ridgelet Analysis of Ridge Functions

Although ridge functions are not in L2, the continuous ridgelet transform of a
ridge function f = r(xy cos(fy) + x2sin(fy)) makes sense; if the ridge profile r is
bounded, the transform can be obtained in a distributional sense and obeys

(Rf)(a,b,0) = 6(0 — 6o) - (Wr(a,b)). (6.1)

Thus, the transform is perfectly localized to the slice 8 = 6y of the precise ridge di-
rection and it amounts to the 1—d wavelet transform of the profile function there.
This exceptional degree of concentration suggests that ridge functions ought to
have very sparse representations by discrete ridgelet systems and that a high rate
of approximation can be obtained via m-term ridgelet approximations to such
ridge functions using simple thresholding. This can be verified in two ways.

o Using Dual Ridgelets. Suppose that the ridge profile r is supported in the
interval [—1,1] and obeys a sparsity condition on the wavelet coefficients in a
nice wavelet basis: the coefficient sequence § € wl, (p < 2). Then the best
m-term 1-dimensional wavelet approximation to r has an Lo[—1, 1] convergence
rate of order m~(1/P=1/2) There exist approximations by superpositions of m dual
ridgelets (which are not pure ridge functions) which achieve the L?(A) rate of
approximation m~(/?=1/2) where A is now the unit disk (Candes, 1998, Chapters
5 and 7). Such approximants can be constructed by selecting the m terms out of
the series (5.1) corresponding to the m largest coefficients.

e Using Orthonormal Ridgelets. A key point about orthonormal ridgelets is that
they are not only in L?(R?), but also in L'(R?); hence the integral defining
orthonormal ridgelet coefficients makes sense for every bounded ridge function.
Let the ridge profile r(t) belong to the homogeneous Besov space B, ,(R), where
s = 1/p. This means that the best 1-dimensional m-term wavelet approximation
to r has an L>°(R) convergence rate of m~ 7).

Consider now the rate of convergence of thresholded ridgelet expansions. Let
N5(y, ©) = yl{y.o>s) be a thresholding function with a second, “scaling” argument,
allowing for adjustment of the threshold. For a bounded function f, with m(d) =
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2A 1{|<f,px>|>6/||m||Loo<D>} finite, set

Z% (fs o), oAl Lo (D)) P

In effect, thresholding is driven by the interaction between the size of a coefficient
and the ‘effect’ of the corresponding basis function inside the unit disk.

Let rp(x) denote the corresponding ridge function of = € R2. Let Jm(s) be the
m(J)-term orthonormal ridgelet approximation to the ridge function f. Then

= (s 1
If = fnllzeo(py < C-m (=5) | m — oo. (6.2)

In effect, this result is ideal, as it gives the same rate mf(sfé) we could hope to
obtain by knowing that the underlying approximand was a ridge function in a
specific direction and exploiting that information fully — even though the ridgelet
thresholding does not ‘know’ or ‘exploit’ such information.

These results suggest that dual ridgelet frames and orthonormal ridgelets, al-
though not ridge functions, can play the same role in approximation as pure ridge
functions. More precisely, suppose an arbitrary function f is well-approximated
by a sequence of m-term superpositions of ridge functions; it seems that f should
also be well approximated by m-term superpositions from discrete ridgelet sys-
tems.

7. Ridge Spaces

An important fact about wavelets is their relationship to two special families of
functional spaces — the Besov spaces and the Triebel spaces. Taken together, these
families of spaces include an important collection of classical functional spaces,
such as L? spaces, LP spaces, Sobolev spaces, Holder spaces, and so on. Wavelets
provide a special basis for such spaces (an unconditional basis) (Meyer, 1990) and
provide near-optimal approximations to elements taken from functional balls of
such spaces.

With the existence of a new family of transforms, we have the possibility to
ask: what are the spaces that these transforms are most naturally associated to?
Candes (1998) defines a family of spaces R; , — “Ridge Spaces” — which consist
of functions f with ridgelet coefficients obeying certain constraints:

P da 1/a
Iz, = /U |Rf(a,9,b)|pdbd9] ey

and similarly for higher dimensions where df is replaced by the uniform measure
on the sphere and the scale factor a?tD+1 by a(st7/2)+1 (The above display
corresponds to the homogeneous ridge spaces, see Candes (1998) for a corre-
sponding inhomogeneous version.) Although the definition looks rather internal,
it is possible to give an external characterization of such spaces because of the
intimate relationship between the ridgelet analysis and the wavelet analysis of
the Radon transform Rf(u,t). In fact, letting p = ¢, one can check that

1718, = Aves RS0
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12 E. J. Candés and D. L. Donoho

where the notation BS+(n D/2 stands for the usual 1-dimensional homogeneous

Besov norm. From thls characterization, it is clear that s is a smoothness parame-
ter and that both parameters p, ¢ serve to measure smoothness. Here, smoothness
has to be understood in a non-classical way; we are not talking about the local
behaviour of a function but rather about its behaviour near lines (or if one is in
dimension n > 2, near hyperplanes).

To capture the essence of such spaces, let us return to our original mutilated
Gaussian example (2.1) generalized to dimension n:

g(m:[’ e ,xn) — 1{xn>0} e*(ét%“rJrI%)

JFrom a classical point of view, in any dimension, this object has barely one
derivative (in an L; sense) meaning that its first derivative is a singular measure,
the singularity being supported on the plane {z,, = 0}. However, under our new
definition, this same object is quite smooth and in fact its regularity increases as
the dimension increases, as explained in Candes (1998). What do typical elements
of these new spaces look like? The mutilated Gaussian is a typical element of R
fors <14+ (n—1)/2.

For classical Besov spaces, Yves Meyer (1990) tells us that typical elements
of Bil for instance, are bumps of various scales and at various locations and
that the latter space is nothing else than the collection of convex combinations
of those bumps (bump algebra). An analogous observation can be made for the
ridge spaces; Candes (1998, [Chapter 4]). On the real line, a normalized point
singularity o of degree zero, say, is a smooth function away from the origin that
may or may not have a pathological behavior at the origin: that is, we want
lo(t)] <1 and for a few derivatives |d"o(t)/dt™| < |t|~™ for t # 0 and m < M.
As an example we have the Heaviside 1,), or a smoothly windowed version of
the Heaviside. Next, out of a 1-d point singularity o, we create a ridge singularity
o(u'z—b), where u is a unit vector and b a scalar, and consider the set of functions
arising as convex combinations of such ridge singularities

S {f ZCLZO'Z bi), Z |CLZ| S 1}.

Then, if we look at objects restrlcted to the unit ball, the membership of an
object in § is essentially equivalent to a statement about the norm of this object
in the norm Rj , for appropriate (s,p,q). More precisely, we have the following
double inclusion

RE"VR(00) € 8 c RETVP (), (7.1)

saying that compactly supported objects with RH(n D2 horm not exceeding

C1 are convex combinations of ridge smgularltles, and that every such convex

combinations has a bounded R1+(n /2 norm.

It follows from this characterlzatlon that ridge spaces model very special conor-
mal objects: objects that are singular across a collection of hyperplanes and
smooth elsewhere, where there might be an arbitrary number of hyperplanes
in all possible spatial orientations and/or locations.

Earlier, we claimed that ridgelets were naturally associated with the repre-
sentation of ridge spaces. In fact ridgelets provide near-optimal approximations
to elements of these spaces, in much the same way that wavelets provide near-
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optimal approximations to elements of Besov spaces. For instance, we know that
the Lo error of approximation to a mutilated Gaussian by an m-term linear
combination of dual-ridgelets decays more rapidly than m™" for any r > 0; the
space ngénil)/ 2 being more or less the convex hull of such mutilated smooth
objects, it is natural to guess that ridgelets provide the right dictionary to use
for approximating these spaces.

We can make this more precise. Suppose we are given a dictionary D = {g,,
A € A} and that we are interested in the Ly approximation of a generic class of
functions F out of finite linear combinations of elements of D. For a function f
and dictionary D, we define its m-term approximation error by

m

dn(f, D)= inf  inf [If = gl
(@a)iZy (A7, i=1

and measure the quality of approximation of the class F using m selected elements
of D by

dm(F, D) = sup dm(f, D),
feF

(the worst case error over F). Then, let us consider the class F of functions whose
R, ,-norm is bounded by some constant C (that will be denoted R, ,(C)), to be
approximated in the metric of Ly(A) for some compact set A. We impose the
additional restriction s > n(1/p — 1/2)1 to guarantee that our class belongs to
Lo also. Then, Candes (1998, Chapter 5) shows that no reasonable dictionary
would give a better rate of approximation than m~%/?: that is, for any reasonable
dictionary,

(RS ,(C),D) > Km /4,

On the other hand, thresholding the ridgelet expansion gives the optimal rate of
approximation. Namely, if |a/(,,) denotes the m-th largest amplkitude among the

(|evi|) the m-term series
fn =32 il >lal )} i
%
produced by thresholding at |/(,,) achieves the optimal rate

sup ”f - fN’m”LQ(A) S K/mis/d7
fER; 4(O)

P,q
for some constant K/ = K'(A,C, s,p,q).

The result says that we have an asymptotically near-optimal procedure for bi-
nary encoding elements of R, (C): let L(e, Ry ,(C')) be the minimum number of
bits necessary to store in a lossy encoding/decoding system in order to be sure
that the decoded reconstruction of every f € R; (C) will be accurate to within
€ (in an Lo sense). Then, a coder-decoder based on simple uniform quantiza-
tion (depending on €) of the coefficients a; followed by simple run length coding
achieves both a distortion smaller than € and a codelength that is optimal up to
multiplicative factors like log(e™1).
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8. Ridgelets and Curves

As we have said earlier, wavelets are in some sense adapted to zero-dimensional
singularities, whereas ridgelets are adapted to higher-dimensional singularities; or
more precisely, singularities on curves in dimension two, singularities on surfaces
in dimension 3, and singularities on n — 1 dimensional hypersurfaces in dimension
n. Unfortunately, the task that ridgelets must face is somewhat more difficult
that the task which wavelets must face, since zero-dimensional singularities are
inherently simpler objects that higher-dimensional singularities. In effect, zero-
dimensional singularities are all the same — points — while a one-dimensional
singularity — lying along a 1-dimensional set — can be curved or straight. Ridgelets
are specially adapted only to straight singularities.

One way to see this is to look at the CRT of a curved singularity. Again in
dimension n = 2, consider the object ¢’ = | {za>a2}- Qualitatively, it is
not hard to see that the Radon transform of such an object has a singularity along

a curve, and not just at a point: that is, in the Radon domain, there is a smooth
curve to(#) so that in a neighborhood of (to(),0), we have Rg(t,0) ~ w(0)(t —

to ((9))1/ ? for some smooth function w. When we take the wavelet transform in ¢
along each fixed value of 6, we will find that the transform is not nearly as sparse
as it was with g.

One can adapt to this situation by the method of localization, which has been
frequently used, for example, in time-frequency analysis. We divide the domain
in question into squares, and smoothly localize the function into smooth pieces
supported on or near those squares either by partition of unity or by smooth or-
thonormal windowing. We then apply ridgelet methods to each piece. The idea is
that, at sufficiently fine scale, a curving singularity looks straight, and so ridgelet
analysis — appropriately localized — works well in such cases.

9. Discussion

At the meeting we hope to have a chance to mention some topics going beyond
the picture covered so rapidly here, for example, the situation in higher dimen-
sions and the structure of fast ridgelet transform algorithms for lower dimensions.
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