
A Finite-State Approximation of Optimality
Theory: the Case of Finnish Prosody

Lauri Karttunen

Palo Alto Research Center, 3333 Coyote Hill Rd, Palo Alto CA 94304, USA
karttunen@parc.com

http://www2.parc.com/istl/members/karttune/

Abstract. This paper gives a finite-state formulation of two closely re-
lated descriptions of Finnish prosody proposed by Paul Kiparsky and
Nine Elenbaas in the framework of optimality theory. In native Finnish
words, the primary stress falls on the first syllable. Secondary stress gen-
erally falls on every second syllable. However, secondary stress skips a
light syllable that is followed by a heavy syllable. Kiparsky and Elenbaas
attempt to show that the ternary pattern arises from the interaction of
universal metrical constraints.
This paper formalizes the Kiparsky and Elenbaas analyses using the
parc/xrce regular expression calculus. It shows how output forms with
syllabification, stress and metrical feet are constructed from unmarked
input forms. The optimality constraints proposed by Kiparsky and Elen-
baas are reformulated in finite-state terms using lenient composition. The
formalization shows that both analyses fail for many types of words.

1 Introduction

This article is a companion piece to Karttunen [1] that refutes the account
proposed by Paul Kiparsky [2] and Nine Elenbaas [3, 4] in the framework of
optimality theory [5–7] for ternary rhythm in Finnish. The purpose of this
follow-up article is to fill in the missing technical details and provide a complete
account of the finite-state implementation that was used to derive the result.

In general, Finnish prosody is trochaic with the main stress on the first
syllable and a secondary stress on every other following syllable. Finnish also
has a ternary stress pattern that surfaces in words where the stress would fall on
a light syllable that is followed by a heavy syllable. A light syllable ends with a
short vowel (ta); a heavy syllable ends with a coda consonant (jat, an) or a long
vowel (kuu, aa) or a diphthong (voi, ei). Example (1a) shows the usual trochaic
pattern; (1b) starts off with a ternary foot.1

(1) a. (rá.kas).(tà.ja).(tàr.ta) ‘mistress’ (Sg. Par.)
b. (rá.kas).ta.(jàt.ta).(rè.na) ‘mistress’ (Sg. Ess.)

1 Kiparsky and Elenbaas treat the third syllable of a dactyl as extrametrical, that is,
(rá.kas).ta. instead of (rá.kas.ta). This decision of not recognizing a ternary foot as
a primitive is of no consequence as far as the topic of this paper is concerned.

2

The acute accent indicates primary stress and the grave accents mark secondary
stress. Periods mark syllable boundaries and feet are enclosed in parentheses.

The fundamental idea in the Kiparsky and Elenbaas studies is that the
ternary rhythm in examples such as (1b) arises naturally from the interaction of
constraints that in other types of words produce a binary stress pattern. The fun-
damental assumption in the ot framework is that all types of prosodic structures
are always available in principle. It is the constraints and the ranking between
them that determines which of the competing candidates emerges as the winner.
In some circumstances the constraints select the binary rhythm, in other circum-
stances the trochaic pattern wins. Unfortunately the constraints they propose
pick out the wrong pattern in many cases. This fact has not been noticed by the
proponents of the ot analyses. It is practically impossible to detect such errors
without a computational implementation.

2 OT Constraints for Finnish Prosody

Under Kiparsky’s analysis (p. 111), the prosody of Finnish is characterized by
the system in (2). The constraints are listed in the order of their priority.

(2) a. *Clash: No stresses on adjacent syllables.
b. Left-handedness: The stressed syllable is initial in the foot.
c. Main Stress: The primary stress in Finnish is on the first syllable.
d. FootBin: Feet are minimally bimoraic and maximally disyllabic.
e. *Lapse: Every unstressed syllable must be adjacent to a stressed syllable

or to the word edge.
f. Non-Final: The final syllable is not stressed.
g. Stress-To-Weight: Stressed syllables are heavy.
h. License-σ: Syllables are parsed into feet.
i. All-Ft-Left: The left edge of every foot coincides with the left edge of

some prosodic word.

Elenbaas [3] and Elenbaas and Kager [4] give essentially the same analysis
except that they replace Kiparsky’s Stress-To-Weight constraint with the
more specific one in (3).

(3) *(L̀H): If the second syllable of a foot is heavy, the stressed syllable should
not be light.

3 Finite-State Approximation of OT

As we will see shortly, classical ot constraints such as those in (2) and (3) are
regular (= rational) in power. They can be implemented by finite-state
networks. Nevertheless, it has been known for a long time (Frank and Satta
[8], Karttunen [9], Eisner [10]) that ot as a whole is not a finite-state system.
Although the official ot rhetoric suggests otherwise, ot is fundamentally more
complex than finite-state models of phonology such as classical Chomsky-Halle

3

phonology [11] and Koskenniemi’s two-level model [12]. The reason is that ot
takes into account not just the ranking of the constraints but the number of
constraint violations. For example, (4a) and (4b) win over (4c) because (4c)
contains two violations of *Lapse whereas (4a) and (4b) have no violations.2

(4) a. (ér.go).(nò.mi).a ‘ergonomics’ (Nom. Sg.)
b. (ér.go).no.(mı̀.a)
c. (ér.go).no.mi.a

Furthermore, for gradient constraints such as All-Ft-Left, it is not just
the number of instances of non-compliance that counts but the severity of the
offense. Candidates (4a) and (4b) both contain one foot that is not at the left edge
of the word. But they are not equally optimal. In (4a) the foot not conforming
to All-Ft-Left, (nò.mi), is two syllables away from the left edge whereas
in (4b) the noncompliant (mı̀.a) is three syllables away from the beginning.
Consequently, (4b) with three violations of All-Ft-Left loses to (4a) that
only has two violations of that constraint.

If the number of constraint violations is bounded, the classical ot theory of
[5] can be approximated by a finite-state cascade where the input is first com-
posed with a transducer, gen, that maps the input to a set of output candidates
(possibly infinite) and the resulting input/output transducer is then “leniently”
composed with constraint automata starting with the most highly ranked con-
straint. We will use this technique, first described in [9], to implement the two
ot descriptions of Finnish prosody. The key operation, lenient composition,
is a combination of ordinary composition and priority union [13].

Priority Union The priority union operator .P. is defined in terms of other
regular expression operators in the parc/xrce calculus.3 The definition of pri-
ority union is given in (5).

(5) Q .P. R =def Q | [∼[Q.u] .o. R]

The .u operator in (5) extracts the “upper” language from a regular relation; ∼
is negation. Thus the expression ∼[Q.u] denotes the set of strings that do not
occur on the upper side of the Q relation. The symbol .o. is the composition
operator and | stands for union. The effect of the composition [∼[Q.u] .o. R]
is to restrict R to mappings of strings that are not mapped into anything in Q.
Only this subrelation of R is unioned with Q. In other words, [Q .P. R] gives
precedence to the mappings in Q over the mappings in R.

Lenient Composition The basic idea of lenient composition can be explained
as follows. Assume that R is a relation, a mapping that assigns to each input
form some number of outputs, and that C is a constraint that prohibits some of
2 It is important to keep in mind that the actual scores, 0 vs. 2, are not relevant. What

matters is that (4a) and (4b) have fewer violations than (4c).
3 The parc/xrce regular expression formalism is presented in Chapter 2 of [14].

4

the output forms. The lenient composition of R and C, denoted as [R .O. C], is
the relation that eliminates all the output candidates of a given input that do
not conform to C, provided that the input has at least one output that meets the
constraint. If none of the output candidates of a given input meet the constraint,
lenient composition spares all of them. Consequently, every input will have at
least one output, no matter how many violations it incurs.4

We define the desired operation, denoted .O., as a combination of ordinary
composition and priority union in (6).

(6) R .O. C =def [R .o. C] .P. R

The left side of the priority union in (6), [R .o. C] restricts R to mappings that
satisfy the constraint C. That is, any pair whose lower side string is not in C
will be eliminated. If some string in the upper language of R has no counterpart
on the lower side that meets the constraint, then it is not present in [R .o.
C].u but, for that very reason, it will be “rescued” by the priority union. In
other words, if an underlying form has some output that can meet the given
constraint, lenient composition enforces the constraint. If an underlying form
has no output candidates that meet the constraint, then the underlying form
and all its outputs are retained. The definition of lenient composition entails
that the upper language of R is preserved in [R .O. C].

In order to be able to give preference to output forms that incur the fewest
violations of a constraint C, we first mark the violations and then select the best
candidates using lenient composition. We set a limit n, an upper bound for the
number of violations that the system will consider, and employ a set of auxiliary
constraints, Vn−1, Vn−2, . . . , V0, where Vi accepts the output candidates that
violate the constraint at most i times. The most stringent enforcer, V0, allows
no violations. Given a relation R, a mapping from the inputs to the current set of
output candidates, we mark all the violations of C and then prune the resulting
R’ with lenient composition: R’ .O. Vn−1 .O. Vn−2O. V0. If an input
form has output candidates that are accepted by Vi, where n > i ≥ 0, all the ones
that are rejected by Vi are eliminated; otherwise the set of output candidates is
not reduced. The details of this strategy are explained in Section 4.2.

4 Finite-State OT Prosody

In this section, we will show how the two ot descriptions of Finnish prosody in
Section 2 can be implemented in a finite-state system. The regular expression
formalism in this section and the xfst application used for computation are
described in the book Finite State Morphology [14].

The first objective is to provide a definition of the gen function for Finnish
prosody. The function must accomplish three tasks: (1) parse the input into
syllables, (2) assign optional stress, and (3) combine syllables optionally into
metrical feet. In keeping with the hallmark ot thesis of “freedom of analysis”,

4 Frank and Satta [8, pp. 8–9] call this operation “conditional intersection.”

5

we need a prolific gen. Every conceivable output candidate, however bizarre,
should be made available for evaluation by the constraints.

The second objective is to express Kiparsky’s nine constraints in (2) in finite-
state terms and bundle them together in the order of their ranking. Combined
with gen, the system should map any input into its optimal metrical realization
in Finnish.

4.1 The gen function

To simplify our definitions of complex regular expressions, it is useful to start
with some elementary notions and define higher-level concepts with the help of
the finite-state calculus.

Basic Definitions Each of the definitions in (7) is a formula in the parc/xrce
extended regular expression language and compiles into a finite-state network.
The vertical bar, |, is the union operator. Consequently, the first statement in
(7) defines HighV as the language consisting of the strings u, y and i. The text
following # is a comment.

(7) define HighV [u | y | i]; # High vowel
define MidV [e | o | ö]; # Mid vowel
define LowV [a | ä] ; # Low vowel
define USV [HighV | MidV | LowV]; # Unstressed Vowel
define C [b | c | d | f | g | h | j | k | l | m |

n | p | q | r | s | t | v | w | x | z]; # Consonant

define MSV [á | é | ı́ | ó| ú | ý | ´̈a | ´̈o]; # Main stress
define SSV [à | è | ı̀ | ò | ù | ỳ | `̈a | `̈o];# Secondary stress
define SV [MSV | SSV]; # Stressed vowel
define V [USV | SV] ; # Vowel
define P [V | C]; # Phoneme

We also need some auxiliary symbols to mark syllable and foot boundaries.
The auxiliary alphabet is defined in (8). The period, ., marks internal syllable
boundaries. The parentheses, (), enclose a metrical foot. We use a special
symbol, .#., to refer to the beginning or the end of a string. The suffix operator,
+, creates a “one-or-more” iterative language from whatever it is attached to.

(8) define B [["(" | ")" | "."]+ | .#.]; # Boundary
define E .#. | "."; # Edge

Two basic types of syllables are defined in (9). The onset of a syllable may
contain zero or more consonants, C*. The nucleus of a light syllable, LS, consists
of a single short vowel. For example, a, ta and stra are light syllables.

(9) define LS [C* V]; # Light Syllable
define HS [LS P+]; # Heavy Syllable
define S [HS | LS]; # Syllable

6

In addition to knowing whether a syllable is light or heavy, we also need to know
about the stress. The ampersand, &, in (10) stands for intersection and the dollar
sign, $, is the “contains” operator. A stressed syllable, SS, is thus the intersection
of all syllables with anything that contains a stressed vowel. With ∼ standing
for negation, an unstressed syllable, US, is the intersection of all syllables with
anything that does not contain a stressed vowel. Finally, MSS is a syllable with
a vowel that has the main stress.

(10) define SS [S & $SV]; # Stressed Syllable
define US [S & ∼$SV]; # Unstressed Syllable
define MSS [S & $MSV] ; # Syllable with Main Stress

With the help of the basic concepts in (7)-(10) we can proceed to the first real
task, the definition of Finnish syllabification.

Syllabification Assigning the correct syllable structure is a non-trivial task in
Finnish because the nucleus of a syllable may consist of a short vowel, a long
vowel, or a diphthong. A diphthong is a combination of two unlike vowels that
together form the nucleus of a syllable. Adjacent vowels that cannot constitute a
long vowel or a diphthong must be separated by a syllable boundary. In general,
Finnish diphthongs end in a high vowel. However, in the first syllable there are
three exceptional high-mid diphthongs: ie, uo, and yö that historically come from
long ee, oo, and öö, respectively. All other adjacent vowels must be separated by
a syllable boundary. For example, the first ie in the input sienien ‘mushroom’
(Pl. Gen.) constitutes a diphthong but the second ie does not because it is not
in the first syllable. The correct syllabification is sie.ni.en.5

We will define Syllabification as a transducer that takes any input and
inserts periods to mark syllable boundaries. Because of the issue with diph-
thongs, it is convenient to build the final syllabification transducer from two
components. The first one, MarkNonDiphth, in (11) inserts syllable boundaries
(periods) between vowels that cannot form the nucleus of a syllable.

(11) define MarkNonDiphth [[. .] -> "." ||
[HighV | MidV] LowV, # i.a, e.a
LowV MidV, # a.e
i [MidV - e], # i.o, i.ö
u [MidV - o], # u.e
y [MidV - ö], # y.e
$V i e]; # sieni.en

The arrow, -> is the “replace” operator. The first line of (11) specifies that an
epsilon (empty string), [. .]6, is replaced by a period in certain contexts, de-
fined on the six lines following ||. The underscore, , marks the site of the of the
5 Instead of providing the syllabification directly as part of gen, it would of course be

possible to generate a set of possible syllabification candidates from which the win-
ners would emerge through an interaction with ot constraints such as HaveOnset,
FillNucleus, NoCoda, etc.

6 For an explanation of the [. .] notation, see [14, pp. 67–68]

7

replacement between left and right contexts. For example, the last context line
in (11) inserts a syllable boundary between i and e when there is some preceding
vowel. Thus it breaks the second, but not the first, ie-cluster in in words such
as sienien ‘mushroom’ (Pl. Gen.). The minus symbol, -, in the preceding three
lines denotes subtraction, e.g. [MidV - e] is any mid vowel other than e.

The second component of syllabification is defined in (12). Here @-> is the
left-to-right, longest-match replace operator. The effect of the rule is to insert
a syllable boundary after a maximal match for the C* V+ C* pattern provided
that it is followed by a consonant and a vowel. Here ... mark the match for the
pattern and ”.” is the insertion after the match. Applying MaximizeSyll to an
input string such as strukturalismi yields struk.tu.ra.lis.mi.

(12) define MaximizeSyll [C* V+ C* @-> ... "." || C V];

Having defined the two components separately, we can now define the general syl-
labification rule by composing them together into a single transducer, as shown
in (13) where .o. is the ordinary composition operator.

(13) define Syllabify [MarkNonDiphth .o. MaximizeSyll];

For example, when Syllabify is applied to the input sienien, the outcome is
sie.ni.en where the second syllable boundary comes from MarkNonDiphth and
the first one from MaximizeSyll.

The general syllabification rule in (13) has exceptions. In particular, some
loan words such as ate.isti ’atheist’ must be partially syllabified in the lexicon.
Compound boundaries must be indicated to prevent bad syllabifications such as
*i.soi.sä for i.so#i.sä ‘grand father’.

Stress Because the proper distribution of primary and secondary stress is deter-
mined by the optimality constraints, all that the gen function needs to do is to
allow any vowel to have a main stress, a secondary stress or be unstressed. This
is accomplished by the definition in (14) where (->) is the “optional replace”
operator. The effect of the rule is to optionally replace each of the six vowels by
the two stressed versions of the same vowel. For example, OptStress maps the
input maa into maa, máa and màa.

(14) define OptStress [a (->) á|à, e (->) é|è, i (->) ı́|ı̀,
o (->) ó|ò, u (->) ú|ù, y (->) ý|ỳ,
ä (->) ´̈a|`̈a, ö (->) ´̈o|`̈o || E C*];

Because of the context restriction, E C* , in (14), the stress is always assigned
to the first component of a long vowel or a diphthong. As defined in (8), E stands
here for a syllable boundary or the beginning of a word.

Metrical Structure In keeping with the ot philosophy, the grouping of syl-
lables into metrical feet should also be done optionally and in every possible
way to create a rich candidate set for the evaluation by optimality constraints.

8

The definion of OptScan in (15) yields a foot-building transducer that optionally
wraps parentheses around one, two or three adjacent syllables. The expression to
the left of the optional replace operator, [S ("." S ("." S)) & $SS], defines
a pattern that matches one or two or three syllables with their syllable bound-
ary marks. The intersection with $SS guarantees that at least one of them is a
stressed syllable. The right side of the rule wraps any instance of such a pattern
within parentheses thus creating a metrical foot. The context restriction, E E,
has the effect that feet consist of whole syllables with no part left behind.

(15) define OptScan [[S ("." S ("." S)) & $SS] (->) "(" ... ")"
|| E E];

Assembling the gen Function Having defined separately the three compo-
nents of gen, syllabification, stress assignment and footing, we can now build
the gen function by composing the three transducers with the definition in (16).

(16) define GEN(X) [X .o. Syllabify .o. OptStress .o. OptScan];

where X can be a single input form or a symbol representing a set of input forms
or an entire language. The result of compiling a regular expression of the form
GEN(X) is a transducer that maps each input form in X into all of its possible
output forms.

Because stress assignment and footing are optional, The GEN() function pro-
duces a large number of alternative prosodic structures for even short inputs.
For example, for the input kala ‘fish’ (Sg. Nom.), GEN({kala}) produces the 33
output forms shown in (17).

(17) kà.là, kà.lá, kà.la, kà.(lá), kà.(là), ká.là, ká.lá, ká.la, ká.(lá), ká.(là), ka.là,
ka.lá, ka.la, ka.(lá), ka.(là), (ká).là, (ká).lá, (ká).la, (ká).(lá), (ká).(là), (ká.la),
(ká.lá), (ká.là), (kà).là, (kà).lá, (kà).la, (kà).(lá), (kà).(là), (kà.la), (kà.lá),
(kà.là), (ka.lá), (ka.là)

As the analyses by Elenbaas and Kiparsky predict, the correct output is (ká.la).

4.2 The Constraints

There are two types of violable ot constraints. For categorical constraints,
the penalty is the same no matter where the violation occurs. For gradient
constraints, the site of violation matters. For example, All-Feet-Left assigns
to non-initial feet a penalty that increases with the distance from the beginning
of the word.

Our general strategy is as follows. We first define an evaluation template for
the two constraint types and then define the constraints themselves with the help
of the templates. We use asterisks as violation marks and use lenient composition
to select the output candidates with the fewest violation marks. Categorical
constraints mark each violation with an asterisk. Gradient constraints mark

9

violations with sequences of asterisks starting from one and increasing with the
distance from the word edge.

The initial set of output candidates is obtained by composing the input with
gen. As the constraints are evaluated in the order of their ranking, the number
of output forms is successively reduced. At the end of the evaluation, each input
form typically should have just one correct output form.

An evaluation template for categorical constraints, shown in (18), needs four
arguments: the current output mapping, a regular expression pattern describing
what counts as a violation, a left context, and a right context.7

(18) define Cat(Candidates, Violation, Left, Right) [
Candidates .o. Violation -> ... "*" || Left Right
.O. Viol3 .O. Viol2 .O. Viol1 .O. Viol0
.o. Pardon];

The first part of the definition composes the candidate set with a rule transducer
that inserts an asterisk whenever it sees a violation that occurs in the specified
context. The second part of the definition is a sequence of lenient compositions.
The first one eliminates all candidates with more than three violations, provided
that some candidates have only three or fewer violations. Finally, we try to
eliminate all candidates with even one violation. This will succeed only if there
are some output strings with no asterisks. The auxiliary terms Viol3, Viol2,
Viol1, Viol0 limit the number of asterisks. For example, Viol1, is defined as
∼[$"*"]^2. It prohibits having two or more violation marks. The third part,
Pardon, is defined as "*" -> 0. It removes any remaining violation marks from
the output strings. Because we are counting violations only up to three, we
cannot distinguish strings that have four violations from strings with more than
four violations. It turns out that three is an empirically sufficient limit for our
categorical prosody constraints.

The evaluation template for gradient constraints counts up to 14 violations
and each violation incurs more and more asterisks as we count instances of the
left context. The definition is given in (19).

(19) define GradLeft(Candidates, Violation, Left, Right) [
Candidates
.o. Violation -> "*" ... ||.#. Left Right
.o. Violation -> "*"^2 ... ||.#. Left^2 Right
.o. Violation -> "*"^3 ... ||.#. Left^3 Right
.o. Violation -> "*"^4 ... ||.#. Left^4 Right
.o. Violation -> "*"^5 ... ||.#. Left^5 Right
.o. Violation -> "*"^6 ... ||.#. Left^6 Right
.o. Violation -> "*"^7 ... ||.#. Left^7 Right
.o. Violation -> "*"^8 ... ||.#. Left^8 Right
.o. Violation -> "*"^9 ... ||.#. Left^9 Right

7 Some constraints can be specified without referring to a particular left or right
context. The expression ?* stands for any unspecified context.

10

.o. Violation -> "*"^10 ... ||.#. Left^10 Right

.o. Violation -> "*"^11 ... ||.#. Left^11 Right

.o. Violation -> "*"^12... || .#. Left^12 Right

.o. Violation -> "*"^13 ... ||.#. Left^13 Right

.o. Violation -> "*"^14 ... ||.#. Left^14 Right

.O. Viol14 .O. Viol13 .O. Viol12 .O.Viol11 .O. Viol10

.O. Viol9 .O. Viol8 .O. Viol7 .O. Viol6 .O. Viol5

.O. Viol4 .O. Viol3 .O. Viol2 .O. Viol1 .O. Viol0

.o. Pardon];

Using the two templates in (18) and (19), we can now give very simple defi-
nitions for Kiparsky’s nine constraints in (2).

(20) a. *Clash: No stress on adjacent syllables.
define Clash(X) Cat(X, SS, SS B, ?*);

b. Left-handedness: The stressed syllable is initial in the foot.
define AlignLeft(X) Cat(X, SS, ".", ?*);

c. Main Stress: The primary stress in Finnish is on the first syllable.
define MainStress(X)
Cat(X, ∼[B MSS ∼$MSS], .#., .#.);

d. Foot-Bin: Feet are minimally bimoraic and maximally bisyllabic.
define FootBin(X)
Cat(X, ["(" LS ")" | "(" S ["." S]^>1], ?*, ?*);

e. Lapse: Every unstressed syllable must be adjacent to a stressed syllable
or to the word edge.
define Lapse(X) Cat(X, US, [B US B], [B US B]);

f. Non-Final: The final syllable is not stressed.
define NonFinal(X) Cat(X, SS, ?*, ∼$S .#.);

g. Stress-To-Weight: Stressed syllables are heavy.
define StressToWeight(X) Cat(X, [SS & LS], ?*, B);

h. License-σ: Syllables are parsed into feet.
define Parse(X) Cat(X, S, E, E);

i. All-Ft-Left: The left edge of every foot coincides with the left edge of
some prosodic word.
define AllFeetFirst(X)
GradLeft(X, "(", [∼$"." "." ∼$"."], ?*);

To take just one example, let us consider the StressToWeight function. The
violation part of the definition, [SS & LS], picks out syllables such as t́ı and t̀ı
that are light and contain a stressed vowel. The left context is irrelevant, repre-
sented as ?*. The right context matters. It must be some kind of boundary; oth-
erwise perfectly well-formed outputs such as (má.te).ma.(t̀ıik.ka) would get two
violation marks: (má*.te).ma.(t̀ı*ik.ka). That is because t̀ı by itself is a stressed
light syllable but t̀ıik is not. The violation mark on the initial syllable má is cor-
rect but has no consequence because the higher-ranked MainStress constraint
has removed all competing output candidates for matematiikka ‘mathematics’
(Sg. Nom.) that started with a secondary stress, mà, or without any stress, ma.

11

4.3 Combining GEN with the Constraints

Having defined both the gen function and Kiparsky’s nine prosody constraints,
we can now put it all together creating a single function, FinnishProsody, that
should map any Finnish input into its correct prosodic form. The definition is
given in (21).

(21) define FinnishProsody(Input) [AllFeetFirst(Parse(
StressToWeight(NonFinal(Lapse(FootBin(MainStress(AlignLeft(
Clash(GEN(Input))))))))))];

A regular expression of the form FinnishProsody(X) is computed “inside-out.”
First the gen function defined in (16) maps each of the input forms in X into
all of its possible output forms. Then the constraints defined in Section 4.2 are
applied in the order of their ranking to eliminate violators, making sure that at
least one output form remains for all the inputs. For example, the compilation
of the regular expression in (22)

(22) FinnishProsody({rakastajatarta} | {rakastajattarena}) ;

produces a transducer with the mappings in (23) and (24).

(23) r a k a s t a j a t a r t a
(r á . k a s) . (t à . j a) . (t à r . t a)

(24) r a k a s t a j a t t a r e n a
(r á . k a s) . t a . (j à t . t a) . (r è . n a)

This is the right result we already saw in (1). Unfortunately there are many
input patters that yield an incorrect result. Some examples are given in (25).
We use L for light, H for heavy syllable and X when the distinction between L
and H does not matter. For a discussion of what goes wrong, see [1].

(25) XXLLLX: *(ká.las).te.(lè.mi).nen
XXHHLX: *(há.pa).roi.(tùt.ta).vaa

XXLHHLX: *(pú.hu).(tè.tuim).(mı̀s.ta).kin
XXHHLHHLX: *(j´̈ar.jes).tel.(m`̈al.li).syy.(dèl.lä).ni

Replacing Kiparsky’s StressToWeight by Elenbaas’ more specific *(L̀H) con-
straint helps in some cases and hurts in others. The last of the four patterns in
(25) comes out correct but a new type of error appears, as shown in (26).

(26) XXHLLX: *(kú.ti).tet.(tù.ja).kin
XXHHLHHLX: (j´̈ar.jes).(tèl.mäl).li.(sỳy.del).(l`̈a.ni)

12

5 Conclusion

The basic assumption in the Kiparsky and Elenbaas & Kager studies is that the
alternation between binary and ternary patterns in Finnish arises in a natural
way from the interaction of universal constraints. It would be a satisfying result
but, unfortunately, it is not true for the constraints that have been proposed so
far. The traditional tableau method commonly used by phonologists cannot han-
dle the vast number of competing output candidates that the theory postulates.
Computational techniques such as those developed in this article are indispens-
able in finding and verifying an ot solution to Finnish prosody. And even with
the best computational tools, debugging ot constraints is a hard problem.

References

1. Karttunen, L.: The insufficiency of paper-and-pencil linguistics: the case of Finnish
prosody. In Butt, M., Dalrymple, M., King, T.H., eds.: Intelligent Linguistic Archi-
tectures: Variations on Themes by Ronald M. Kaplan. CSLI Publications, Stanford,
California (2006) 287–300

2. Kiparsky, P.: Finnish noun inflection. In Nelson, D., Manninen, S., eds.: Generative
Approaches to Finnic and Saami Linguistics: Case, Features and Constraints. CSLI
Publications, Stanford, California (2003) 109–161

3. Elenbaas, N.: A Unified Account of Binary and Ternary Stress. Graduate School
of Linguistics, Utrecht, Netherlands (1999)

4. Elenbaas, N., Kager, R.: Ternary rhythm and the lapse constraint. Phonology 16
(1999) 273–329

5. Prince, A., Smolensky, P.: Optimality Theory: Constraint Interaction in Generative
Grammar. Cognitive Science Center, Rutgers, New Jersey (1993) ROA Version,
8/2002.

6. Kager, R.: Optimality Theory. Cambridge University Press, Cambridge, England
(1999)

7. McCarthy, J.J.: The Foundations of Optimality Theory. Cambridge University
Press, Cambridge, England (2002)

8. Frank, R., Satta, G.: Optimality theory and the generative complexity of constraint
violability. Computational Linguistics 24(2) (1998) 307–316

9. Karttunen, L.: The proper treatment of optimality in computational phonology.
In: FSMNLP’98., Ankara, Turkey, Bilkent University (1998) cmp-lg/9804002.

10. Eisner, J.: Directional constraint evaluation in Optimality Theory. In: Proceed-
ings of the 18th International Conference on Computational Linguistics (COLING
2000), Saarbrücken, Germany (2000) 257–263

11. Kaplan, R.M., Kay, M.: Regular models of phonological rule systems. Computa-
tional Linguistics 20(3) (1994) 331–378

12. Koskenniemi, K.: Two-level morphology. Publication 11, University of Helsinki,
Department of General Linguistics, Helsinki (1983)

13. Kaplan, R.M., Newman, P.S.: Lexical resource reconciliation in the Xerox Linguis-
tic Environment. In: ACL/EACL’98 Workshop on Computational Environments
for Grammar Development and Linguistic Engineering, Madrid, Spain (1997) 54–
61

14. Beesley, K.R., Karttunen, L.: Finite State Morphology. CSLI Publications, Stan-
ford, CA (2003)

