
A Theory of Sufficient Statistics for Teams

Jeffrey Wu1 and Sanjay Lall2

To appear, IEEE Conference on Decision and Control, 2014

Abstract

We introduce a theory of sufficient statistics for team de-
cision problems. Starting from a rigorous definition of
team sufficient statistics, we show that they contain all
the information needed to make an optimal team deci-
sion. We also state general theorems of how to construct,
manipulate, and update team sufficient statistics given
the previous sufficient statistics and new measurements.
Finally, we give the sufficient statistics for the class of
partially nested team decision problems, and show that
they have intuitive and compelling interpretations.

I Introduction

Team decision problems [2] are a fundamental type of de-
centralized control problem, where we have multiple play-
ers with different information that collaborate to mini-
mize some expected cost. Such a problem consists of ran-
dom variables X,Y1, . . . , Yn, where X is called the state
and Yi is called the measurements for player i. The
goal of such problems is to choose functions γ1, . . . , γn
(collectively called a policy) to minimize

E c(X, γ1(Y1), . . . , γn(Yn))

where c is some cost function. Team decision problems
are harder than single-player problems because the policy
variables are coupled, so that in general, any decision a
player makes depends on the entire policies of the other
players.

Although the general team decision problem is NP-
hard [3], there are important cases when the problem is
readily solvable. These include when X,Y1, . . . , Yn are
jointly Gaussian and c is convex quadratic [4], or when
X,Y1, . . . , Yn is finitely discrete, and c can be extended to
a convex function. However, the real difficulty with team
decision problems is the fact that we usually accumulate
measurements over time. As we add measurements, the
size of the policies increase, and the problem quickly be-
comes intractable even if the problem with the initial set
of measurements was easy.
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The burden of accumulated measurements can be al-
leviated by sufficient statistics. For the above team
decision problem, let (g1(Y1), . . . , gn(Yn)) be functions
of the measurements for each of the players. We say
that (g1(Y1), . . . , gn(Yn)) is sufficient for optimality
if given any policy (γ1, . . . , γn), there is another set of
functions η1, . . . , ηn where

E c(X, η1(g1(Y1)), . . . , ηn(gn(Yn)))

≤ E c(X, γ1(Y1), . . . , γn(Yn))

Thus we have converted a search for the optimal
(γ1, . . . , γn) into a search for the optimal (η1, . . . , ηn).
This conversion can greatly help if (g1(Y1), . . . , gn(Yn))
are smaller than the original measurements, either by
taking a smaller number of discrete values, or by inhab-
iting a lower-dimensional space. The ideal situation is
when the sufficient statistics are fixed in size, even as the
measurement history grows. For a highly nontrivial ex-
ample of this, see the discussion of the Gaussian partially
nested system after Theorem 19.

Being sufficient for optimality is a necessary, but not a
sufficient condition for being a sufficient statistic (which
we will define rigorously later). The other important re-
quirement is for a sufficient statistic to be updatable, i.e.
given a sufficient statistic and some new measurements,
we can compute an updated sufficient statistic that is
just a function of the previous sufficient statistic and the
new measurements. In this way, we do not have to scan
through the entire measurement history every time we
add new measurements.

Because of their crucial role in reducing the complexity
of decentralized control problems, sufficient statistics are
a focal point for research in decentralized stochastic con-
trol. Early examples include Hsu and Marcus [6] for the
one-step delayed sharing pattern, which was extended to
k steps of delay by Aicardi, et. al. [7]. More recently,
Wu and Lall [8] gave sufficient statistics and a dynamic
programming algorithm for a partially nested broadcast
system, and Nayyar, Mahajan, and Teneketzis [9] have
unified these cases under a common information frame-
work.

The general approach used to derive the decentral-
ized sufficient statistics is to use probabilistic intuition to
guess the form of the sufficient statistic, and then check
whether the guess is sufficient for optimality and updat-
able. The checking can be quite difficult, often involving
a mess of complicated probabilistic expressions where it
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is simultaneously easy to make a mistake while hard to
check the work of others.

Another strikingly different approach to decentralized
control uses sophisticated algebraic methods developed
for linear control. Work that falls under this umbrella
includes that of Swigart [10] for partially nested systems
with state feedback, an alternate method for the same
problem developed by Shah and Parrilo [11], and a so-
lution to the two-player output feedback problem devel-
oped by Lessard and Lall [12]. Such approaches involve
complicated algebraic expressions, and the role of suffi-
cient statistics is to find meaningful subexpressions that
simplify and give structure to the calculations. Finding
the right subexpressions can be hard even for modest
problems, and interpreting them can be just as challeng-
ing.

For the class of team decision problems, the contribu-
tion of this work is to replace the de facto definition of
sufficiency (i.e. being both sufficient for optimality and
updatable) with a rigorous one. From this rigorous defi-
nition flows a number of theorems, including the desired
properties of being sufficient for optimality and updat-
able, and also theorems about how to explicitly construct
and simplify the sufficient statistics. The explicit con-
struction of the team sufficient statistics not only takes
the guesswork out the process, but also automatically
gives their probabilistic interpretation. Finally, we give
the sufficient statistics for the class of partially nested
team decision problems, and illustrate the results with a
number of examples.

II Notation and Conventions

The support set of a real-valued function p : Ω → R is
the set of ω ∈ Ω where p(ω) 6= 0. We denote the support
set of p as supp p. We say that p is a (finite) probability
distribution if p is nonnegative, supp p is finite, and∑

ω∈supp p
p(ω) = 1

The set of all finite probability distributions over a sam-
ple space Ω is called a probability simplex, and denoted
as ∆(Ω).

To avoid the complications of measure theory, all the
results in this paper have been proved in the following set-
ting: We have a single underlying finite probability dis-
tribution p ∈ ∆(Ω), where Ω is called the sample space,
and functions over the sample space are called random
variables. Given a random variable X, we use pX(x) to
denote the probability that X = x, i.e.

pX(x) =
∑

ω∈supp p:X(ω)=x

p(ω)

Likewise, we use pX|Y (x|y) to denote the conditional
probability of X = x given Y = y, and assume it de-
faults to pX(x) if pY (y) = 0.

We use X ≡ Y to denote that X equals Y with prob-
ability 1, and use X ⊥⊥ Y | Z to denote that X and Y
are conditionally independent given Z.

Although analogous results for continuous probabil-
ity spaces may involve some nontrivial measure-theoretic
concepts, we are confident that all our results have
straightforward extensions to continuous case. Thus for
the purpose of illustration, we will freely use examples
involving Gaussian random variables.

III Team Decisions

Let X,Y1, . . . , Yn be random variables where we call X
the state, and Yi the measurements of player i. We
say that (U1, . . . , Un) is a randomized team deci-
sion if there is a random variable W independent of
(X,Y1, . . . , Yn) and functions f1, . . . , fn where

Ui = fi(Yi,W )

The common random variable W allows the players
to coordinate their team decision with some random-
ness. At the same time, the independence of W from
(X,Y1, . . . , Yn) ensures that the players do not gain any
extra information from W . While allowing for this com-
mon randomization does not improve team decision per-
formance (see Theorem 3), it will be very helpful in mak-
ing a precise, straightforward definition of team sufficient
statistics.

In order to be truly useful, however, we will need to
extend the notion of randomization to include hidden
randomness, i.e. cases where we cannot generate a ran-
domized team decision on the current probability space,
but can generate an equivalent randomized team deci-
sion on a separate probability space. To be precise, we
say that the tuple of random variables (U1, . . . , Un) is a
(general) team decision given the state X and mea-
surements (Y1, . . . , Yn) if the joint distribution

pX,Y1,...,Yn,U1,...,Un

is a convex combination of distributions of the form

pX,Y1,...,Yn,f1(Y1),...,fn(Yn)

where f1, . . . , fn are functions. We denote the set of all
such team decisions (U1, . . . , Un) as

TeamDec(X|Y1, . . . , Yn)

If X is constant, we omit the X and just use the notation

TeamDec(Y1, . . . , Yn)

The following theorem states that this definition is equiv-
alent to being able to generate an randomized team de-
cision on a separate probability space. We remark that
throughout this paper, we will just sketch an outline of
the proof if the details can easily be filled in by the reader.
In any case, the full proofs can be found in [1].
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Theorem 1. (U1, . . . , Un) ∈ TeamDec(X|Y1, . . . , Yn) iff
there is a probability distribution q with associated ran-
dom variables X̂, Ŷ1, . . . , Ŷn and Ŵ where

1) (X̂, Ŷ1, . . . , Ŷn) and Ŵ are independent.

2) pX,Y1,...,Yn,U1,...,Un
= qX̂,Ŷ1,...,Ŷn,f1(Ŷ1,W ),...,fn(Ŷn,W )

for some functions f1, . . . , fn

Proof. The main idea of the proof is that the coefficients
of the convex combination correspond precisely to the
probability distribution of the random variable Ŵ .

In the single-player case, the definition for a general
team decision reduces to conditional independence.

Theorem 2. U ∈ TeamDec(X|Y ) iff U ⊥⊥ X | Y .

Proof. The idea of the proof is that the conditional
distribution of U given Y can always be represented as
a convex combination of conditional distributions of the
form pf(Y )|Y , see Theorem 2.3 of [1]. The rest follows by
the elementary properties of conditional independence.

Because the randomization of a general team decision
is independent of the state and measurements, allowing
for general team decisions does not improve performance
over deterministic decisions.

Theorem 3. Let f be a real-valued concave function on
the probability simplex ∆(X ×U1×· · ·×Un). Then given
any general team decision

(U1, . . . , Un) ∈ TeamDec(X|Y1, . . . , Yn)

where X ,U1, . . . ,Un are the codomains of X,U1, . . . , Un,
there are functions γ1, . . . , γn where

f(pX,γ1(Y1),...,γn(Yn)) ≤ f(pX,U1,...,Un)

Proof.By definition, pX,Y1,...,Yn,U1,...,Un
is a convex com-

bination of distributions of the form

pX,Y1,...,Yn,γ1(Y1),...,γn(Yn)

By marginalizing out Y1, . . . , Yn, it follows that
pX,U1,...,Un

is a convex combination of distributions of
the form

pX,γ1(Y1),...,γn(Yn)

Thus by concavity of f , f(pX,U1,...,Un
) is greater than or

equal to a convex combination of the form

f(pX,γ1(Y1),...,γn(Yn))

and therefore f(pX,U1,...,Un
) must be at least as great as

one of these values, proving the theorem.

In particular, by defining the linear function f where

f(pX,U1,...,Un
) = E c(X,U1, . . . , Un)

for some arbitrary cost function c, Theorem 3 shows that
allowing for general team decisions does not reduce the
expected cost of a standard team decision problem.

The following workhorse theorem shows when one
team decision implies another.

Theorem 4 (Transformation of Team Decisions). Sup-
pose that

1) (U1, . . . , Un) ∈ TeamDec(X|Y1, . . . , Yn)

2) X̂, Ŷ1, . . . , Ŷm are functions of (X,Y1, . . . , Yn).

3) Each Ûi is a function of (Ŷi, UG(i)). Here, G(i) is a
subset of {1, . . . , n} such that YG(i) is a function of

Ŷi.

Then (Û1, . . . , Ûm) ∈ TeamDec(X̂|Ŷ1, . . . , Ŷm).

Proof. By definition, the joint distribution

pX,Y1,...,Yn,U1,...,Un

is a convex combination of distributions of the form

pX,Y1,...,Yn,f1(Y1),...,fn(Yn)

By applying to both sides the linear transformation that
transforms pX,Y1,...,Yn,U1,...,Un

to pX̂,Ŷ1,...,Ŷn,Û1,...,Ûn
, it

follows that
pX̂,Ŷ1,...,Ŷn,Û1,...,Ûn

is a convex combination of distributions of the form

pX̂,Ŷ1,...,Ŷn,h1(Ŷ1),...,hn(Ŷn)

for some functions h1, . . . , hn.

The next theorem clarifies the role of the state in a
team decision. It says that given an existing team deci-
sion, the variable X can serve as its state iff X is con-
ditionally independent from the team decision given the
measurements.

Theorem 5 (State Decomposition of Team Decisions).

(U1, . . . , Un) ∈ TeamDec(X|Y1, . . . , Yn)

m
(U1, . . . , Un) ⊥⊥ X | (Y1, . . . , Yn)

(U1, . . . , Un) ∈ TeamDec(Y1, . . . , Yn)

Proof. The ⇓ direction follows directly from Theorems 4
and 2. To show the ⇑ direction, note that the conditional
independence implies

pX,Y1,...,Yn,U1,...,Un(x, y1, . . . , yn, ·) =

pX,Y1,...,Yn(x, y1, . . . , yn)pU1,...,Un|Y1,...,Yn
(·|y1, . . . , yn)

But since (U1, . . . , Un) ∈ TeamDec(Y1, . . . , Yn), then it
follows that pY1,...,Yn,U1,...,Un

is a convex combination
of distributions of the form pY1,...,Yn,f1(Y1),...,fn(Yn). By
conditioning this convex combination on (Y1, . . . , Yn)
and substituting in the above equation, it follows that
pX,Y1,...,Yn,U1,...,Un is convex combination of distributions
of the form

pX,Y1,...,Yn,f1(Y1),...,fn(Yn)

proving the result.
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We also show an intuitive rule that says if we make an
initial team decision, and then make a subsequent team
decision based on the measurements and the previous
team decision, then the latter is also a team decision
based only on the original measurements.

Theorem 6 (Chain Rule for Team Decisions). If

(U1, . . . , Un) ∈ TeamDec(X|Y1, . . . , Yn)

(V1, . . . , Vn) ∈ TeamDec(X|(Y1, U1), . . . , (Yn, Un))

then (V1, . . . , Vn) ∈ TeamDec(X|Y1, . . . , Yn).

Proof. Note that pX,Y1,...,Yn,(U1,V1),...,(Un,Vn) is a convex
combination of distributions of the form

pX,Y1,...,Yn,(U1,f1(Y1,U1)),...,(Un,fn(Yn,Un)) (1)

But by Theorem 4,

((U1, f1(Y1, U1)), . . . , (Un, fn(Yn, Un)))

∈ TeamDec(X|Y1, . . . , Yn)

so each distribution in (1) is in turn a convex combination
of distributions of the form

pX,Y1,...,Yn,h1(Y1),...,hn(Yn)

so ((U1, V1), . . . , (Un, Vn)) ∈ TeamDec(X|Y1, . . . , Yn).
Applying Theorem 4 again yields the result.

A consequence of the chain rule shows how to combine
team decisions from two groups of players into a single
team decision.

Theorem 7 (Combining Team Decisions). If

(U1, . . . , Uk) ∈ TeamDec(X,Yk+1, . . . , Yn|Y1, . . . , Yk)

(Uk+1, . . . , Un) ∈ TeamDec(X,Y1, . . . , Yk, U1, . . . , Uk|
Yk+1, . . . , Yn)

then (U1, . . . , Un) ∈ TeamDec(X|Y1, . . . , Yn).

Proof. Applying Theorem 4 to the two team decisions,
we have

(U1, . . . , Uk, Yk+1, . . . , Yn) ∈ TeamDec(X|Y1, . . . , Yn)

and

(U1, . . . , Un) ∈ TeamDec(X|
(Y1, U1), . . . , (Yn, Uk), Yk+1, . . . , Yn)

Thus (U1, . . . , Un) ∈ TeamDec(X|Y1, . . . , Yn) by Theo-
rem 6.

IV Team Sufficiency

Let X be the state and (Y1, . . . , Yn) be measurements
for n players. We say that the derived random vari-
ables (g1(Y1), . . . , gn(Yn)) are a team sufficient statis-
tic if every team decision based on the full measurements

(Y1, . . . , Yn) is also a team decision on the derived vari-
ables (g1(Y1), . . . , gn(Yn)), i.e.

TeamDec(X|Y1, . . . , Yn)

⊆ TeamDec(X|g1(Y1), . . . , gn(Yn))

We denote the set of all such team sufficient statistics as
TeamSuff(X|Y1, . . . , Yn). If X is constant, then we will
just express this set as TeamSuff(Y1, . . . , Yn).

What makes this intuitive-sounding definition work is
the careful and very broad definition of team decisions
that allow for hidden randomization in its policies. We
now show that our definition of team sufficiency implies
being sufficient for optimality.

Theorem 8. Let f be a real-valued concave function on
the probability simplex ∆(X × U1 × · · · × Un), and

(g1(Y1), . . . , gn(Yn)) ∈ TeamSuff(X|Y1, . . . , Yn)

where X ,Y1, . . . ,Yn are the codomains of X,Y1, . . . , Yn.
Then given any functions γ1 : Y1 → U1, . . . , γn : Yn →
Un, there are functions η1, . . . , ηn where

f(pX,η1(g1(Y1)),...,ηn(gn(Yn))) ≤ f(pX,γ1(Y1),...,γn(Yn))

Proof. By definition of team sufficiency,

(γ1(Y1), . . . , γn(Yn)) ∈ TeamDec(X|Y1, . . . , Yn)

⊆ TeamDec(X|g1(Y1), . . . , gn(Yn))

The result then follows immediately from Theorem 3.

In particular, by defining the linear function f where

f(pX,U1,...,Un
) = E c(X,U1, . . . , Un)

for some arbitrary cost function c, we have shown that
team sufficiency implies being sufficient for optimality of
a team decision problem.

We now show that basic equivalence which states that
a set of reduced measurements is sufficient iff the full
measurements can be modeled as a team decision using
these reduced measurements.

Theorem 9 (Sufficiency-Decision Equivalence).

(g(Y1), . . . , gn(Yn)) ∈ TeamSuff(X|Y1, . . . , Yn)

m
(Y1, . . . , Yn) ∈ TeamDec(X|g1(Y1), . . . , gn(Yn))

Proof. Suppose that

(g1(Y1), . . . , gn(Yn)) ∈ TeamSuff(X|Y1, . . . , Yn)

Then

(Y1, . . . , Yn) ∈ TeamDec(X|Y1, . . . , Yn)

⊆ TeamDec(X|g1(Y1), . . . , gn(Yn))
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Conversely, suppose that

(Y1, . . . , Yn) ∈ TeamDec(X|g1(Y1), . . . , gn(Yn)

Then for any team decision

(U1, . . . , Un) ∈ TeamDec(X|Y1, . . . , Yn)

= TeamDec(X|(g1(Y1), Y1), . . . ,

(gn(Yn), Yn))

we have by Theorem 6,

(U1, . . . , Un) ∈ TeamDec(X|g1(Y1), . . . , gn(Yn))

so (g1(Y1), . . . , gn(Yn)) ∈ TeamSuff(X|Y1, . . . , Yn).

The above equivalence is important because it allows
us to use theorems about team decisions in order to prove
results about team sufficiency. The following theorem is
a example of such results. To keep notation simple, in
the single-player case, we abbreviate TeamSuff to just
Suff.

Theorem 10 (Sufficiency State Decomposition).

TeamSuff(X|Y1, . . . , Yn)

= Suff(X|Y1, . . . , Yn) ∩ TeamSuff(Y1, . . . , Yn)

Proof. Convert to team decision membership using The-
orem 9, apply the state decomposition of Theorem 5,
and convert back to a sufficiency membership with The-
orem 9.

We now show that in the single-player case, team suffi-
cient is equivalent to being able to generate the posterior
distribution—which is the same as the usual definition of
sufficient statistic in a Bayesian setting.

Theorem 11 (Posterior Distribution Characterization).
g(Y ) ∈ Suff(X|Y ) iff there is a function f where

f(g(Y )) ≡ pX|Y (·|Y )

One such function f is f(z) = pX|g(Y )(·|z).

Proof. Note that by Theorems 9 and 2, g(Y ) ∈
Suff(X|Y ) iff

X ⊥⊥ Y | g(Y )

Using fundamental properties of conditional indepen-
dence, X ⊥⊥ Y | g(Y ) implies that

pX|Y (·|Y ) ≡ pX|g(Y )(·|g(Y ))

Conversely, if there is some function f where

f(g(Y )) ≡ pX|Y (·|Y )

then this implies (again using the fundamental properties
of conditional independence) that X ⊥⊥ Y | g(Y ).

Theorem 11 gives a constructive method to generate
single-player sufficient statistics. Section VI will show
how to construct team sufficient statistics when there is
more than one player.

Example 1 (Gaussian Sufficient Statistics). Suppose
(X,Y ) is jointly Gaussian with a mean and nonsingular
covariance [

µX
µY

]
,

[
ΣX ΣXY

ΣY X ΣY

]
Then the conditional density pX|Y (·|y) is Gaussian with
mean and covariance

µ̂(y) = µX + ΣXY Σ−1Y (y − µY )

Σ̂ = ΣX − ΣXY Σ−1Y ΣY X

Since the conditional expectation

µ̂(Y ) = µX + ΣXY Σ−1Y (Y − µY ) = E(X|Y )

can generate pX|Y (·|Y ), then it follows that E(X|Y ) ∈
Suff(X|Y ).

The next result shows how to simplify expressions
of single-player sufficiency given a conditional indepen-
dence.

Theorem 12. If X ⊥⊥ Z | Y , then

Suff(X|Y,Z) ⊇ Suff(X|Y )

Suff(X,Z|Y ) = Suff(X|Y ) ∩ Suff(Z|Y )

Suff(X,Y |Z) = Suff(Y |Z)

Proof. Follows from Theorem 11 and the fact that

pX|Y,Z(·|y, z) = pX|Y (·|y), ∀y ∈ supp pY,Z

pX,Z|Y (x, z|y) = pX|Y (x|y)pZ|Y (z|y), ∀y ∈ supp pY

pX,Y |Z(x, y|z) = pX|Y (x|y)pY |Z(y|z), ∀z ∈ supp pZ

each of which follow from X ⊥⊥ Z | Y .

V Updating

The problem of updating involves modifying an existing
sufficient statistic under changes of the state or addition
of measurements, without having to scan through the full
measurement history. We will build to the full updating
theorem by some simpler results that are useful in their
own right.

The first result shows that sufficiency is preserved if
we modify the state with our current sufficient statistic.

Theorem 13 (Left Expansion). If

(g1(Y1), . . . , gn(Yn)) ∈ TeamSuff(X|Y1, . . . , Yn)

then for any function f ,

(g1(Y1), . . . , gn(Yn))

∈ TeamSuff(f(X, g1(Y1), . . . , gn(Yn))|Y1, . . . , Yn)

5



Proof. By Theorem 9,

(Y1, . . . , Yn) ∈ TeamDec(X|g1(Y1), . . . , gn(Yn))

and therefore by Theorem 4,

(Y1, . . . , Yn) ∈ TeamDec(f(X, g1(Y1), . . . , gn(Yn))|
g1(Y1), . . . , gn(Yn))

and the result follows by Theorem 9.

The next result shows when we can remove parts of the
state without affecting the set of team sufficient statistics.

Theorem 14 (Left Contraction). If

X ′ ⊥⊥ (Y1, . . . , Yn) | X

then

TeamSuff(X ′, X|Y1, . . . , Yn) = TeamSuff(X|Y1, . . . , Yn)

Proof. By Theorems 10 and 12,

TeamSuff(X ′, X|Y1, . . . , Yn)

= Suff(X ′, X|Y1, . . . , Yn) ∩ TeamSuff(Y1, . . . , Yn)

= Suff(X|Y1, . . . , Yn) ∩ TeamSuff(Y1, . . . , Yn)

= TeamSuff(X|Y1, . . . , Yn)

The third result shows that if we have an existing team
sufficient statistic, and construct a new team sufficient
statistic using the existing sufficient statistics as measure-
ments, then this new team statistic is actually sufficient
with respect to the full measurements.

Theorem 15 (Right Contraction). If

(g1(Y1), . . . , gn(Yn)) ∈ TeamSuff(X|Y1, . . . , Yn)

then

TeamSuff(X|g1(Y1), . . . , gn(Yn))

⊆ TeamSuff(X|Y1, . . . , Yn)

Proof. Let

(h1(g1(Y1)), . . . , hn(gn(Yn)))

∈ TeamSuff(X|g1(Y1), . . . , gn(Yn))

Then by definition of team sufficiency,

TeamDec(X|Y1, . . . , Yn)

⊆ TeamDec(X|g1(Y1), . . . , gn(Yn))

⊆ TeamDec(X|h1(g1(Y1)), . . . , hn(gn(Yn)))

and the result follows.

We now show the full updating theorem, which shows
how to update a team sufficient statistic given very broad
conditions about how the new states and measurements
evolve.

Theorem 16 (Updating). If

(g1(Y1), . . . , gn(Yn)) ∈ TeamSuff(X|Y1, . . . , Yn)

(X ′, Y ′1 , . . . , Y
′
n) ⊥⊥ (Y1, . . . , Yn)

| (X, g1(Y1), . . . , gn(Yn))

then

TeamSuff(X ′|(g1(Y1), Y ′1), . . . , (gn(Yn), Y ′n))

⊆ TeamSuff(X ′|(Y1, Y ′1), . . . , (Y1, Y
′
n))

Proof. By Theorems 13 and 14,

(g1(Y1), . . . , gn(Yn))

⊆ TeamSuff(X, g1(Y1), . . . , gn(Yn)|Y1, . . . , Yn)

= TeamSuff(X ′, Y ′1 , . . . , Y
′
n, X, g1(Y1), . . . , gn(Yn)|

Y1, . . . , Yn)

⊆ TeamSuff(X ′, Y ′1 , . . . , Y
′
n|Y1, . . . , Yn)

By Theorem 9,

(Y1, . . . , Yn) ∈ TeamDec(X ′, Y ′1 , . . . , Y
′
n|

g1(Y1), . . . , gn(Yn))

and therefore by Theorem 4,

((Y1, Y
′
1), . . . , (Yn, Y

′
n)) ∈ TeamDec(X ′|

(g1(Y1), Y ′1), . . . , (gn(Yn), Y ′n))

and the result follows from Theorems 9 and 15.

The conditional independence in the theorem states
that the new state and measurements (X ′, Y ′1 , . . . , Y

′
n)

can be modeled as a randomized function of the previ-
ous state X and sufficient statistics (g1(Y1), . . . , gn(Yn))
(which presumably was used to form a team decision at
that time). The theorem then states that we can form an
updated team sufficient statistic for the full measurement
history by simply computing a team sufficient statisic us-
ing X ′ as the state and (g1(Y1), Y ′1), . . . , (gn(Yn), Y ′n) as
the measurements.

VI Elimination Theorems

We now tackle the problem of how to construct team
sufficient statistics for more than one player. The main
idea is akin to Gaussian elimination, where we choose
team sufficient statistics for one group of players, and
then choose team sufficient statistics for the remaining
players that depend on our choice of sufficient statistics
for the first group. The simplest such result is given
below.

Theorem 17 (Simple Elimination). If

(Sk+1, . . . , Sn) ∈ TeamSuff(X,Y1, . . . , Yk|Yk+1, . . . , Yn)

(S1, . . . , Sk) ∈ TeamSuff(X,Sk+1, . . . , Sn|Y1, . . . , Yk)

then (S1, . . . , Sn) ∈ TeamSuff(X|Y1, . . . , Yn).
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Proof. By Theorem 9, the conditions of the theorem can
be expressed as

(Yk+1, . . . , Yn) ∈ TeamDec(X,Y1, . . . , Yk|Sk+1, . . . , Sn)

(Y1, . . . , Yk) ∈ TeamDec(X,Sk+1, . . . , Sn|S1, . . . , Sk)

Since each Si is just a function of Yi, it follows by Theo-
rem 7 that

(Y1, . . . , Yn) ∈ TeamDec(X|S1, . . . , Sn)

and the result follows by Theorem 9.

Example 2 (General Sufficient Statistics). By induc-
tively applying Theorem 17, it is easy to show that if

Si ∈ Suff(X,Y1, . . . , Yi−1, Si+1, . . . , Sn|Yi)

then (S1, . . . , Sn) ∈ TeamSuff(X|Y1, . . . , Yn). A special
case of these conditions (via Theorem 13) is when

Si ∈ Suff(X,Y1, . . . , Yi−1, Yi+1, . . . , Yn|Yi)

Example 3 (Conditionally Independent Measurements).
Suppose the measurements Y1, . . . , Yn are conditionally
independent given the state X. Then by the Theorem 14,

Suff(X,Y1, . . . , Yi−1, Yi+1, . . . , Yn|Yi) = Suff(X|Yi)

It follows by Example 2 that if

Si ∈ Suff(X|Yi)

then (S1, . . . , Sn) ∈ TeamSuff(X|Y1, . . . , Yn).

The simple elimination theorem has trouble if the mea-
surements are nested. For example, consider a two-player
system where Y1 can be derived from Y2. By Example 2,
if

S2 ∈ Suff(X,Y1|Y2)

S1 ∈ Suff(X,S2|Y1)

then (S1, S2) ∈ TeamSuff(X|Y1, Y2). But because Y2
contains all of Y1, then this implies that S2 (and also
S1) contains all of Y1. Since the full measurements Y1
usually grows with time, then we conclude that Theo-
rem 17 is too weak to give useful sufficient statistics in
this situation.

The next theorem fixes this problem by allowing a
player to just keep the sufficient statistics of the other
players’ measurements that it contains.

Theorem 18 (General Elimination). Suppose that

((YG(k+1), Sk+1), . . . , (YG(n), Sn))

∈ TeamSuff(X,Y1, . . . , Yk|Yk+1, . . . , Yn)

(S1, . . . , Sk)

∈ TeamSuff(X,Sk+1, . . . , Sn|Y1, . . . , Yk)

where each G(i) is a subset of {1, . . . , k} such that YG(i)
is a function of Yi. Then

(S1, . . . , Sk, (SG(k+1), Sk+1), . . . , (SG(n), Sn))

∈ TeamSuff(X|Y1, . . . , Yn)

Proof. By directly applying Theorem 17, we have

(Y1, . . . , Yk, (YG(k+1), Sk+1), . . . , (YG(n), Sn))

∈ TeamSuff(X|Y1, . . . , Yn)

Moreover, by Theorem 9,

(Y1, . . . , Yk) ∈ TeamDec(X,Sk+1, . . . , Sn|S1, . . . , Sk)

It follows by Theorem 4 that

(Y1, . . . , Yk, (YG(k+1), Sk+1), . . . , (YG(n), Sn))

∈ TeamDec(X|S1, . . . , Sk,

(SG(k+1), Sk+1), . . . , (SG(n), Sn))

so by Theorems 9 and 15,

(S1, . . . , Sk, (SG(k+1), Sk+1), . . . , (SG(n), Sn))

∈ TeamSuff(X|Y1, . . . , Yk,
(YG(k+1), Sk+1), . . . , (YG(n), Sn))

⊆ TeamSuff(X|Y1, . . . , Yn)

Example 4 (Common Measurements). Suppose X is the
state and (Y0, Y1), . . . , (Y0, Yn) are the measurements of
the players. To find team sufficient statistics, we create
an extra player who only sees the common measurements
Y0. Now obviously,

((Y0, Y1), . . . , (Y0, Yn))

∈ TeamSuff(X,Y0|(Y0, Y1), . . . , (Y0, Yn))

and suppose we choose

S0 ∈ Suff(X,Y1, . . . , Yn|Y0)

Then by Theorem 18,

(S0, (S0, Y1), . . . , (S0, Yn))

∈ TeamSuff(X|Y0, (Y0, Y1), . . . , (Y0, Yn))

By removing the extra player (proof: use Theorem 9 to
convert to a team decision, use Theorem 4 to remove the
player, use Theorem 9 to convert back), we have

((S0, Y1), . . . , (S0, Yn))

∈ TeamSuff(X|(Y0, Y1), . . . , (Y0, Yn))

Thus each player i keeps a sufficient statistic of (X,
Y1, . . . , Yn) given the common measurements Y0, plus its
own private measurements Yi.
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VII Partially Nested Problems

Partially nested team decision problems organize the
dependencies between the players as a directed acyclic
graph, with the children receiving the measurements of
their parents. They were introduced by Ho and Chu [5]
in the context of LQG team decision problems. In this
section, we define a generalization of a partially nested
problem, and find their team sufficient statistics.

In order to define this generalization, we first estab-
lish notation for directed acyclic graphs and Bayesian
networks. A directed graph G is a function mapping
{1, . . . , n} to subsets of {1, . . . , n}. We call the set G(i)
the parents of the node i. We say that (i, j) an an edge
of G if i ∈ G(j), and (i0, . . . , im) is a path of G of length
m if (ik−1, ik) is an edge for each k ∈ {1, . . . ,m}.

We say that a node i is an ancestor of j if there is a path
of nonzero length from i to j, and let G∗(j) denote the set
of ancestors of j. The function G∗ as a whole is another
directed graph, which we call the transitive closure of G.
For convenience, we also define the function G∗, where
G∗(i) = G∗(i) ∪ {i}.

A directed graph G is acyclic if no node is an ancestor
of itself. If G is acyclic, we also define its transitive re-
duction G0, where G0(j) is the set of nodes i whose only
path to j is the edge (i, j). For this reason, we will call
G0(j) the immediate parents of j. One can show that
G0 is the smallest graph whose transitive closure is G∗.

We say that the tuple X = (X1, . . . , Xn) factors ac-
cording to the directed acyclic graph G if

pX(x) =

n∏
i=1

pXi|XG(i)(xi|xG(i))

We now define the desired generalization to a partially
nested system. We say that the tuple of random vari-
able pairs ((X1, Y1), . . . , (Xn, Yn)) is partially nested
according the directed acyclic graph G if

1) ((X1, Y1), . . . , (Xn, Yn)) factors according to G.

2) For each ancestor i ∈ G∗(j), Yi is derived from Yj .

Intuitively speaking, partially nested systems can model
situations where if player i affects player j, then j receives
all the measurements of i.

The next theorem gives the team sufficient statistics
for a partially nested system.

Theorem 19 (Partially Nested Systems).
Let ((X1, Y1), . . . , (Xn, Yn)) be partially nested according
to G, and suppose that for each node i,

Si ∈ Suff(XG∗(i)|Yi) (2)

SG0(i) ∈ Suff(Si|YG0(i)) (3)

Then

1) (SG∗(1), . . . , SG∗(n)) ∈ TeamSuff(X|Y1, . . . , Yn).

2) ((X1, SG∗(1)), . . . , (Xn, SG∗(n))) is partially nested
according to G∗.

Proof. The proof is omitted here for space reasons; a
detailed line-by-line proof can be found in Theorems 3.9
and 3.10 of [1].

This is a significant theorem that needs a bit of expla-
nation. The Si variables represent player i’s contribu-
tion to the team sufficient statistic. To form the team
sufficient statistic, each player needs to keep track of its
own contribution as well as those of its ancestors. More-
over, if we replace the measurements with the team suf-
ficient statistics, the system remains partially nested ac-
cording to the transitive closure G∗. This last conclusion
is crucial for updating: for details see [1].

Equation (2) says that each Si needs to contain a suf-
ficient statistic of its own state and its ancestors’ states
given its measurements Yi. For Gaussian partially nested
systems, this corresponds to the conditional expectation
E(XG∗(i)|Yi).

Equation (3) considers the immediate parents G0(i) of
a node i. Each of these parents will need to split among
them a sufficient statistic of Si given their joint measure-
ments YG0(i). It does not matter how this splitting is
done; all that matters is that their joint contributions
SG0(i) can generate this sufficient statistic.

In the Gaussian case, this splitting of this sufficient
statistic can occur as follows: If we assume that Si is an
affine function of the measurements Yi (which certainly
is the case when i is a leaf node and Si = E(XG∗(i)|Yi)),
then the sufficient statistic we need to split is

E(Si|YG0(i))

Since this is just an affine function of YG0(i), then

E(Si|YG0(i)) = µi +
∑

j∈G0(i)

Aj(Yj − µj)

for some vectors µj and matrices Aj . Thus giving each
immediate parent j the vector Aj(Yj − µj) will suitably
split the sufficient statistic. It follows by induction that
in the Gaussian case, we can construct a team sufficient
statistic where

1) The statistics are affine functions of the measure-
ments.

2) The dimensions of the statistics only depend on the
size of the state variables X and not the size of the
measurement variables Y .

The last point is particularly important because the state
variables are often constant in size, while the measure-
ment history grows with time.

The conditions for the team sufficient statistics sim-
plify somewhat if each node has at most one immediate
parent.
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Corollary 19.1 (Outward Trees). Suppose the graph G
in Theorem 19 satisfies |G0(i)| ≤ 1 for all nodes i, and
that

Si ∈


Suff(XG∗(i)|Yi), i is a leaf node⋂
j:i∈G0(i)

Suff(Sj |Yi), otherwise (4)

Then the conclusions of Theorem 19 still hold.

Proof. We just need to show that Si ∈ Suff(XG∗(i)|Yi)
for all i. If (i, j) is an edge of G0 and Sj ∈ Suff(XG∗(j)|Yj),
then

Si ∈ Suff(Sj |Yi)
= Suff(XG∗(i), Sj |Yi)
⊆ Suff(XG∗(i)|Yi)

by Theorems 2, 12, and 13, and the result follows by
induction.

Example 5 (Gaussian Outward Trees). Suppose
((X1, Y1), . . . , (Xn, Yn)) is jointly Gaussian and partially
nested according to the graph G where |G0(i)| ≤ 1
for each i. Let H denote the graph G with all its edges
reversed. Then one can show by the tower property of
conditional expectation that

Si = E(XG∗(i)∪H∗(i)|Yi)

satisfies the conditions of Corollary 19.1, so that
(SG∗(1), . . . , SG∗(n)) is a team sufficient statistic. Thus
the contribution of node i is the conditional expectation
of its own state and those of its ancestors and descen-
dants, given its measurements Yi.

Example 6 (Fully nested systems). In a fully nested sys-
tem, the graph G is triangular, so that G(i) = {1, . . . , i−
1}. This means that any ((X1, Y1), . . . , (Xn, Yn)) fac-
tors according to G, and all that is required is that Yi
can be derived from Yj for each i < j. Moreover, the
transitive reduction of G is a simple linear chain, so that
G0(i) = {i− 1} for each i > 1.

For Gaussian fully nested systems, this means that
(T1, . . . , Tn) is a team sufficient statistic, where Ti =
(S1, . . . , Si), and

Si = E(X|Yi)

Example 7 (Gaussian Inward Trees). Consider a Gaus-
sian partially nested system where each node has at most
one immediate child (as opposed to one immediate par-
ent for outward trees). By exploiting the fact that the
immediate parents of a node have independent measure-
ments and using Theorem 19, one can show that if we
set

Si = E(XG∗(i)∪H∗(i)|Yi)
where H is the reversal of G, then (SG∗(1), . . . , SG∗(n)) is
a team sufficient statistic (see [1] for details). Note that

this is the same form of the team sufficient statistic as the
outward tree case, even though very different methods
were used to derive the sufficient statistics.
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