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Abstract

The Phase-Locked Loop (PLL) is a key component of modern electronic communication
and control systems. PLL is designed to extract signals from transmission channels.
It plays an important role in systems where it is required to estimate the phase of a
received signal, such as carrier tracking from global positioning system satellites. In order
to robustly provide centimeter-level accuracy, it is crucial for the PLL to estimate the
instantaneous phase of an incoming signal which is usually buried in random noise or some
type of interference. This paper presents an approach that utilizes the recent development
in the semi-definite programming and sum-of-squares field. A Lyapunov function will
be searched as the certificate of the pull-in range of the PLL system. Moreover, a
polynomial design procedure is proposed to further refine the controller parameters for
system response away from the equilibrium point. Several simulation results as well as
an experiment result are provided to show the effectiveness of this approach.
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1 Introduction

For nonlinear control systems, one would often like to know the domain of attraction
(DoA) of an equilibrium point. Often, this domain is difficult to both find and represent
computationally. The usual mathematical tool used for analyzing of the region of
attraction is Lyapunov’s method. This gives us a sufficient condition for local stability,
although it is often difficult to find a Lyapunov function that can be used as a certificate for
the whole DoA. Several prior approaches have used quadratic functions, for example [1–
3]. In particular, the approach of [3] makes use of semidefinite programming to find
a quadratic function whose sublevel-set is a good inner approximation to the region of
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attraction. For system in which the DoA is complicated, an ellipsoid may not provide a
good approximation, and the above methods leave a large unexplored region within the
DoA.

With recent developments in algebra and sum-of-squares techniques, it is now possible
to solve for a Lyapunov function with a more general polynomial form [4, 5]. Positive
definiteness properties are replaced by sum-of-squares(SOS) constraints which can be
efficiently solved using convex optimization. The SOSTOOLS [6] toolbox for MATLAB
has been developed as an easy computational tool to solve problems that utilizes the SOS
techniques. This approach has also allowed finding a Lyapunov function within some
specified semi-algebraic region [7, 8]. While Lyapunov approach provides a method to
certify a given inner approximation to the domain of attraction, it does not immediately
provide a way to find it. Tan [9] later extended this concept by using unions of SOS
polynomials to estimate the domain of attraction but Tan’s approach needs to solve
a bilinear optimization. The level-set method [10] has been developed to find a semi-
algebraic representation of the DoA by semidefinite programming. With these polynomial
techniques, it is possible to precisely estimate the DoA of a nonlinear polynomial system
and to find a suitable Lyapunov function as the stability certificate.

A phase-locked loop (PLL) system is a nonlinear system with limited domain of
attraction. Due to its importance in communication systems, analyzing and designing
a PLL system has attracted many attentions in this field [11–17]. The current approach
for designing a controller for a PLL system is still largely based on the linear model [17].
Hence, the performance of the resultant system cannot be guaranteed at system states
far away from the designed equilibrium point.

In this paper, we utilize the current SOS techniques to analyze the domain-of-attraction
of a PLL system. A local Lyapunov function can then be found as the certificate of
the DoA using the proposed approach. The Lyapunov function will be further used to
improve the stability region and performance of the PLL system. Using this approach, it
is possible to design a PLL with a predefined form of controller that has larger domain-
of-attraction than the linear design approach. Moreover, since we are designing the
system in the nonlinear region, system dynamics outside the linear region can be further
refined. Examples of second order PLL systems are used later in this paper to show the
effectiveness of this design approach. In the provided examples, we demonstrated that
the system designed by the proposed method has 20% larger domain-of-attraction and
less overshoot with faster convergent rate than the linear design approach.

This paper is organized as follows. Section 2 contains some preliminary knowledge
about SOS techniques. The advection algorithms as well as the SOS methods for finding
a local Lyapunov function are stated in Section 3. A brief discussion of the configuration
of a PLL can be found in Section 4 and the proposed method for analyzing and designing
a PLL controller are presented in Section 5. Then the paper is summarized in Section 6.

2 Preliminaries

The following are some definitions that will be used frequently in this paper. R[x] is used
to represent the ring of polynomials in x with real coefficients. A polynomial f ∈ R[x] is
called positive semidefinite (PSD) if f(x) ≥ 0, for all x ∈ R

n. A polynomial f is called
SOS if there exist polynomials g1, ..., gs ∈ R[x] such that f = g2

1 + g2
2 + · · · + g2

s . Clearly
if f is SOS then f is PSD. It is also well-known that the converse is not true. Σ denotes
the set of all SOS polynomials in R[x]. R+ is used to represent the set of nonnegative
real numbers. Br is used to represent the open ball with radius r centered at the origin.

Suppose g : R
n → R is C1. Define the 0-sub-level set of g to be sub(g) ⊂ R

n given by
sub(g) = {x ∈ R

n | g(x) ≤ 0 }. Further define the boundary of sub(g) as ∂ sub(g).
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One feature of the proposed advection algorithm is that the advection problem can be
converted into a semidefinite program. The following is a standard form of a semidefinite
program.

min trace(CX)

s.t. trace(AiX) = bi for i = 1, . . . ,m

X º 0,

where X ∈ R
n×n is symmetric. X º 0 means that zT Xz is positive semidefinite for

all z ∈ R
n.

The condition of one semi-algebraic set containing another semi-algebraic set is one
of the key constraints used in this paper. The following lemma shows that this kind of
relationship can be converted to constraints on the coefficients of the polynomials. The
proof can be found in [4] or [7].

Lemma 1. Given p, q ∈ R[x], suppose there exist s0, s1 ∈ Σ such that

s0 − s1q + p = 0 for all x ∈ R
n (1)

Then sub(q) ⊂ sub(p). Further, given q and the degree bound of p, s0, and s1, the set of
coefficients of p, s0 and s1 satisfying (1) is the feasible set of a semidefinite program.

Proof. See, for example, [4] or [7].

The representation shown in Lemma 1 is one of the simplest cases of Schmüdgen’s
Theorem [18]. Schmüdgen’s Theorem states that if p ∈ R[x] is strictly positive inside a
compact semi-algebraic set S generated by p1, . . . , pm as

S = {x ∈ R
n | pi ≥ 0, i = 1, 2, . . . ,m}

then
p = Σvpv1

1 . . . pvm

m sv

where v = (v1, . . . , vm) ∈ {0, 1}m and sv ∈ Σ. Putinar [19] later showed that under some
additional constraints on pi, p has a simpler representation as

p = s0 + s1p1 + . . . + smpm

The gap between Schmüdgen’s and Putinar’s representation is later investigated by Jacobi
and Prestel [20]. In the simple case shown in Lemma 1, if sub(q) ⊂ sub(p) and sub(q) is
compact, the representation of p by (1) is always possible.

The following result is similar. Given q ∈ R[x], if there exists s0, s1 ∈ Σ and ǫ > 0
such that

s0 + s1q − p + ǫ = 0

then sub(p) ⊂ sub(q).

Usually q is a given polynomial and p is the solution to find such that sub(p) and sub(q)
approximately represent the same set with some other constraints on p, such as having
lower degree or passing through several pre-specified points. The above results are used
to construct such constraints.

3 Acquiring the Local Lyapunov Function

Finding a local Lyapunov function is coupled with finding the DoA. Without a clear
knowledge of the actual shape of the DoA, it is hard to find a Lyapunov function that
can be used to represent the entire DoA [4, 8]. To deal with this difficulty, we utilize the
current development in set advection [10].
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3.1 Set Advection

In this paper, we will consider the following autonomous system

ẋ(t) = f(x) (2)

where f : R
n → R

n is locally Lipschitz. From the basic local existence and uniqueness
theorem [21], given an open subset U ∈ R

n, there exist c ∈ R+ such that the autonomous
system (2) has a unique solution for any z ∈ U in the compact time interval [−c, c].

We define the flow map φt : R
n × R → R

n to be the local unique solution of

∂φt(z)

∂t
= f(φt(z)) for t ∈ [−c, c], c(z) ∈ R+, z ∈ R

n

φ0(z) = z

For any t ∈ R such that φt(x) exists, the map φt : R
n → R

n is continuous, invertible
and has a continuous inverse, i.e., it is a topological homeomorphism on R

n [22].

Given t ∈ R, we define the time t advection operator At : C(Rn, R) → C(Rn, R) by

q = Atp if q(x) = p (φ−t(x)) for all x ∈ R
n

where C(X,Y ) is the set of functions mapping from X to Y . The map At is also called
the Liouville operator associated with f . A very important property is that it is linear.
Figure 1 shows the concept of the advection operator. Given polynomial p, At maps the
coefficients of p to another polynomial q such that sub(q) = φt sub(p). We relate the
advection operator to the advection of sets in the following remark.

Remark 1. Suppose g1, g2 are functions mapping R
n to R. If g2 = Atg1 then

sub(g2) = φt (sub(g1)).
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Figure 1: The advection operator At.

3.2 Time-Stepping

Since we are performing advection, we must use an approximation to the flow map φh

with time step h. Many such approximations are possible, and are provided by the theory
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of numerical integration. The first-order Taylor approximation to q = Ahp is the map
Bh : C(Rn, R) → C(Rn, R) given by

q = Bhp if q(x) = p(x) − hDp(x)f(x)

where the derivative Dp(x) is a linear map Dp(x) : R
n → R

n at each point x.

Based on the required accuracy of the advection, we could also choose to use higher
order Taylor approximation. However, depending on the system dynamics, this usually
will lead to the requirement of using higher degree polynomials in the sum-of-squares
constraints. The relationship between the accuracy and the degree of polynomials will be
further investigated in future work.

3.3 Domain-of-Attraction Estimation

The set advection concept is used to estimate the DoA of a system. We use the following
definition of the DoA in this paper.

Definition 1. Suppose f : R
n → R

n is analytic with the flow map, φ, and the origin
is asymptotically stable. Define the domain-of-attraction (also called the basin/region of
attraction) of f to be R ⊂ R

n such that for any x ∈ R, φt(x) is defined for all t ≥ 0 and
limt→∞ φt(x) = 0.

The following properties can be easily derived. The detailed proofs can be found in [10].

Lemma 2. Suppose f is analytic and the origin is asymptotically stable and R 6= ∅.
Suppose also S1 ⊂ R and 0 ∈ S1, and S1 is a connected closed positively invariant set.
Let h > 0 be a positive constant, and define the backward advection of S1 to be S2, given
by

S2 = φ−hS1

Then S1 ⊂ S2 ⊂ R, and S2 is also connected, closed and positively invariant.
Furthermore, ∂S2 = φ−h∂S1.

Theorem 1. Suppose f is analytic and the origin is asymptotically stable and h > 0.
Also suppose 0 ∈ S0 and S0 ⊂ R is a closed connected positively invariant set, such that
there exists ǫ > 0 such that Bǫ ⊂ S0.

Define the sequence of sets S0, S1, S2, . . . by

Sk+1 = φ−hSk for k = 0, 1, 2, . . .

Then this sequence converges to R in the following sense:

(i) Sk ⊂ R for all k ∈ N.

(ii) Sk ⊂ Sk+1 for all k ∈ N.

(iii) For every x ∈ R, there exists n such that x ∈ Sn

3.4 Star-Shaped Constraint

For the case of estimating the DoA, we introduce the concept of star-shaped sets. The
star-shaped sets have many important properties and can be easily implemented as a
semidefinite program. We now start with the first property. The detailed information
about the star-shaped set can be found in [10].
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Definition 2. A set S ∈ R
n is called star-shaped if for all x ∈ S

λx ∈ S for all λ ∈ [0, 1]

The set S is called strictly star-shaped if for all x ∈ S

λx ∈ int(S) for all λ ∈ [0, 1)

Note that a star shaped set S is connected. We now give a simple sufficient condition
that ensures a sub-level set is star-shaped. We make the following definition.

Definition 3. Suppose g : R
n → R. We call g strictly star-shaped if g is C1 and further

satisfies g(0) < 0 and

Dg(x)x > 0 for all x 6= 0

The following lemma shows the connection between strictly star-shaped functions and
star-shaped sets.

Lemma 3. Suppose g : R
n → R is strictly star-shaped. Then sub(g) is strictly star-

shaped.

Proof. Suppose x ∈ sub(g). Let y : R+ → R
n be the function

y(t) = e−tx

The trajectory of y(t) follows the straight line connecting x and the origin. We would
like to show that y(t) ∈ sub(g) for all t ≥ 0. We have

d

dt
g(y(t)) = −Dg (y(t)) y(t)

< 0

for all t ≥ 0. Also

g (y(t)) − g (y(0)) =

∫ t

0

d

dt
g (y(t)) dt

and since y(0) = x we have g (y(t)) < 0 for all t ≥ 0 as desired.

Now we need to show that if y ∈ ∂ sub(g) then there does not exist λ ∈ [0, 1) such
that λy ∈ ∂ sub(g). Suppose for the sake of a contradiction that there does exist such
a y and λ. We know that there exists such λ > 0, since g(0) < 0. Define the function
h : [0, 1] → R by

h(θ) = g(θy) for θ ∈ [0, 1]

Then the derivative of h is

h′(θ) =
1

θ
Dg(θy)(θy)

> 0

for all θ ∈ (0, 1). From the assumptions we know h(λ) = 0 and h(1) = 0. Since h is C1 on
[λ, 1], by the mean-value theorem there must exist θ ∈ (λ, 1) such that h′(θ) = 0, which
is a contradiction.
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For the purposes of this paper, we would like to construct a convex set of functions
whose sub-level sets are connected. Although the convex set of all convex functions on
R

n will suffice, using it would unnecessarily restrict the class of sets describable to be
convex. One cannot simply use the set of all functions whose 0-sub-level set is connected,
since this set of functions is not convex. We therefore choose the set of strictly star-
shaped functions, which is a convex set. We will use strictly star-shaped polynomials to
represent sets. This is significantly more general than existing approaches using quadratic
functions [1–3]. Also, it has been shown in Lemma 3 that if g is strictly star-shaped, then
sub(g) is strictly star-shaped. By using this property, we can easily pose the star-shaped
constraints on g to make sub(g) a connected set.

3.5 An Algorithm for Backward Advection

Here we will state the result of the backward advection algorithm. Given a strictly star-
shaped polynomial gi−1 such that sub(gi−1) ⊂ R, and sub(gi−1) is bounded and positively
invariant, we compute a polynomial gi such that sub(Ahgi) ≈ sub(gi−1) as follows.

Pick α > 0 and positive integer d. Solve, using semidefinite programming, the following
feasibility problem for gi ∈ R[x], s1, s2, s3, s4 ∈ Σ.

gi(0) = −1

Dgi(x)x > 0

s3 − s4gi−1 + B(h−α)gi = 0

s1 + s2gi−1 − Bhgi = 0

deg(gi) ≤ d

Here we introduced an important parameter, α, which we think of as follows. The
above algorithm finds a degree d polynomial gi such that gi is strictly star shaped,
φh sub(gi) ⊂ sub(gi−1), and φh−α sub(gi) ⊃ sub(gi−1). Hence the parameter α may
be thought of as a tolerance that allows for the constraint that gi is required to have
degree d or less. Then from the result of Theorem 1, limi→∞ sub(gi) converges to the
domain-of-attraction. It should be noted that this technique only works in the case that
the advected set is positively/negatively invariant.

3.6 Stopping Conditions

By using the proposed level-set method, one can successfully propagate the system states
backward in time. However, a stopping criterion is still needed to terminate the iterations.
To detect the convergence of the advected sets, the closeness of two semi-algebraic sets is
analyzed. The following result shows that the closeness of two semi-algebraic sets can be
estimated by using scaled sets. The detailed proof can be found in [10].

Theorem 2. Suppose g1 and g2 are strictly star-shaped functions, sub(g1) ⊂ sub(g2),
and sub(g2) is bounded. Suppose x1, x2 ∈ R

n are two points such that

x1 ∈ ∂ sub(g1) and x2 ∈ ∂ sub(g2),

and x1 = αx2 for some α ≥ 0. Define the function q : R
n → R by

q(x) = g2(λx) for all x ∈ R
n

where λ > 1. Then if sub(q) ⊂ sub(g1),

‖x2 − x1‖

‖x2‖
≤ 1 − λ−1

7



−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

3

1
2 X

2
X

1

Figure 2: Example of stopping conditions. Curve 1 is the inner set and curve 2 is the
outer set. Curve 3 is the shrunk set of the outer set.

To determine when the algorithm should terminate, one formulates an optimization
problem using Lemma 1 to determine the smallest λ > 1 such that sub(q) ⊂ sub(g2),
where q(x) = g2(λx). Again, this may be evaluated using semidefinite programming. In
practice, one picks a λ > 1 in advance, and checks this condition after each iteration.
Figure 2 shows an example. Here Curve 1 is ∂ sub(g1), Curve 2 is ∂ sub(g2), and Curve 3
is ∂ sub(q). The largest radial deviation between Curves 1 and 2 is less than 0.3.

3.7 The Local Lyapunov Function

We find a local Lyapunov function in order to construct an initial star-shaped positively
invariant set. The following result is standard.

Proposition 1. Suppose f : R
n → R

n is analytic and the origin is a stable equilibrium
point. Also suppose V : R

n → R is a C1 function, γ > 0, and the set

Dγ = {x ∈ R
n | V (x) ≤ γ }

is compact. Further suppose

V (x) > 0 for all x 6= 0

V (0) = 0

DV (x)f(x) < 0 for all x 6= 0, x ∈ Dγ

Let g0(x) = V (x) − γ. Then sub(g0) is positively invariant, and sub(g0) ⊂ R.

One simple approach to finding an initial sub-level set is to find a quadratic Lyapunov
function for the linear model of the system, and use a small sub-level set of this quadratic
polynomial as the initial set.

An alternative method which often gives a much larger initial set is as follows. Choose a
polynomial p ∈ R[x] such that sub(p) ⊂ R. We then solve the following convex feasibility
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problem. Find V ∈ R[x] and s0, s1 ∈ Σ such that

DV (x)x > 0 for all x 6= 0

V (x) > 0 for all x 6= 0

V (0) = 0

DV (x)f(x) + s0 − s1p = 0 for all x 6= 0

Similar methods for finding local Lyapunov functions along with details on the
construction of the associated semidefinite program may be found in [5, 8]. Here we
have added the first constraint to ensure that V − γ is strictly star-shaped for γ > 0.
Note that these constraints imply that all sub-level sets of V are compact. Given V , we
then solve the convex program

maximize γ

subject to V − γ − s0 − s1p − ǫ = 0 for all x

s0, s1 ∈ Σ

where ǫ > 0 is small. The optimal γ satisfies sub(V − γ) ⊂ sub(p). Then V and γ satisfy
the assumptions of Proposition 1 and so we may use g0 = V − γ as the function defining
our initial level-set.

After we have found an estimate of the DoA, we can then use Proposition 1 to find a
Lyapunov function that can be used to describe the behavior of the system within the
DoA. To adequately describe the system behavior, this approach requires that we have a
good estimate of the DoA. The following examples show that the level-set algorithm can
precisely estimate the DoA.

3.8 Examples of DoA Estimation

Example 1. Consider the following dynamical system

ẋ = 0.5y − x(1 − x2 − 0.25y2)

ẏ = −x − 0.5y(1 − x2 − 0.25y2)

The origin is a locally stable equilibrium point. Here we start with the initial polynomial
g0 = 2x2 + 2y2 − 1. The results of the level-set method are shown in Figure 3, using time
step h = 0.2. It can be seen that the successive iterates approach the true DoA.

Example 2. Consider the Van der Pol oscillator with inverted time:

ẋ = −y

ẏ = x − y(1 − x2)

This system is locally stable around the origin. An initial sub-level set given by the
quadratic polynomial g0 = 4x2 + 4y2 − 1 is used which can be verified to be positively
invariant. A time step of h = 0.2 is used. The time tolerance parameter α is 0.02. The
even-numbered iterates g0, g2, g4, . . . are shown in Figure 4. For reference, some of the
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Figure 3: Successive iterates of the level-set algorithm.

iterates are listed below and normalized to allow integer coefficients.

p2 = −1, 000 + 2, 252 y2 − 88 y4 + 11 y6 − 907xy − 56xy3 − 4xy5 + 3, 883x2

+ 360x2y2 − 57x2y4 + 660x3y − x3y3 − 417x4 + 21x4y2 + 81x5y + 260x6

p4 = −1, 000 + 1, 614 y2 − 137 y4 + 16 y6 − 1, 654xy − 170xy3 + 14xy5 + 3, 162x2

+ 480x2y2 − 43x2y4 + 94x3y − 35x3y3 + 144x4 − 2x4y2 + 192x5y + 335x6

p28 = −10, 000 + 2510 y2 − 56 y4 + 2 y6 − 4, 306xy + 42xy3 + 4xy5 + 4, 099x2

+ 25x2y2 + 2x2y4 + 1, 103x3y − 27x3y3 − 687x4 − x4y2 + 2x5y + 84x6

It can be seen that the iterates gradually approach the exact boundary of the DoA. After
30 iterations, the solution covers most of the stable region.

After 40 iterations, the stopping criteria allowing an absolute radial change of 0.01 has
been met. The final result is shown in Figure 4 as Curve 4. Curve 1 is ∂C(g0) if we
were using the semidefinite-programming based procedure in Section 3.7. For comparison,
Curve 2 is the result of [2] and Curve 3 is the result of [1].

Example 3. The following dynamic system is the Example S4 taken from [3].

ẋ = −2x + y + x3 + y5

ẏ = −x − y + x2y3

Here the initial set is a small circle around the origin. After 20 iterations, the estimated
boundary of the DoA has reached the pre-specified bound. The final iterate is shown in
Figure 5. The dashed curves show the two system trajectories which are used to represent
the true boundary of the domain of attraction. Curve 2 represents the result of the final
iterate. Curve 1 is the result from [3].
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Figure 4: Van der Pol oscillator. The left figure shows the sequence of iterations. The
right figure shows the final iterate as Curve 4 along with some other results. Curve 1 is
∂ sub(g0), when g0 is obtained through the semidefinite programming based procedure in
Section 3.7. For comparison, Curve 2 is the result of [2] and Curve 3 is the result of [1].
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Figure 5: Sub-level sets of g0 and g20. The dashed-dot curve is the result from [3] and
the solid curve is the result of the advection algorithm.

4 Configuration of a PLL

Figure 6 shows the basic configuration of a PLL. It has three components; a phase
detector, a loop filter, and a voltage controlled oscillator(VCO). The VCO generates
an output signal whose phase, θ0(t), depends on the phase, θi(t), of the input signal. The
PLL is phase locked when the phase error φ(t) = θi(t) − θ0(t) is a constant value and
the loop is in stable equilibrium state. Usually, it is desired that the phase error, φ(t), is
maintained at zero.
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Figure 6: Basic Configuration of a PLL.

Of interest is the behavior of the phase error φ(t). Because of its sinusoidal nonlinearity
in the PLL, the phenomenon of chaos is believed to exist [11, 12] and its inherent chaotic
behavior for broadening the pull-in range of PLL has also been realized [13, 14]. A
nonlinear controller can drive PLL from chaotic state into periodic state or vice versa [15].
For higher-order PLL, it is not possible to determine whether the loop will or will not
slip cycles using the initial frequency alone. In this case, one might define the pull-in
range as the separatrix ordinate at φ = 0 [17]. Analyzing the DoA of the PLL system
provides a better description of the region in which a PLL locks up without slipping.
The Lyapunov method has been used for stability analysis in control systems. Here the
advection algorithm will be used to find the guaranteed stability boundary of the PLL
system and the associated local Lyapunov function is then used to further refine the
controller parameters. In [16], a Lyapunov styled analysis for PLL system up to third
order is presented. The method shown in this section provides a way to analyze the DoA
for a more general system. Also, the form of the Lyapunov function used here is much
more flexible.

Figure 7 shows the nonlinear model of the PLL. The sine function here represents the
phase detector of the system. K in Figure 7 stands for the loop gain of the system. F (s)
is equivalent to the low pass filter shown in Figure 6 and it corresponds to the controller
of the PLL. Finally, the integrator in Figure 7 is the voltage or numerically controlled
oscillator. The key idea of a PLL system is to use the command, y2, from F (s) to steer
the oscillator such that θ0(t) tracks θi(t) as closely and quickly as possible.

å )sin(· K )(sF òiq +

-
oq

f
1y 2y

oq

Figure 7: Model of the Phase-Locked Loop.

4.1 Second Order PLL

To use the nonlinear design approach, start with a reference design. The reference design
used in this paper is the linear model of a PLL system. A Proportional-Integrator (PI)
controller is chosen to be the filter, F (s), as

F (s) =
1 + τ2s

τ1s
(3)
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Using the model shown in Figure 7, it is routine to check that the resulting dynamic
equation of the system is

d2φ

dt2
+ K

τ2

τ1
cos(φ)

dφ

dt
+

1

τ1
K sin(φ) =

d2θi

dt2
(4)

Assume that the received signal frequency is varying linearly with time and has zero radial
acceleration and let x1 = φ, x2 = φ̇. The PLL system can be rewritten as the following
state space model

ẋ1 = x2

ẋ2 = −K
τ2

τ1
cos(x1)x2 −

1

τ1
K sin(x1)

= k1 cos(x1)x2 + k2 sin(x1)

(5)

Equation (5) is the final nonlinear model of the second order PLL. A linearized model
can then be derived as

ẋ1 = x2

ẋ2 = k1x2 + k2x1

(6)

The filter F can then be designed using existing linear design approach [17]. One typical
choice is to let ωn = 15, ζ = 0.707,K = 1, where ωn is the natural frequency, ζ is the
damping ratio, and K is the overall gain. The two coefficients of the filter are then given
as τ1 = K

ω2
n

, τ2 = 2ζ
ωn

5 Phase-Locked Loop Analysis and Design

In this section, the second order PLL controller will be used to demonstrate the nonlinear
design approach. The same approach can also be applied to the third order controller
design.

5.1 Pull-In Range of the Traditional PLL System

Now the advection algorithm can be applied to the PLL nonlinear system. To reduce
the required number of iterations, a local Lyapunov function is used as the initial set.
After a few iterations of the algorithm, it gives us the estimated domain-of-attraction of
the system. The result is shown in Figure 8. Note that the estimated region is based
on the Taylor series expansion of the sine and cosine functions. From Ston-Weierstrass
Theorem, we can approximate the sine and cosine functions to the desired accuracy within
a bounded interval. In this example, two degree-10 polynomials are used to approximate
sine and cosine functions and the estimated region is only valid between −π and π. More
terms of the Taylor series could also be used to improve the accuracy.

5.2 PLL System Controller Design

After getting a good estimated DoA, a local Lyapunov function that describes the system
behavior can be easily computed using Proposition 1. This local Lyapunov function can
also be used to describe the trajectories of the system in the DoA. Figure 9 shows several
Lyapunov level-sets obtained from the SOS approach.

The SOS techniques can be applied to the design of a controller. For the PLL system,
it is desired to design a system which has a larger DoA or faster converging speed. Here,
the objective is to find possible system parameters such that the same Lyapunov function
is still valid and the system converges faster. This can be done by solving a semidefinite
program.

13
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Figure 8: Result of the original PLL system.
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Figure 9: Local Lyapunov level sets of the original PLL system.

Suppose V is a local Lyapunov function for the PLL system. Using the SOS technique,
solve the following optimization problem:

max α

s.t. − (DV )f = s1 + s2(a − V )

− (DV )f − αq = s3 + s4(b − V ) (7)

p(k) ≤ 0

where a, b ∈ R+ specify the domain of the constraints and q is a positive definite
performance polynomial specified by the user. p(k) is a linear constraint of controller
parameter k. As before, s1, s2, s3, s4 are SOS polynomials.

Since V is now a given function, the above constraints are linear in the controller
parameters. The first constraint shows that V is a valid Lyapunov function in sub(V −a).
This constraint is used to specify the desired DoA to maintain. The second constraint
along with the objective function will put an upper bound on the derivative of the
Lyapunov function in sub(V − b). Faster decreasing rate implies faster converging speed.
This specifies the performance requirement of our system. The user could also put
different performance requirements in different sub-level sets of V .

Besides dynamic performance constraints, noise bandwidth constraints will be applied
as well. The noise bandwidth for this PLL system with PI controller has the following
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form [17]

BL =
ωn

2

(

ζ +
1

4ζ

)

Assume ζ ≥ 1, ωn ≥ 1. Then

BL =
ζωn

2
+

ωn

8ζ
≤ −

k1

4
−

k2

8

This linear upper bound will be used to find a set of controller parameters that have
better dynamic performance while maintaining the same noise bandwidth.
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Figure 10: Comparison of the domain-of-attraction. Left: linear design. Right:
nonlinear design.

The system phase portrait as well as the estimated stable region are shown in Figure 10.
The nonlinear design has K = 1, ωn = 10.813, and ζ = 1.3303. The noise bandwidth
is 8.1082 Hz, which is slightly higher than the noise bandwidth of the linear design,
7.9546 Hz. From the phase portrait, the nonlinear design has approximately 20% larger
guaranteed domain-of-attraction. It can also be observed from the phase portrait that the
nonlinear design has less overshoot than the linear design. This shows that the proposed
method increases the system performance while not sacrificing too much of the noise
rejection capability.

A Simulink model is used to compare the nonlinear designed PLL controller with the
linear design. In this Simulink model, the sinusoidal input is collapsed by measurement
noise and clock noise with zero mean and variances 0.1 and 0.0001, respectively. Figure 11
is the phase error of the two designs. It is clear that the nonlinear designed controller has
a much faster convergence rate than the original design.

Both systems are tested on a NORDNAV R25 software GPS receiver. This receiver
collects, down-converts and samples the GPS data by the front end, so that the collected
GPS data can be post-processed repeatedly using different tracking-loop filter orders.
The results are shown in Figure 12.

It can be seen that the original system has some overshoot and converges around 300
ms. The nonlinear design has much less overshoot and converges about five times faster
than the original design.

6 Summary

In this paper, we presented a method of designing a PI controller of a PLL system. This
design approach is based on the polynomial nonlinear model of the PLL system. This
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Figure 11: Phase error of Simulink simulation. Left: linear design. Right: nonlinear
design.
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Figure 12: Real GPS experimental results. Left: linear design. Right: nonlinear design.

approach starts with the linear design of the controller and then estimates the DoA of
the linear designed system to get the suitable local Lyapunov function for the system.
The Lyapunov function is then used as the performance constraints to further refine the
performance of the system outside the linear region. The DoA of the initial design can
also be extended to get a better pull-in region of the PLL system. This approach gives
us a way to design a fixed form controller for a nonlinear system.
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