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Abstract

We consider the problem of optimal decentralized con-
troller synthesis. There are several classes of such prob-
lems for which effective algorithms are known, including
the quadratically invariant cases. In this paper, we use
Groebner bases and elimination methods to character-
ize all the possible closed-loop maps which are obtain-
able by forming a feedback loop with decentralized con-
trollers. We show that this approach allows solution of a
strictly wider class of optimal decentralized control prob-
lems than the quadratically invariant ones.

1 Introduction

The problem of computing the optimal decentralized con-
troller in the standard framework of a linear system with
quadratic cost and Gaussian noise is well-known to be
extremely hard, with many previous results in this area.
There is no known algorithm which can efficiently com-
pute an optimal decentralized controller for a general lin-
ear system. However, given a particular set of informa-
tion accessible to the controller, called the information
structure, and a corresponding linear plant, the synthe-
sis problem may become tractable, depending on charac-
teristics of the dynamics and the information structure.
Much effort has been focused on characterizing those in-
formation structures and systems for which finding the
optimal decentralized controller is easy.

In this paper, we introduce a large class of tractable
problems by presenting an algorithm which is able to
decide whether a decentralized control problem is eas-
ily solvable and find an optimal solution if it is so. Even
though the algorithm does not characterize all the classes
that are tractable, we believe it is one of the most power-
ful systematic methods to tackle the decentralized control
problems.

Our approach is to analyze the set of closed-loop sys-
tems achievable using a decentralized controller, and we
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present a new algorithm for determining this set when
the plant and controller are rational linear time-invariant
systems. Using this algorithm, we are able to evaluate
whether the set of achievable closed-loop maps is a linear
space, and if it is, this allows standard synthesis tools to
be applied.

We focus on rational linear systems, and our approach
is based on algebraic geometry. Roughly speaking, we
would like to solve

minimize ‖P11 + P12K(I − P22K)−1P21‖

subject to K ∈ Sp

K is stabilizing

Here P11, P12, P21, and P22 are matrix-valued rational
functions, and Sp is the information structure, a set of
matrix rational functions with a particular sparsity, thus
Sp is the set of controllers which meet the desired decen-
tralization constraint. The set of achievable closed-loop
maps is then just

{

P11 + P12K(I − P22K)−1P21 | K ∈ Sp

}

and we would like to determine whether this set is an
affine set. Our approach is to eliminate K, and describe
this set by implicit equations so that a matrix rational
function lies in this set if and only if its entries satisfy cer-
tain polynomial equations. The general theory of elim-
ination is well-known in the field of algebraic geometry,
and we bring this to bear in this specific matrix problem.

The main contribution of this paper is as follows. We
introduce the idea of using rational elimination theory
for finding the set of closed-loop maps. We show that
in certain cases, this reduces the set of closed-loop maps
to the solution set of a collection of linear equations. We
show how to use these linear equations to find the optimal
decentralized controller.

Prior Work. Decentralized control has been studied
for quite a long time. Radner [5] showed that for sys-
tems without feedback, an optimal controller minimizing
quadratic cost for a linear system may be chosen to be
linear. For the feedback case, it was shown by Witsen-
hausen [8] that for a linear system subject to a decentral-
ized information constraint, a nonlinear controller can
achieve better performance than any linear controller.



Even finding an optimal linear controller is hard, and in
fact, it was shown that some cases are intractable [1].
Since this work, research has been focused on character-
izing the class of easily solvable problems. Ho and Chu [4]
generalized Radner’s result and defined a class of infor-
mation structures, called partially nested, for which an
optimal controller for the LQG problem is linear. Re-
cently, Rotkowitz and Lall [6, 7] showed that the class of
quadratically invariant problems may be easily solvable
via convex programming. However, the class of quadrati-
cally invariant problems does not include all the tractable
problems in the decentralized control. We will see an ex-
ample in this paper.

2 Preliminaries

We define some terminology for matrix-valued transfer
functions and closed-loop maps. We consider transfer
functions for continuous-time systems. Therefore, we re-
gard transfer functions that are defined on the set of
the purely imaginary complex numbers, iR. We denote
the set of all real-rational functions G : iR → Cm×n by
R(s)m×n. A matrix-valued rational function G is called
proper if limω→∞ G(iω) exists and is finite. Further-
more, if limω→∞ G(iω) = 0 then it is called strictly

proper. Then, we denote the set of real-rational proper
transfer function matrices as

R(s)m×n
p =

{

G ∈ R(s)m×n | G is proper
}

.

Similarly, we let

R(s)m×n
sp =

{

G ∈ R(s)m×n | G is strictly proper
}

.

Suppose G ∈ R(s)n×n. If det(G) 6= 0, i.e., det(G)
is a nonzero rational function, then we say that G is
invertible and G−1 ∈ R(s)n×n is a well-defined matrix

of rational functions. It follows that if P22 ∈ R(s)
ny×nu

sp

and K ∈ R(s)
nu×ny

p then I − P22K is always invertible.

Now, consider a feedback loop formed by P and K,
where the real-rational transfer function matrices

P =

[

P11 P12

P21 P22

]

∈ R(s)(nz+ny)×(nw+nu)

and K ∈ R(s)nu×ny represent the transfer function ma-
trices of a given plant and a controller, respectively. We
say that the interconnection is well-defined if I −P22K
is invertible. Note that if P ∈ R(s)p, P22 ∈ R(s)sp, and
K ∈ R(s)p, then this notion of well-defined is consistent
with the conventional notion of well-posed. If the in-
terconnection is well-defined, we define a map fL(P,K),
which is called the (lower) linear fractional transfor-

mation (LFT) of P and K:

fL(P,K) = P11 + P12K(I − P22K)−1P21.

We also refer to this as the closed-loop map. For con-
venience, we also define

f(P,K) = P12K(I − P22K)−1P21,

hence fL(P,K) = P11 + f(P,K). We define the set M of
controllers K such that fL(P,K) is well-defined by

M =
{

K ∈ R(s)nu×ny | I − P22K is invertible
}

.

Note that if P22 ∈ R(s)sp then R(s)p ⊂ M , i.e., for a
strictly proper plant any proper controller leads to a well-
defined feedback loop. For any set T ⊂ M , we will denote
by fL(P, T ) the set of all the closed-loop maps which are
achievable by the linear fractional transformation of P
and K ∈ T . Finally, we define the upper linear fractional
transformation of P and K by

fU (P,K) = P22 + P21K(I − P11K)−1P12.

Problem Formulation. In this section we formulate
a version of the decentralized control problem. Sup-
pose that Sp ⊂ R(s)

nu×ny

p is a subspace consisting
of controllers satisfying a desired decentralization con-
straint. The subspace Sp is called the information con-

straint. Then, given a plant transfer function matrix

P ∈ R(s)
(nz+ny)×(nw+nu)
p , where P22 ∈ R(s)

ny×nu

sp , we
would like to solve the following optimization problem:

minimize ‖fL(P,K)‖

subject to K ∈ Sp

(1)

In the problem (1), ‖ · ‖ is any norm on R(s)nz×nw

p ,
which captures the performance measure of the closed-
loop system. Many decentralized control problems can be
reformulated as this form. If a feasible solution K∗ ∈ Sp

minimizes ‖fL(P,K)‖, then we say that K∗ is an optimal
controller. Also, note that Sp ⊂ M because P22 ∈ R(s)sp

and Sp ⊂ R(s)p.

If we do not have the information constraint subspace
Sp in (1), it is well known that the problem may be solved
easily by exploiting a simple change of variables, which
is known as the Youla Parametrization. However, in the
presence of the information constraint Sp, the problem is
difficult to solve in general cases. One reason why this
problem is difficult to solve is because ‖fL(P,K)‖, the
objective function of the problem (1), is not a convex
function of K.

In this paper, we do not consider the constraint that
the controller K must stabilize the closed-loop system.
For many practical problems of interest this constraint
is a weaker one than the constraint that the closed-loop
norm be finite, and therfore in such cases the optimal
controllers found by our approach will automatically be
stabilizing.



3 Elimination Theory

In this section we review some basic concepts from alge-
braic geometry and the elimination theory. The material
in this section is from [3]; see that reference for further
details and proofs.

Definition 1. Given I = 〈f1, . . . , fs〉 ⊂ F[x1, . . . , xn],
we define the l-th elimination ideal Il to be the ideal of

F[xl+1, . . . , xn] defined by

Il = I ∩ F[xl+1, . . . , xn].

With a proper monomial order, Groebner bases solve
the elimination problem. This is presented in the follow-
ing theorem called The Elimination Theorem.

Theorem 2. Let I ⊂ F[x1, . . . , xn] be an ideal and let G
be a Groebner basis of I with respect to lex order where

x1 > x2 > · · · > xn. Then, for every 0 ≤ l ≤ n, the set

Gl = G ∩ F[xl+1, . . . , xn]

is a Groebner basis of the l-th elimination ideal Il.

Elimination corresponds to projecting a variety onto a
lower dimensional subspace. Suppose that we are given
V = V(f1, . . . , fs) ⊂ Fn. To eliminate the first l variables
x1, . . . , xl, we will consider the projection map πl : Fn →
Fn−l, which sends (x1, . . . , xn) to (xl+1, . . . , xn). If we
apply πl to V ⊂ Fn, then we get πl(V ) ⊂ Fn−l. The next
theorem, which is known as The Closure Theorem,
deals with the relation between πl(V ) and V(Il).

Theorem 3. Let F be an algebraically closed field. Let

V = V(f1, . . . , fs) ⊂ Fn and Il be the l-th elimination

ideal of 〈f1, . . . , fs〉. Then, V(Il) is the smallest variety

containing πl(V ) ⊂ Fn−l.

Finally, we state an important theorem, which will be
directly applied to the problem of the decentralized con-
trol in the next section. Suppose that we are given a
system of rational function equations as follows:

xi =
qi(t1, . . . , tm)

di(t1, . . . , tm)
for i = 1, . . . , n (2)

where qi, di ∈ F[t1, . . . , tm] for all i = 1, . . . , n. This
system of equation is called rational parametrization. If
we let W = V(d1d2 · · · dn) ⊂ Fm, then it is clear that

f(t1, . . . , tm) =

(

q1(t1, . . . , tm)

d1(t1, . . . , tm)
, . . . ,

qn(t1, . . . , tm)

dn(t1, . . . , tm)

)

defines a map f : Fm − W → Fn.

Theorem 4. If F is an infinite field, let f : Fm −
W → Fn be the function determined by the rational

parametrization (2). Let J be the ideal J = 〈x1d1 −
q1, . . . , xndn − qn, 1 − yd〉 ⊂ F[y, t1, . . . , tm, x1, . . . , xn],
where d = d1d2 · · · dn, and let Jm+1 = J ∩ F[x1, . . . , xn]
be the (m+1)-th elimination ideal. Then V(Jm+1) is the

smallest variety in Fn containing f(Fm − W ).

4 Characterizing Closed-Loop Maps

For the remainder of this paper we focus on the case
when Sp is defined by a sparsity constraint as follows.
We define Sp by

Sp =

{

K ∈ R(s)nu×ny

p

∣

∣

∣
K =

m
∑

i=1

tiE
i, ti ∈ R(s)p

for all i = 1, . . . ,m

}

, (3)

where we let Z =
{

E1, . . . , Em
}

be a linearly indepen-
dent set of matrices Ei ∈ {0, 1}nu×ny and let each Ei

be a binary matrix with exactly one non-zero element.
Therefore, we represent the information constraint Sp as
the set of all finite linear combinations of basis matrices
Ei with coefficients in R(s)p.

We also define the associated set of transfer function
matrices which are not necessarily proper as

S =

{

K ∈ R(s)nu×ny

∣

∣

∣
K =

m
∑

i=1

tiE
i, ti ∈ R(s)

for all i = 1, . . . ,m

}

. (4)

S can be interpreted as the set of real-rational transfer
function matrices with the same sparsity pattern as Sp

with the properness constraint relaxed. Therefore, Sp =
S ∩ R(s)p.

An important point to note is that we consider the set
of real-rational functions in s, i.e., R(s) as a field F. Note
that Theorem 4 holds for any infinite field F. Certainly,
R(s) is an infinite field, hence we can apply Theorem 4.

4.1 The Controller Elimination Algorithm

Consider the linear fractional transformation

fL(P,K) = P11 + P12K(I − P22K)−1P21

= P11 + f(P,K).

From linear algebra, we know that if I − P22K is invert-
ible,

f(P,K) =
P12K adj(I − P22K)P21

det(I − P22K)
.

Note that, from (4),

det(I − P22K) = det
(

I −

m
∑

i=1

tiP22E
i
)

.

Therefore, det(I − P22K) ∈ R(s)[t1, . . . , tm] for any
K ∈ S. In other words, det(I −P22K) is a polynomial in
variables t1, . . . , tm with coefficients in R(s). Similarly,
adj(I − P22K) is a matrix whose elements are also poly-
nomials in variables t1, . . . , tm with coefficients in R(s).
These facts follow from linear algebra.



Now, we define d(t1, . . . , tm) = det(I − P22K) and
Q(t1, . . . , tm) = P12K adj(I − P22K)P21. Then, we have

f(P,K) =
Q(t1, . . . , tm)

d(t1, . . . , tm)
.

Let q11, . . . , qnznw
∈ R(s)[t1, . . . , tm] be the entries of

Q = P12K adj(I − P22K)P21. Then X ∈ f(P, S ∩ M)
if and only if there exists t1, . . . , tm ∈ R(s) such that the
following equations hold:

x11 =
q11(t1, . . . , tm)

d(t1, . . . , tm)
, . . . , xnznw

=
qnznw

(t1, . . . , tm)

d(t1, . . . , tm)
,

where xij are the entries of X.

We now proceed to eliminate t1, . . . , tm using Theo-
rem 4, to give the main result of this paper. Theorem 5
below is an easy application of Theorem 4 and the proof
is omitted due to space constraints.

Theorem 5. Suppose P ∈ R(s)(nz+ny)×(nw+nu) and S ⊂
R(s)nu×ny is as defined in (4). Define d, q11, . . . , qnznw

as above, and let J be the ideal

J = 〈x11d − q11, . . . , xnznw
d − qnznw

, 1 − yd〉

so that J ⊂ R(s)[y, t1, . . . , tm, x11, . . . , xnznw
]. Let

Jm+1 = J ∩R(s)[x11, . . . , xnznw
] be the (m + 1)-th elimi-

nation ideal of J . Then V(Jm+1) is the smallest variety

in R(s)nznw containing f(P, S ∩ M).

Controller elimination algorithm. From Theo-
rem 5, we have the following algorithm to find the
smallest variety containing f(P, S ∩ M). Starting with
P ∈ R(s) and sparsity basis Z =

{

E1, . . . , Em
}

,

(i) Find the polynomials d and q11, . . . , qnznw
in vari-

ables t1, . . . , tm with coefficients in R(s).

(ii) Let the ideal J be generated by the polynomi-
als x11d − q11, . . . , xnznw

d − qnznw
, 1 − yd, each

in R(s)[y, t1, . . . , tm, x11, . . . , xnznw
]. Using these

polynomials to represent the ideal J , find a Groeb-
ner basis G of J with respect to the lexicographic
ordering where y > t1 > . . . > tm > x11 > . . . >
xnznw

.

(iii) Select those polynomials from the Groebner basis
G which generate the (m + 1)-th elimination ideal
Jm+1 = J ∩ R(s)[x11, . . . , xnznw

].

(iv) V(Jm+1) = V(Gm+1) is the smallest variety con-
taining f(P, S ∩ M).

We have succeeded in parametrizing the set f(P, S ∩
M) with variables x11, . . . , xnznw

. In other words, the
Groebner basis Gm+1 of the (m+1)-th elimination ideal
Jm+1 contains the polynomial equations that any closed-
loop map should satisfy.

If V(Jm+1) is a convex set, then we may be able to find
an optimal closed-loop map fL(P,K∗) of the problem (1).
Computing an optimal closed-loop map and optimal con-
troller will be discussed in the following sections.

4.2 Finding an Optimal Closed-Loop Map

Even though we succeeded in parametrizing the set
of closed-loop maps with variables x11, . . . , xnznw

, the
smallest variety found by the controller elimination al-
gorithm may fail to be a convex set. In this case, our
introduced method fails to change the problem (1) to a
tractable convex programming problem, even though the
algorithm could characterize the set of closed-loop maps.

Now, suppose that the smallest variety V(Jm+1) turns
out to be convex, in particular, a linear subspace (or
affine set). In other words, the Groebner basis Gm+1 of
the elimination ideal Jm+1 happens to be a set of affine
polynomials in variables x11, . . . , xnznw

. In this case, let
l denote the number of polynomials of Gm+1, i.e., l =
|Gm+1|. Then the Groebner basis of the elimination ideal
can be concisely written as Ai · X + bi for i = 1, . . . , l,
where A ·B = trace(AT B). Therefore, we know that any
X ∈ V(Jm+1) should satisfy

Ai · X + bi = 0 for all i = 1, . . . , l. (5)

Note that 0 ∈ V(Jm+1) because f(P, 0) = 0. There-
fore, X = 0 is a solution of (5), hence bi = 0 for all
i = 1, . . . , l. We summarize in the following corollary.

Corollary 6. Suppose P ∈ R(s)(nz+ny)×(nw+nu) and

S ⊂ R(s)nu×ny is as defined in (4). Suppose that the va-

riety V(Jm+1) is affine, hence we can define A1, . . . , Al

as above. If X ∈ R(s)nz×nw there exists K ∈ S∩M such

that X = P12K(I − P22K)−1P21 only if Ai · X = 0 for

all i = 1, . . . , l.

Now, we can formulate the problem of finding an
optimal closed-loop map as follows. For any P ∈
R(s)(nz+ny)×(nw+nu) we would like to solve

minimize ‖X + P11‖

subject to Ai · X = 0 for all i = 1, . . . , l

X ∈ R(s)nu×ny

(6)

4.3 Proper Controllers

In the previous section, we reformulated the original
problem (1) as a convex problem (6). However, one
caveat should be mentioned. The elimination theorem
assumes that the variables t1, . . . , tm can have all the val-
ues in the field R(s), i.e., t1, . . . , tm can be non-proper
real-rational functions. Therefore, the smallest variety
V(Jm+1) from the elimination algorithm includes the set
f(P, S ∩ M), which is a much bigger set than f(P, Sp).
In other words,

f(P, Sp) ⊂ f(P, S ∩ M) ⊂ V(Jm+1),

and the inclusions are strict in general. Recall that we
want to characterize the set f(P, Sp).



However, note that if P ∈ R(s)p, P22 ∈ R(s)sp, and
Sp ⊂ R(s)p, then f(P, Sp) ⊂ R(s)p. This can be eas-
ily proved (See [9], for example). Recall that we have
P ∈ R(s)p, P22 ∈ R(s)sp, and Sp ⊂ R(s)p in the original
problem (1). Therefore, when we try to find an optimal
closed-loop map fL(P,K∗) with K∗ ∈ Sp, we can restrict
V(Jm+1) to V(Jm+1)∩R(s)p without losing any closed-
loop map fL(P,K) with K ∈ Sp. In other words, we
have

f(P, Sp) ⊂ V(Jm+1) ∩ R(s)p.

Therefore, Corollary 6 can be restated for the case of
proper controllers as the following:

Corollary 7. Suppose P ∈ R(s)
(nz+ny)×(nw+nu)
p , P22 ∈

R(s)
ny×nu

sp , and Sp ⊂ R(s)
nu×ny

p is as defined in (3).
Suppose that the variety V(Jm+1) is affine and define

A1, . . . , Al as above. If X ∈ R(s)nz×nw

p there exists K ∈

Sp such that X = P12K(I−P22K)−1P21 only if Ai·X = 0
for all i = 1, . . . , l.

Recall we would like to solve the optimization problem

minimize ‖P11 + P12K(I − P22K)−1P21‖

subject to K ∈ Sp

When V(Jm+1) is affine, we solve instead the following
optimization problem:

minimize ‖X + P11‖

subject to Ai · X = 0 for all i = 1, . . . , l

X ∈ R(s)nu×ny

p

(7)

Note that the above problem (7) is a convex optimiza-
tion problem. Therefore, we may be able to solve this
problem efficiently [2]. If X∗ is an optimal solution of (7),
then X∗+P11 is a strong candidate for an optimal closed-
loop map fL(P,K∗).

4.4 Finding an Optimal Controller

In the previous section, we reformulated the decentral-
ized control problem (1) as a convex optimization prob-
lem (7) if V(Jm+1) turned out to be a linear subspace.
However, there can be still some gap between the two
problems, (1) and (7). In other words, even though
X∗ is an optimal solution of (7), it may be the case
that X∗ /∈ f(P, Sp). This is because we only have
f(P, Sp) ⊂ V(Jm+1) ∩ R(s)p and the inclusion is not
guaranteed to be equality. If the inclusion becomes equal-
ity, then the two problems are equivalent and we can
solve (1).

Unfortunately, we can not guarantee that we always
have the equality f(P, Sp) = V(Jm+1) ∩ R(s)p even
though the smallest variety V(Jm+1) becomes a lin-
ear subspace. However, we believe that f(P, Sp) =
V(Jm+1) ∩ R(s)p in most cases of (1). In particular,

we discuss the case of quadratically invariant problems
in the next section and show that quadratic invariance
with an additional technical condition gives this equality.

Note that, even though f(P, Sp) ( V(Jm+1) ∩ R(s)p,
given an optimal solution X∗ of (7), if we find a controller
K∗ ∈ Sp such that X∗ = f(P,K∗), then (1) is completely
solved and K∗ is an optimal controller. In general, we
do not know how to find a K given f(P,K): however,
we have a partial result, which follows from Lemma 10.4
of [9]. The proof is omitted.

Theorem 8. Let P =

[

P11 P12

P21 P22

]

and K be rational

transfer function matrices. If P and fL(P,K) are proper,

det P (∞) 6= 0, det

(

P −

[

fL(P,K) 0
0 0

])

(∞) 6= 0, and

P12 and P21 are square and invertible for almost all s,
then K is proper and K = fU (P−1, fL(P,K)).

4.5 Quadratic Invariance

In this section, we consider the quadratically invariant
problems. We prove that under an additional techni-
cal assumption, quadratically invariant problems can be
solved by the controller elimination algorithm. First, we
introduce the following definitions and results from [6].

Definition 9. Suppose Sp ⊂ R(s)
nu×ny

p and P22 ∈

R(s)
ny×nu

sp . The set Sp is called quadratically invari-

ant under P22 if

KP22K ∈ Sp for all K ∈ Sp.

Definition 10. Given P22 ∈ R(s)ny×nu , we define a map

h : M → R(s)nu×ny by

h(K) = −K(I − P22K)−1 for all K ∈ M.

Theorem 11. Suppose P22 ∈ R(s)
ny×nu

sp and Sp ⊂

R(s)
nu×ny

p is a sparsity constraint. Then

Sp is quadratically invariant under P22 ⇐⇒ h(Sp) = Sp.

Now, we introduce a technical condition for our results.

Definition 12. Suppose that Sp ⊂ R(s)
nu×ny

p is a spar-

sity constraint, P ∈ R(s)
(nz+ny)×(nw+nu)
p , and P22 ∈

R(s)
ny×nu

sp . We say that Sp is proper preserved un-

der P if

{ m
∑

i=1

ti(P12E
iP21)

∣

∣

∣
ti ∈ R(s)

}

∩ R(s)p =

{ m
∑

i=1

ti(P12E
iP21)

∣

∣

∣
ti ∈ R(s)p

}

.

Note that the condition of being proper preserved may
be easily checked by inspecting the elements of P12E

iP21.



Finally, we state a theorem which shows that the con-
troller elimination algorithm can solve problems that are
both quadratically invariant and proper preserved. The
proof is omitted due to space constraints.

Theorem 13. Suppose that P ∈ R(s)
(nz+ny)×(nw+nu)
p ,

P22 ∈ R(s)
ny×nu

sp and the information constraint Sp ⊂

R(s)
nu×ny

p is a sparsity constraint. Suppose also that Sp

is quadratically invariant under P22 and is proper pre-

served under P . Then

f(P, Sp) = V(Jm+1) ∩ R(s)p.

5 Example

We consider an example, which is not quadratically in-
variant, hence we have no systematic method to find an
optimal controller except the controller elimination algo-
rithm.

Suppose that we are given a plant transfer function
matrix P as follows:

P11 =

[ 1
s+4 0

0 1
s+5

]

, P12 =

[

1 1
s+6

0 1

]

,

P21 =





1 1
s+7

1
s+8 0

0 1



 , P22 =





1
s+1 0
1

s+2 0

0 1
s+3



 .

Suppose also that the information constraint Sp is given
as Sp =

{

K ∈ R(s)2×3
p | K12 = K13 = K21 = 0

}

. There-
fore, any K ∈ Sp can be represented as a linear combi-
nation of basis matrices:

K = t1

[

1 0 0
0 0 0

]

+ t2

[

0 0 0
0 1 0

]

+ t3

[

0 0 0
0 0 1

]

,

where t1, t2, t3 ∈ R(s)p.

Executing the controller elimination algorithm gives us
the elimination ideal

J4 =

〈

(

−
1

s + 7

)

x11 +
( 1

(s + 6)(s + 7)

)

x21+

x12 +
(

−
s2 + 11s + 24

(s + 3)(s + 6)(s + 8)

)

x22

〉

.

Therefore, we have

fL(P, Sp) ⊂

{

[ 1
s+4 0

0 1
s+5

]

+

[

1
s+6 0

1 0

]

a+

[

1 0

0 − (s+3)(s+6)(s+8)
(s+7)(s2+11s+24)

]

b+

[

0 s2+11s+24
(s+3)(s+6)(s+8)

0 1

]

c

∣

∣

∣

∣

a, b, c ∈ R(s)p

}

.

We can find an optimal closed-loop map fL(P,K∗) in
the right-hand side set, which minimizes H2 norm. It
turns out that the optimal value is 0.0779 and we can
find the optimal controller K∗ from f(P,K∗). Details
are omitted due to space constraints.

6 Summary and Conclusion

We presented the controller elimination algorithm, based
on algebraic geometry, which can solve a broad class of
decentralized control problems. The main idea of the
algorithm is that we can eliminate the controller vari-
ables to find the smallest variety containing all possible
closed-loop maps. We also showed that the algorithm
can solve quadratically invariant problems, subject to a
certain technical condition. We presented an example,
whose system is not quadratically invariant, illustrating
the proposed algorithm.

The approach of this paper has been to characterize
which decentralized control problems have simple sets of
achievable closed-loop maps, and in particular when this
set is affine. As an abstract question, this is inherently a
problem of elimination for rational functions, and hence
Groebner bases are a natural tool, and these provide very
strong conditions in the field of algebraic geometry. This
paper transfers that approach to the specific linear frac-
tional rational functions which are of importance in con-
trol. While for general rational functions Groebner bases
are a cornerstone of any elimination approach, it may be
possible to develop stronger elimination methods for spe-
cific control problems, and that is a question for future
research.
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