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Abstract

We develop controller synthesis algorithms for decentral-
ized control problems, where individual subsystems are
connected over a network. We focus on the simplest infor-
mation structure, consisting of two interconnected linear
systems, and construct the optimal controller subject to
a decentralization constraint via a spectral factorization
approach. We provide explicit state-space formulae for
the optimal controller, characterize its order, and show
that its states are those of a particular optimal estimator.

1 Introduction

We are interested in controller synthesis algorithms for
distributed control problems, where individual subsys-
tems are connected over a network. Examples of such
problems include formation flight, networked control,
teams of vehicles, and many other applications involving
multiple agents interacting to achieve a global objective.

Many recent papers address such controller synthesis
problems. While some problem formulations are cur-
rently intractable [2], or have nonlinear optimal con-
trollers [16], others have optimal linear controllers [8]
which may be computed via convex optimization [10].

In this paper, we focus on a very specific informa-
tion structure, consisting of two interconnected systems
with dynamics such that player 1’s state affects player 2’s
state. Our objective is to find a pair of controllers such
that player 1 has access only to the first state, whereas
player 2 can measure both states. The controller should
be chosen to minimize an expected quadratic cost.

This problem is known to have a linear optimal con-
troller which may be found via convex optimization [15,
3, 10, 8]. Unfortunately, most existing convex formula-
tions of this problem are infinite-dimensional. Specifi-
cally, the approach in [8] requires a change of variables
via the Youla parameterization, and optimization over
this parameter. The parameter itself is a linear stable
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system, and a standard parameterization would be via a
basis for the impulse response function. This is in con-
trast to the centralized case, for which there are explicit
state-space formulae.

In this paper, we provide explicit formulae for the op-
timal controllers for this system. We show that both
controllers separate naturally into a composition of con-
troller and estimator, and each has the same number of
states as player 2. Such formulae offer the practical ad-
vantages of computational reliability and simplicity, as
well as providing understanding and interpretation of the
controller structure. Also, it establishes the order of the
optimal controller for this system, an open problem for
general decentralized systems. Our approach makes use
of spectral factorization, and for simplicity we focus on
the finite-horizon time-varying case. We anticipate that
the spectral factorization methods used here extend nat-
urally to more general networks, and the results in this
paper are a first step towards general state-space solu-
tions.

Previous Work. Since the general decentralized prob-
lem is currently intractable, most work has been centered
around classifying systems that can be reformulated as
convex problems [3, 5, 6, 1]. These results were unified
and generalized under the concept of quadratic invari-
ance [9]. For systems represented by graph structures
and sparsity constraints, necessary and sufficient condi-
tions for quadratic invariance of such systems was pro-
vided in [13]. Similar results were achieved in [12] from
a poset-based framework.

Many different approaches have been taken to try and
find numerical solutions to these problems. Some meth-
ods were suggested, though not implemented, in [15].
For the problem considered here, [11] provides a solu-
tion based on semidefinite programming. Other SDP
based approaches have been provided in [7, 17]. For
the quadratic case, vectorization [8] provides a finite-
dimensional approach, but this loses the intrinsic struc-
ture and results in high-order controllers.

However, in none of these approaches have explicit
state-space formulae been derived. In this paper, we take
a spectral factorization approach, similar to [14], to de-
rive explicit state-space formulae for the two-player prob-
lem. As a result, we can efficiently and analytically com-
pute the optimal controllers for this distributed problem.
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Moreover, we gain insight into the form of the solution
which previous approaches do not provide.

2 Problem Formulation

We consider two interconnected systems with overall dy-
namics[

x1(t+ 1)
x2(t+ 1)

]
=

[
A11(t) 0
A21(t) A22(t)

] [
x1(t)
x2(t)

]
+

[
B11(t) 0
B21(t) B22(t)

] [
u1(t)
u2(t)

]
+

[
H1(t+ 1) 0

0 H2(t+ 1)

] [
w1(t+ 1)
w2(t+ 1)

]
(1)

for t = 0, . . . , N − 1 with initial condition x(0) =
H(0)w(0) and output

z(t) =
[
C1(t) C2(t)

] [x1(t)
x2(t)

]
+
[
D1(t) D2(t)

] [u1(t)
u2(t)

]
(2)

Here xi(t) is the state of system i at time t, ui(t) is the
control action taken by system i, and wi(t) is external
noise, which is assumed IID Gaussian with unit covari-
ance. We let A(t), B(t), C(t), D(t), H(t) be the matrices
defined in (1) and (2), and assume for all t

CT (t)D(t) = 0 DT (t)D(t) > 0

Our objective is to find controllers, where u1(t) is a
function of x1(0), . . . , x1(t), and u2(t) is a function of
x(0), . . . , x(t). That is, player 1 has access only to the
first state, whereas player 2 can measure both states.
This information structure is common knowledge for
both players. The cost function of interest is

E

N∑
t=0

‖z(t)‖2

which is equal to the usual LQR cost, when CTC is de-
noted by Q and DTD is denoted by R. Note that this
framework allows us to couple the states x1 and x2 in the
cost, since CTC need not be block diagonal.

We use the following notation throughout this paper.
For a sequence of vectors x(0), x(1), . . . , x(N) and matri-
ces A(0), . . . , A(N) we denote

x =

 x(0)
...

x(N)

 A =

A(0)
. . .

A(N)

 (3)

Define the shift matrix

Z =


0
I 0

. . .
I 0

 (4)

The dimensions of Z will be defined by the context. If
X is a block diagonal matrix, we use X+ to denote the
block diagonal matrix X+ = ZTXZ.

The system dynamics (1) are then equivalent to

x = ZAx+ ZBu+Hw

z = Cx+Du
(5)

Using this notation, we define Ã to be

Ã =

[
A11 A12

A21 A22

]
=


A11(0) A12(0)

. . .
. . .

A21(0) A22(0)
. . .

. . .


Note that A and Ã are related by permutation. We define
this permutation matrix to be P, where its dimensions
are implied by the context, so that A = PÃPT . In many
cases, we will define a matrix by its tilde notation.

We’ll define for convenience T = (I − ZA)−1. We
use the term lower to mean lower triangular, and we
define lower(·) to be the projection of any matrix M to its
lower triangular component, so that (lower(M))ij = Mij

if i ≥ j, and zero otherwise. From (5), we have

z = P11w + P12u

x = P21w + P22u

where[
P11 P12

P21 P22

]
=

[
C(I − ZA)−1H C(I − ZA)−1ZB +D
(I − ZA)−1H (I − ZA)−1ZB

]
The sparsity structure of P22 is that it is block lower
triangular, and each block is itself a 2 × 2 block lower
triangular matrix. Let S be the set of such matrices.
Note that a matrix T ∈ S if and only if

T̃ =

[
T̃11 0

T̃21 T̃22

]
and each T̃ij is lower triangular.

In this problem, we are interested in an information
structure whereby player 1 determines the input u1 based
on causal measurements of x1, and player 2 determines
u2 based causally on both x1 and x2. The set of linear
maps with this information structure is also S.

Suppose the controller is K ∈ S so that u = Kx, and
the closed-loop map from w to z is given by

z =
(
P11 + P12K(I − P22K)−1P21

)
w

Then, our optimization problem is

minimize ‖P11 + P12K(I − P22K)−1P21‖2F
subject to K ∈ S

(6)
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3 Main Results.

Having established our notation and problem formula-
tion, we now present the optimal solution for (6). We
will develop the proof for this result in the following two
sections.

Theorem 1. Let X be the unique block diagonal solution
to the Riccati equation

X = CT
2 C2 +AT

22X
+A22

−AT
22X

+B22(DT
2 D2 +BT

22X
+B22)−1BT

22X
+A22 (7)

and J be the associated matrix

J = (DT
2 D2 +BT

22X
+B22)−1BT

22X
+A22 (8)

Also, let Y be the unique block diagonal solution to the
Riccati equation

Y = CTC +ATY +A

−ATY +B(DTD +BTY +B)−1BTY +A (9)

with K the associated matrix

K = (DTD +BTY +B)−1BTY +A (10)

Let

AK(t) = A22(t)−B21(t)K12(t)−B22(t)K22(t)

BK(t) = A21(t)−B21(t)K11(t)−B22(t)K21(t)

The optimal controllers are:

• Controller 1 has realization

q1(t+ 1) = AK(t)q1(t) +BK(t)x1(t)

u1(t) = −K12(t)q1(t)−K11(t)x1(t)

• Controller 2 has realization

q2(t+ 1) = AK(t)q2(t) +BK(t)x1(t)

u2(t) =
(
J(t)−K22(t)

)
q2(t)

−K21x1(t)− J(t)x2(t)

Note that the Riccati equations (7) and (9) are sim-
ply Riccati recursions written in block diagonal notation;
hence, unique solutions are guaranteed. Having estab-
lished the form of the optimal controller, a number of
remarks are in order.

With the inclusion of q1 and q2, the optimal controller
is not a static gain, despite the fact that we have state
feedback in each subsystem and player 2 has complete
state information. Contrast this result with the classi-
cal LQR controller in which the optimal centralized con-
troller would be the static gain K. In fact, both con-
trollers have dynamics, and each has the same number of
states as system 2.

It will be shown in Section 6 that q1 and q2 in the op-
timal controllers are in fact the minimum-mean square
error estimate of x2 given the history of x1. Letting
η(t) = E

(
x2(t) | x1(t), . . . , x1(0)

)
the optimal control

policy can be written as

u1(t) = −K11(t)x1(t)−K12(t)η(t) (11)

u2(t) = −K21(t)x1(t)−K22(t)η(t) + J(t)
(
η(t)− x2(t)

)
Thus, the optimal policy is, in fact, attempting to per-
form the optimal centralized policy, though using η in-
stead of x2. However, there is an additional term in u2

which represents the error between x2 and its estimate
η. We also see that in the case where x2 is deterministic,
so that η = x2, then the optimal distributed controller
reduces to the optimal centralized solution, as it should.

In contrast to the optimal solution presented above,
consider the following heuristic solutions.

Kproj The optimal controller is not a static gain. Thus,
one might take the optimal centralized gain, K,
and project it onto the set S; basically, zeroing
K12 and setting q2(t) = x2(t).

Kest Since player 2 has complete state information, we
drop the estimation occurring in player 2 and use
the centralized solution; setting q2(t) = x2(t).

While the first heuristic Kproj is a fairly naive ap-
proach, it is a common misconception that Kest is an
optimal controller; that is, player 2 does not require esti-
mation since it has complete knowledge of the state. In
general, such a controller is strictly suboptimal.

Although we have not placed any explicit constraints
on the communication channels, some immediate results
of this controller follow. In particular, in many cases the
dimension of u2 is much smaller than that of x1. As
a result, passing −K21(t)x1(t) − (K22(t) − J(t))η(t) to
player 2, instead of x1(t), can save bandwidth on the
communication channel and is beneficial in cases where
memory or computation is expensive in player 2.

4 Quadratic Invariance and Change of
Variables

It is straightforward to show that the set S is quadrati-
cally invariant with respect to P22, (in this case because
S is an algebra) so the optimal controller with this infor-
mation pattern is linear [8] and may be found via convex
programming [10].

Note P21,P−1
21 ∈ S and I − P22K is invertible for all

K ∈ S, so we can use the change of variables Q = K(I −
P22K)−1P21to solve the equivalent, convex optimization
problem

minimize ‖P11 + P12Q‖2F
subject to Q ∈ S

(12)
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This change of variables is bijective as required, so after
finding the optimal Q the optimal K is given by

K = (I +QP−1
21 P22)−1QP−1

21

Define S⊥ according to the usual inner product, so that
T ∈ S⊥ if and only if traceTTB = 0 for all B ∈ S. Note
that T ∈ S⊥ if and only if

T̃ =

[
T̃11 T̃12

T̃21 T̃22

]
and T̃11, T̃21, T̃22 are all strictly upper triangular.

Lemma 2. Suppose S is a subspace of Rm×n, A ∈ Rp×m

and B ∈ Rp×n. Then Q ∈ S is optimal for

minimize ‖B +AQ‖2F
subject to Q ∈ S

(13)

if and only if ATB +ATAQ ∈ S⊥.

Proof. This result follows from the KKT conditions,
and the details are omitted due to space constraints.

Lemma 2 implies that Q ∈ S is optimal for prob-
lem (12) if and only if

PT
12P11 + PT

12P12Q ∈ S⊥ (14)

5 Solution of the Optimality Conditions

If we permute the optimality condition (14), it has the
following structure


︸ ︷︷ ︸
P̃T

12P̃11

+




︸ ︷︷ ︸
P̃T

12P̃12




︸ ︷︷ ︸
Q̃

=




︸ ︷︷ ︸
Λ̃

where Λ ∈ S⊥. For the centralized version of this control
problem, the set S is replaced by the set of lower triangu-
lar matrices, and condition (14) may then be solved via
spectral factorization of PT

12P12. For the decentralized
version, we will need to decompose the problem into two
separate problems, as in the following lemma.

Lemma 3. Suppose F is permuted and partitioned so
that

F̃ =

[
F̃11 F̃12

F̃21 F̃22

]
and similarly for G and Q. Suppose Q ∈ S. Then,
G + FQ ∈ S⊥ if and only if the following conditions
both hold:

(i) G̃22 + F̃22Q̃22 is strictly upper

(ii) P
([
G̃11

G̃21

]
+ F̃

[
Q̃11

Q̃21

])
is strictly upper

Proof. This follows from the definition of S.

Both conditions in Lemma 3 have the form B + AQ is
strictly upper, which has the following structure[ ]

︸ ︷︷ ︸
B

+
[ ]
︸ ︷︷ ︸

A

[ ]
︸ ︷︷ ︸

Q

=
[ ]
︸ ︷︷ ︸

Ω

(15)

where Ω is a strictly upper triangular matrix. This equa-
tion is solved via a triangular factorization of A, as in the
following lemma.

Lemma 4. Suppose A,B are square matrices and A >
0 with factorization A = LTFL where L is lower and
invertible, and F is diagonal. Then there exists a unique
lower Q such that B +AQ is strictly upper, given by

Q = −L−1F−1 lower(L−TB)

Proof. We have LTFLQ + B is strictly upper if and
only if FLQ+L−TB is strictly upper, which holds if and
only if lower(FLQ + L−TB) = 0, from which the result
follows.

The required factorization is a standard spectral fac-
torization result, as below.

Lemma 5. Suppose A,B,C and D are block diagonal
matrices of appropriate dimensions with CTD = 0 and
DTD > 0. Let G = C(I − ZA)−1ZB + D, and let P be
the unique block diagonal matrix satisfying

P = CTC +ATP+A

−ATP+B(DTD +BTP+B)−1BTP+A (16)

and define the block diagonal matrices

F = DTD +BTP+B K = F−1BTP+A

and the lower triangular matrix

L = I +K(I − ZA)−1ZB

Then, GTG = LTFL and

L−TGTCT = FKT +BTZT (I+Z(A−BK))−TP (17)

Proof. This result is standard. A simple proof follows
the approach in [4]. Note that the Riccati equation (16)
may be expressed as a recursion, and so it always has a
unique block diagonal solution.

Now we can solve conditions of the form (15), explicitly
in state-space, as follows.

Lemma 6. Suppose A,B,C, D and H are block diagonal
matrices of appropriate dimensions with CTD = 0 and
DTD > 0. Let

G = C(I − ZA)−1ZB +D E = C(I − ZA)−1H

Then there exists a unique lower triangular Q such that
GTGQ + GTE is strictly upper, given by

Q = −K(I − Z(A−BK))−1H

where K is as in Lemma 5.
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Proof. From Lemma 5 we have GTG = LTFL, where
L and F are defined in the Lemma. Then from Lemma 4
we have existence and uniqueness of Q, and

Q = −L−1F−1 lower(L−TGTE)

Now using (17) we have Q = −L−1KT H, and the result
follows.

We partition the identity matrix as I =
[
E1 E2

]
,

where the dimensions conform to the context in which
they are used. To solve the optimization problem (12),
we can now apply Lemma 3 to find Q satisfying the op-
timality condition (14), as follows.

Lemma 7. Suppose Q ∈ S. Let X,Y, J,K be defined by
the Riccati equations (7–10). Then the unique optimal Q
for (12) is given by

Q̃ =

[
Q̃11 0

Q̃21 Q̃22

]
where

Q̃22 = −J
(
I − Z(A22 −B22J)

)−1
H2 (18)[

Q̃11

Q̃21

]
= −K̃

(
I − Z̃(Ã− B̃K̃)

)−1
[
H1

0

]
(19)

Proof. This result follows by applying Lemma 3 to the
optimality condition (14). In the notation of the Lemma,
we have F = PT

12P12 and G = PT
12P11. Condition (i) of

Lemma 3 is that F̃22Q̃22 +G̃22 is strictly upper. We have
F̃22 = GTG and G̃22 = GTE where

G = P12PE2 = C2(I − ZA22)−1B22 +D2

E = P11PE2 = C2(I − ZA22)−1H2

Hence, condition (i) is equivalent to the requirement that

GTE + GTGQ̃22 is strictly upper. Since, CT
2 D2 = 0 and

DT
2 D2 > 0, Lemma 6 gives (18).

Similarly, to obtain (19), let G = P12 and E = P11PE1.
Then, condition (ii) of Lemma 3 implies

GTGP

[
Q̃11

Q̃21

]
+ GTE is strictly upper

Note that HPE1 is block diagonal, and since Q ∈ S, it
follows that

P

[
Q̃11

Q̃21

]
is lower

and so Lemma 6 implies

P

[
Q̃11

Q̃21

]
= −K

(
I − Z(A−BK)

)−1
HPE1

from which (19) follows.

Using these results, we can find the optimal controller
for this distributed system.

Theorem 8. Suppose J and K are the block diagonal
matrices defined in Lemma 7. Let K be permuted and
partitioned so that

K̃ =

[
K11 K12

K21 K22

]
Then, the unique optimal K ∈ S for (6) is given by

K̃ = −
[

K11 +K12Φ 0
K21 +

(
K22 − J

)
Φ J

]
(20)

where

Φ = (I − ZET
2 (Ã− B̃K̃)E2)−1ZET

2 (Ã− B̃K̃)E1 (21)

Proof. From Lemma 7, we have the unique optimal
Q ∈ S for (12), given by (18) and (19). The unique
optimal K ∈ S for (6) can therefore be found from

K = QP−1
21 (I + P22QP−1

21 )−1

The result follows from algebraic manipulations, which
are omitted here due to space constraints.

Proof of Theorem 1. This result follows directly from
Theorem 8, where AK = ET

2 (Ã − B̃K̃)E2 and BK =

ET
2 (Ã− B̃K̃)E1.

6 Estimation Structure

Having determined the optimal controller for our prob-
lem, we turn now to analyzing this result. To lighten
notation, let M(t) = A22(t) − B22(t)J(t) and N(t) =
A(t)− B(t)K(t). From (21), define η = Φx1. Hence, we
obtain the following state-space system

η(t+ 1) = N22(t)η(t) +N21(t)x1(t)

with initial condition η(0) = 0. As a result, the opti-
mal policy is given by (11). Combining this with the
dynamics in (1), the closed-loop dynamics of the system
becomex1(t+ 1)
η(t+ 1)
x2(t+ 1)

 =

N11(t) N12(t) 0
N21(t) N22(t) 0
N21(t) N22(t)−M(t) M(t)

x1(t)
η(t)
x2(t)


+

H1(t+ 1) 0
0 0
0 H2(t+ 1)

[w1(t+ 1)
w2(t+ 1)

]
(22)

With the closed-loop system in mind, we now attempt
to construct the minimum-mean square error estimator
of x2(t) based on measurements of x1(0), . . . , x1(t) and
η(0), . . . , η(t), given by the conditional mean

E
(
x2(t) | x1(0), . . . , x1(t), η(0), . . . , η(t)

)
To this end, consider the following lemma.
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Lemma 9. Suppose x1, x2 represent the state of the fol-
lowing autonomous system driven by noise[
x1(t+ 1)
x2(t+ 1)

]
=

[
A11(t) 0
A21(t) A22(t)

] [
x1(t)
x2(t)

]
+

[
w1(t+ 1)
w2(t+ 1)

]
where x(0) = w(0), and w1(t), w2(t) are independent
Gaussians for all t ≥ 0. Define µ(t) such that

µ(t) = E
(
x2(t) | x1(0) = z(0), . . . , x1(t) = z(t)

)
Then, µ(0) = 0, and for each t ≥ 0,

µ(t+ 1) = A22(t)µ(t) +A21(t)z(t)

Proof. The proof, which we omit due to space
constraints, follows from Bayes’ law and the fact that
A12(t) = 0 for all t.

With this lemma, we obtain a very simple representa-
tion for the optimal controller.

Theorem 10. Suppose x1, x2, η are the states of the
autonomous system in (22). Then,

η(t) = E
(
x2(t) | x1(0), . . . , x1(t)

)
Proof. From (22), we see that the state transition
matrix is lower triangular. Thus, we can use the results
of Lemma 9 to get

µ(t+ 1) = M(t)µ(t) +
[
N21(t) N22(t)−M(t)

] [x1(t)
η(t)

]
= η(t+ 1) +M(t)

(
µ(t)− η(t)

)
where we have used the definition of η(t+ 1) in the last
expression. Now, since µ(0) = η(0) = 0, we inductively
see that µ(t) = η(t) for all t. Lastly, since η(t) can be de-
terministically computed given x1(t), . . . , x1(0), we have

η(t) = E
(
x2(t) | x1(0), . . . , x1(t), η(0), . . . , η(t)

)
= E

(
x2(t) | x1(0), . . . , x1(t)

)
as desired.

7 Conclusion

In this paper, we have analytically derived the optimal
state-space controller for a two player distributed sys-
tem. This was accomplished via a spectral factorization
technique. Analysis of the solution showed that the opti-
mal distributed controller involved an estimator, and the
order of the optimal controllers was established.

This work is a first step toward explicit state-space
solutions for more general distributed control problems.
The advantage of our technique used herein is that it ex-
tends naturally to more general distributed control struc-
tures. Our future work will involve these non-trivial ex-
tensions to more general structures, as well as the natural
extension to infinite horizon and output feedback prob-
lems.
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