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Abstract

We consider a networked control system, where each sub-
system evolves as a Markov decision process with some
extra inputs from other systems. Each subsystem is
coupled to its neighbors via communication links over
which the signals are delayed, but are otherwise trans-
mitted noise-free. A centralized controller receives de-
layed state information from each subsystem. The con-
trol action applied to each subsystem takes effect after
a certain delay rather than immediately. We give an ex-
plicit bound on the finite history of measurement and
control that is required for the optimal control of such
networked Markov decision processes. We also show that
these bounds depend only on the underlying graph struc-
ture as well as the associated delays. Thus, the partially
observed Markov decision process associated with a net-
worked Markov decision process can be converted into an
information state Markov decision process, whose state
does not grow with time.

Keywords: Networked Systems, Markov Decision Pro-
cesses, Delayed Systems.

I Introduction

We are interested in the control of an interconnected net-
work of subsystems. Each subsystem is modeled as a
Markov decision process (MDP), and the overall system
is referred to as a networked Markov decision process,
used to model a variety of control problems [1, 2]. This
paper shows that for networked MDPs, the optimal con-
troller is a function of a finite number of past observa-
tions.

We show that a networked MDP can be reduced to
an MDP with a sufficient information state that does not
grow with time. This sufficient information is a subset
of the entire information state and it captures all rele-
vant information required for the optimal control. This
significantly reduces the computational complexity as-
sociated with obtaining an optimal controller for net-
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worked MDPs. We also give explicit tight bounds on
the number of past observations required to compute an
optimal controller. We show that for networked MDPs,
the results depend only upon the network structure and
the associated delays.

For example, consider the two coupled subsystems

x1
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(
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t , ut, w
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Here xi is the state of subsystem i, and w1, w2 are IID
random processes. We impose the constraint that at
time t, the controller can measure x1

t and x2
t−1, so that

it receives delayed measurements from the second sub-
system. Notice also that the above dynamics has two
additional delays, each of two time-steps, in the coupling
between the subsystems. For this system, we show that
there is an optimal controller of the form

ut = µt(x
1
t , x

1
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1
t−2, x

1
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2
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2
t−2)

Here µt is simply a function, and in particular it does
not represent a system with state. This equation there-
fore tells us how much memory, or history dependence,
the controller has. This result does not depend on the
details of the functions f i or the cost function, and in
this paper we show that it holds for finite-state systems
with discounted and average cost models.

This paper determines explicitly the history depen-
dence of the controller, given the graph of delays accord-
ing to which the systems are interconnected, the measure-
ment delays, and the control action delays. The results
of this paper also provide a unifying framework covering
existing special cases, such as the delayed measurement
problem, where the dynamics are

xt+1 = f
(
xt, ut, wt

)

and at time t the controller has access to xt−n. Then
there is an optimal controller with the form

ut = µt(ut−n, . . . , ut−1, xt−n)

which is the well-known result of [3].

In the framework of this paper, the subsystems are
coupled to each other via communication links that are
noise free, pure delay lines, without packet losses or noisy
observations. The delays are fixed but may be different
for each interconnection. We assume that each subsys-
tem has a finite state space. A centralized controller re-
ceives delayed state measurements from each subsystem
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and computes an optimal control action to be applied to
each subsystem, which takes effect after a certain delay.
Although the controller receives state information from
each subsystem, each of these states is delayed by differ-
ent amounts, and so the current state of each subsystem
is not available to the controller. This system can thus
be represented as a partially observed Markov decision
process (POMDP).

Optimal control design for MDPs and POMDPs has
been studied extensively in the literature [4, 5, 6, 7].
There are two standard approaches to optimal control
of POMDPs. The first approach generates a policy that
is a function of the entire history of observation; this his-
tory is called an information state and it grows without
bound as time increases. In the second approach, the
controller is a function of the belief state which is the
posterior distribution of the current state of the system
conditioned on the entire observation history. For many
problems, the set of belief states is high dimensional and,
in general, the computation required to compute an op-
timal controller is prohibitively large. We are therefore
motivated to find a representation of the belief state that
is as small as possible.

MDPs with delays have also been studied in the litera-
ture. Altman and Nain [3] consider an MDP with delayed
state availability and showed that an optimal controller
is a function of the last observed state and the control ac-
tions since the last observed state. Bander and White [8]
extended this result to the case where partial state ob-
servation is available after a delay. MDPs with control
action delays are considered in [9]. In [10], the authors
unified these results by considering an MDP with obser-
vation delays, action delays as well as cost delays. They
also extended the result to the case of random delays.
Optimal control for linear systems with control action
delay was also considered in [11]. However, these works
consider only a single system with delayed information
to the controller.

Among the earliest works on distributed systems with
delays is [12], where a separation structure for the one-
step delay sharing pattern for a system with general non-
linear dynamics was obtained. Optimal control of lin-
ear systems with one-step delay sharing was also studied
in [13] in an input-output framework. The above works
considered systems with uniform delay patterns. That
is, each part of the state is delayed by the same amount.
In this work, we consider networked systems with gen-
eralized delay patterns where each part of the state can
potentially be delayed by a different amount. Compared
to our previous conference papers [14, 15], we consider
the case where we allow for arbitrary, finite but fixed de-
lays between subsystems, finite delays in receiving obser-
vations as well as finite delays in applying control inputs
to subsystems.

The rest of the paper is organized as follows. In Sec-
tion II, we briefly describe POMDPs and define the infor-
mation state for POMDPs. In Section III, we describe
networked MDPs without action delays. The informa-

tion state for networked MDPs without action delays is
derived in Section IV and this result is then extended to
networked MDPs with action delays in subsection IV-B.
Section V concludes the paper.

I-A Notation

We use xi
t to denote the state of the subsystem i at time t,

use yit to denote the observation received from subsys-
tem i, and ui

t to denote the control input applied to sub-
system i. If there is only one subsystem, we drop the
superscript and use xt, yt and ut to represent the state,
the observation and the control input for that single sub-
system. We also denote by z, s and a the realization of
the state x, observation y and control action u. We define
xi
t1:t2 :=

(
xi
t1 , . . . , x

i
t2

)
to be the list of states of subsys-

tem i from time t1 to t2. If t2 < t1, this is an empty list.
The notation x0:t = z0:t is interpreted as an element-
wise equality, meaning x0 = z0, x1 = z1, . . . , xt = zt. To
denote the list of variables corresponding to all subsys-
tems, we define xt :=

(
x1
t , . . . , x

n
t

)
. Similarly, we define

ut :=
(
u1
t , . . . , u

n
t

)
to be the control action applied to

all subsystems at time t. We define Ai
0:t := Ai

0A
i
1 . . . A

i
t

so that Ai
0:t is a product of functions. For a set X , the

notation Xn has two meanings. In one case it denotes
the n-fold Cartesian product of the set, and in the other
we use the superscript to label distinct sets, so that X i

is the set of states of system i. We rely on context to
distinguish these two uses. We write Z

+ for the set of
non-negative integers.

II Model and Definitions

II-A Partially Observed Markov Decision
Processes

A POMDP is a generalization of an MDP and is used
to model a variety of sequential decision processes. The
goal of the controller is to choose a sequence of actions
to optimize a predetermined criterion. We assume that
the decisions are made at discrete times t ∈ Z

+. Note
that in a POMDP the state of the system is not fully
observable [6, 16].

A POMDP is a tuple
(
X ,Y,U , A0(·), {At(·, ·, ·), t ≥

1}, Ct(·, ·), gt(·, ·)
)
, where X is the set of all possible

states, Y is the set of all possible observations and U
is the set of all possible actions taken by a player. Here
A0(z0) = Prob(x0 = z0) is the probability mass function
of the initial state of the system. For t > 0,

At (zt, zt−1, at−1)

= Prob
(
xt = zt | xt−1 = zt−1, ut−1 = at−1

)
(1)

is the conditional probability of state xt given the pre-
vious state xt−1 and the applied input ut−1. The se-
quence Ct is the observation kernel that gives the prob-
ability of receiving an observation by the controller at
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time t. That is, Ct

(
st, zt

)
= Prob

(
yt = st | xt = zt

)
.

The sequence gt (xt, ut) represents the cost at time t and
it depends on the current state xt of the system as well
as the action ut taken at time t. We will assume that
sets X , Y and U are finite.

The decision in a POMDP is made based on the infor-
mation available to the controller. We define hpomdp

t to
be the information available to the controller at time t,
given by hpomdp

t =
(
u0:t−1, y0:t

)
. Also, we use ipomdp

t to

denote a realization of hpomdp
t as ipomdp

t =
(
a0:t−1, s0:t

)
.

For partially observed discrete time dynamic processes,
the POMDP policy gives a probability distribution over
possible actions or controls as a function of the informa-
tion available to the decision-maker. That is Kt(at, it) =

Prob(ut = at | h
pomdp
t = it).

For the remainder of the paper, we will suppress the
state and action spaces in the notation and describe
a POMDP by the tuple

(
A,C, g

)
, where we use A =

{At, t ≥ 0}, C = {Ct, t ≥ 0} and g = {gt, t ≥ 0}. We
make the following assumption regarding the POMDP.

Assumption 1 The POMDP
(
A,C, g

)
satisfies the con-

dition A0(z0) > 0 for all z0 ∈ X , At

(
·, zt−1, at−1

)
> 0 for

all zt−1 ∈ X , at−1 ∈ U and for all t ≥ 1. Furthermore,
Ct

(
·, zt
)
> 0 for all zt ∈ X and for all t ≥ 0.

II-B Information State for POMDPs

An information state for a POMDP summarizes infor-
mation about the history of the POMDP to enable suffi-
cient prediction of the future to make an optimal decision.
A POMDP can be reformulated as an MDP using the in-
formation state. The information state consists of either
a complete history of observations and actions or their
corresponding sufficient statistics [6]. For the purpose
of this paper, we define the term sufficient informa-
tion state to mean a function of the past observations
of the POMDP that is detailed enough to permit an op-
timal controller to use the history processed through this
function as its only input. Using the sufficient informa-
tion state, a POMDP can be converted into an MDP
with observable state such that the optimal controller
for this MDP also minimizes the cost function for the
original POMDP. A precise statement of this result is
given in Theorem 1.

Definition 1 Suppose (A,C, g) is a POMDP satisfying
Assumption 1 and define a sequence of functions γt :
U t × Yt+1 → Q. Define ξt = γt (u0:t−1, y0:t) and let γt
be such that for all q ∈ Q, there exists some s0:t ∈ Yt+1

and a0:t−1 ∈ U t such that γt (s0:t, a0:t−1) = q . Then ξt
is called a sufficient information state for the POMDP if
there exists an MDP (Ã, g̃) over the state space Q and
the action space U such that, for all POMDP policies K,
we have

1) Ã is a sequence such that

Ãt+1 (qt+1, qt, at) =

Prob (ξt+1 = qt+1 | ξ0:t = q0:t, u0:t = a0:t) . (2)

2) g̃ is a sequence g̃0, g̃1 . . . such that

g̃t (qt, at) = E (gt (xt, at) | ξt = qt, ut = at) . (3)

3) For all t ≥ 0, we have

Prob
(

xt = zt | ξt = γt (s0:t, a0:t−1) , . . . ,

ξ0 = γ0(s0), u0:t−1 = a0:t−1

)

=

Prob (xt = zt | y0:t = s0:t, u0:t−1 = a0:t−1) . (4)

Note that the random variables xt and ut depend on
the chosen policy K, and for any policy K, the condi-
tional probabilities in equation (2) and (4), and the con-
ditional expectation in (3) are well defined. Also, note
that Ã in equation (2), g̃t in equation (3) and the con-
ditional probability in equation (4) are independent of
the POMDP policy K. Furthermore, equation (2) shows
that given the action sequence or the policy the evolu-
tion of ξt is Markov. From the above definition, it is clear
that associated with any POMDP is a sufficient informa-
tion state MDP (Ã, g̃). Also note that the sequence Ã is
independent of time if the original POMDP is stationary.

Let hi-mdp
t be the history of the sufficient informa-

tion state MDP at time t. Then we have hi-mdp
t =

(
u0:t−1, ξ0:t

)
. We will use ii-mdp

t to denote a realization

of hi-mdp
t as ii-mdp

t =
(
a0:t−1, q0:t

)
. As before, we de-

fine a sufficient information state MDP policy as a map-
ping from the history of the information state MDP to
an action at time t. Let K̃t be a sufficient information
state MDP policy. As before, we can interpret K̃t as
K̃t(at, it) = Prob

(
ut = at | hi-mdp

t = it
)
. The following

theorem shows that we can find an optimal POMDP pol-
icy by considering the associated MDP over the sufficient
information state.

Theorem 1 Consider the POMDP (A,C, g) and let
Ppomdp be the set of all POMDP policies. Let (Ã, g̃) be
the sufficient information state MDP associated with the
given POMDP and let Pi-mdp be the set of all sufficient
information state MDP policies. Then, for any T , we
have

min
K0,...,KT

Kt∈Ppomdp

T∑

t=0

E
[
gt(zt, at)

]
= min

K0,...,KT

Kt∈Pi-mdp

T∑

t=0

E
[
g̃t(qt, at)

]

Proof The proof follows standard dynamic programming
techniques. See for example Chapter 6 of [6].

From the above theorem, it is clear that one can find
an optimal policy for a POMDP by transforming it into a
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sufficient information state MDP. Given an optimal suffi-
cient information state policy K̃opt one may immediately
compute the optimal POMDP policy by using K̃opt with
γ. The optimal sufficient information state policy K̃opt

may be found using the standard dynamic programming
recursion. From [4], we know that the optimal policy for
an MDP is a function of its current state. In other words,
the optimal policy for a POMDP is just a function of its
sufficient information state ξt. One such sufficient infor-
mation state is the entire history of the POMDP, where
γt is an identity function [6]. As we show below, for net-
worked MDPs, the sufficient information state includes
only the finite past history of observations and control
actions. Also note that the above theorem can be eas-
ily extended to the infinite horizon case (both average
cost as well as discounted cost), as long as the limiting
value of the sum of the costs is well defined [17]. For the
discounted infinite horizon case, we can incorporate the
discount factor in the time dependent cost function.

III Networked Markov Decision

Processes

III-A Definitions and Example

Let G be a weighted directed graph (V, E), where V =
{1, . . . , n} is a finite set of vertices and E ⊂ V × V is
a set of edges. Each vertex i ∈ V represents a Markov
decision process. An edge (i, j) ∈ E if the MDP at vertex
i directly affects the MDP at vertex j. Associated with
each edge (i, j) ∈ E is a non-negative integer weight,
Mij , which specifies the delay for the dynamics of vertex
i to propagate to vertex j. We assume without loss of
generality that (i, i) /∈ E .

Associated with each j ∈ V, let Paj be the parent
vertices Paj = { i ∈ V | (i, j) ∈ E } and let Chj be the
child vertices Chj = { i ∈ V | (j, i) ∈ E }. At each time t,
the state of the MDP at vertex i belongs to a finite set
X i. The control action taken at vertex i is drawn out of
a finite set U i.

In the remainder of the paper, we denote X−i =
∏

j∈Pai X
j . We also denote X (n) =

∏n
i=1 X

i as the
Cartesian product of the state space corresponding to
all vertices. Similarly, we define U (n) =

∏n
i=1 U

i.

Definition 2 A networked Markov decision process is a
tuple (A, g) where

1) A is a set of transition matrices {Ai
t, t ≥ 0 | i ∈ V}

with Ai
0 : X i → [0, 1] for all i ∈ V, such that for all

z0 ∈ X i, we have Ai
0 (z0) ≥ 0 and

∑

z0
Ai

0 (z0) = 1.

For t > 0, we have Ai
t : X

i ×X i ×X−i ×U i → [0, 1]
such that, for all i ∈ V and for all at ∈ U i and z̃t ∈
X−i we have Ai

t(z
′
t, zt, z̃t, at) ≥ 0 for all z′t, zt ∈ X i,

and
∑

z′

t
Ai

t(z
′
t, zt, z̃t, at) = 1 for all zt ∈ X i.

2) g is a sequence g0, g1, . . . with gt : X (n) × U (n) →
[0, 1].

We make the following assumption regarding the net-
worked MDP.

Assumption 2 The networked MDP
(
A, g

)
is such that

Ai
0 (z0) > 0 for all z0 ∈ X i and for all i ∈ V. Further-

more, Ai
t(·, zt, z̃t, at) > 0 for all i ∈ V, for all zt ∈ X i,

for all at ∈ U i, for all z̃t ∈ X−i and for all t ≥ 1.

In a networked MDP, the controller needs to choose
a control action corresponding to each vertex i ∈ V.
Associated with each vertex i ∈ V of a networked
MDP, we have a non-negative integer Ni which speci-
fies the delay in receiving the state measurement from
system i. We define hn-mdp

t to be the information
available to the decision-maker at time t, given by
hn-mdp
t =

(
x1
0:t−N1

, u1
0:t−1, . . . , x

n
0:t−Nn

, un
0:t−1

)
. Also de-

fine in-mdp
t to be a realization of hn-mdp

t as in-mdp
t =

(
z10:t−N1

, a10:t−1, . . . , z
n
0:t−Nn

, an0:t−1

)
.

Thus, the observations received by the decision-maker
at time t consist of the state of the subsystem i delayed
by Ni time steps. A networked MDP policy specifies the
decisions taken at time t.

Definition 3 (Networked MDP Policy) K is called
a networked MDP policy if K = (K0,K1, . . . ) where

K0 : U (n) ×
∏n

i=1

(
X i
)1−Ni

→ [0, 1] and Kt : U (n) ×
∏n

i=1

(
X i
)t+1−Ni

×
∏n

i=1

(
U i
)t

→ [0, 1], for all t ≥ 1 such

that for all z0 ∈
∏n

i=1

(
X i
)1−Ni

we have K0(a0, z0) ≥

0 for all a0 ∈ U (n) and
∑

a0
K0(a0, z0) = 1. Also,

for all t ≥ 1, a′t ∈ U (n), z ∈
∏n

i=1

(
X i
)t+1−Ni

and at ∈
∏n

i=1

(
U i
)t

we have Kt (a
′
t, z, at) ≥ 0 and

∑

a′

t
Kt (a

′
t, z, at) = 1.

Note that for all times t, the product
∏n

i=1

(
X i
)t+1−Ni

in the above definition is taken over those i for which
t+1−Ni is strictly positive. For the networked systems,
a general mixed control policy is defined as a sequence
of transition matrices Kt, t ≥ 0 given by Kt(at, it) =

Prob(ut = at | h
n-mdp
t = it).

III-B The Networked MDP as a POMDP

In networked MDPs, although the controller receives
state information from the subsystems, these states are
delayed by different amounts. Thus, a networked MDP
can be written as a POMDP. Consider a networked
MDP as given in Definition 2. Let us define a new
state x̂t =

{
xi
t−b′:t | i ∈ V

}
, where we choose b′ =

maxi,j∈V Mij + maxi∈V Ni. The state x̂ is chosen such
that in the resulting system the observation at time t is
only a function ĥ of the current state at time t. It is
easy to check that there exists a function f̂ such that
x̂t+1 = f̂ (x̂t, ut, wt), where wt is some noise process.
Associated with this function is a transition probability
mass function Ât (ẑt+1, ẑt, at), where ẑt is the realization
of the state x̂t. The observation at any time t is given
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as ŷt = ĥ(x̂t). Corresponding to this observation pro-

cess is a probability mass function Ĉt (ŝt, ẑt), where ŝt
is the realization of the observation ŷt and is given as
ŝt =

{
zit−Ni

| i ∈ V
}
. The cost function is given as

ĝt (x̂t, ut) = gt (xt, ut) (5)

It is easy to check that the tuple
(
Â, Ĉ, ĝ

)
is a POMDP

as defined in Subsection II-A.

IV Information State for Networked

Markov Decision Processes

Before we present the main result of the paper, we make
the following definitions.

Definition 4 Let

di = max{Ni, max
k∈Pai

(Nk −Mki − 1)} (6)

and define the integers bi by

bi = max{di, max
k∈Chi

(dk +Mik)} −Ni (7)

In the remainder of the paper, we use the follow-
ing additional notation. We define for each t ≥ 0 the
product function Pt = A1

0:tA
2
0:t . . . A

n
0:t. Define αt =

{zi0:t−Ni
, ai0:t−1 | i ∈ V}. For any function f , we use

the notation
∑

z 6∈αt
f(z10 , z

1
1 , . . . ) to indicate a summa-

tion over zit−Ni+1:t ∈ X i for each i ∈ V. We also define

the set βt = {zit−Ni−bi:t−Ni
, ait−di:t

| i ∈ V} with a sim-
ilar corresponding summation notation. Here we abuse
set notation to refer to the set of named variables and
not their values.

The following theorem is the main result of this paper.
It specifies a sufficient information state for a networked
MDP. It shows that a networked MDP can be converted
into an MDP with a state that is bounded and does not
grow with time.

Theorem 2 Consider a networked MDP satisfying As-
sumption 2. Then,

ξt =
{
ui
t−di:t−1, x

i
t−Ni−bi:t−Ni

| i ∈ V
}

(8)

is a sufficient information state for the networked MDP.

IV-A Proofs

To prove the theorem, we check the conditions for a suf-
ficient information state as given in Definition 1. Note
that for a networked MDP, γt is a truncation function.
From the definition of ξt it is clear that for all possible
information states, there exists a sequence of states and
actions that maps to a given information state. The fol-
lowing lemma shows that ξt as defined in (8) satisfies the
first condition for a sufficient information state in (2).

Lemma 1 Consider a networked MDP (A, g) and a net-
worked MDP policy K. Define

Ãt+1(qt+1, qt, at) , Prob
(
ξt+1 = qt+1 | ξt = qt, ut = at

)

Then ξt satisfies the Markov property

Ãt+1(qt+1, qt, at)

= Prob
(
ξt+1 = qt+1 | ξ0:t = q0:t, u0:t = a0:t

)

and Ã is independent of the policy K.

Proof By definition

L = Prob
(
ξt+1 = qt+1 | ξ0:t = q0:t, u0:t = a0:t

)

=
Prob

(
ξ0:t+1 = q0:t+1, u0:t = a0:t

)

Prob (ξ0:t,= q0:t, u0:t = a0:t)
. (9)

The sequence ξ0:t consists of {x
i
0:t−Ni

, ui
0:t−1 | i ∈ V} and

q0:t is the sequence {zi0:t−Ni
, ai0:t−1 | i ∈ V}. Thus, we

have

Prob (ξ0:t = q0:t, u0:t = a0:t)

= Prob
(
xi
0:t−Ni

= zi0:t−Ni
, ui

0:t = ai0:t | i ∈ V
)
.

Furthermore, using the notation Pt = A1
0:t . . . A

n
0:t, we

have PtK0:t = Prob
(
xi
0:t = zi0:t, u

i
0:t = ai0:t | i ∈ V

)
. Let

us denote the denominator of equation (9) by Lden. Then
we have

Lden = Prob
(
xi
0:t−Ni

= zi0:t−Ni
, ui

0:t = ai0:t | i ∈ V
)

=
∑

z/∈αt

PtK0:t, (10)

Note that the arguments of the transition kernel Ai
t

are zit, z
i
t−1, a

i
t−1, {z

k
t−1−Mki

| k ∈ Pai}. We first

show that some of the Ai
t’s are independent of the

variables being summed over. Consider an arbitrary
s ≥ 0, and suppose Ai

t−s depends upon at least one
of z1t−N1+1:t, . . . , z

n
t−Nn+1:t. Then we must have either

t − Ni + 1 ≤ t − s, or t − Ni + 1 ≤ t − s − 1, or
t − Nk + 1 ≤ t − s − 1 − Mki for some k ∈ Pai,
where each inequality arises from the corresponding ar-
gument of Ai

t−s. This implies that either s ≤ Ni − 1 or

s ≤ max{Nk − 1 − Mki | k ∈ Pai} − 1. Hence for each
i, the largest such s is exactly equal to di − 1 where di
is defined by equation (6). Thus if s ≥ di then Ai

t−s

does not depend on any of z1t−N1+1:t, . . . , z
n
t−Nn+1:t. In

other words, Ai
0:t−di

are independent of all the variables
of summation. Furthermore, note that K0:t depends only
on the variables in αt, and hence is independent of the
variables of the summation. Thus, the denominator of
equation (9) is

Lden =

(
n∏

i=1

Ai
0:t−di

)

K0:t

∑

z/∈αt

n∏

i=1

Ai
t−di+1:t (11)
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Let us denote the numerator of equation (9) as Lnum.
Then,

Lnum =
∑

z/∈αt+1

Pt+1K0:t. (12)

Following the same argument as above, it is easy to verify
that if s ≥ di − 1, then Ai

t−s does not depend on any of
z1t−N1+2:t+1, . . . , z

n
t−Nn+2:t+1. Thus, Ai

0:t−di+1 are inde-
pendent of the variables of the summation of Lnum. We
can thus write Lnum as

Lnum =

(
n∏

i=1

Ai
0:t−di

)

K0:t

∑

z/∈αt+1

n∏

i=1

Ai
t−di+1:t+1

Canceling the common factors from the numerator and
denominator gives

L =

∑

z/∈αt+1

∏n
i=1 A

i
t−di+1:t+1

∑

z/∈αt

∏n
i=1 A

i
t−di+1:t

. (13)

Using the definition of conditional probability, we can
write

R = Prob
(
ξt+1 = qt+1 | ξt = qt, ut = at

)

=
Prob

(
ξt+1 = qt+1, ξt = qt, ut = at

)

Prob (ξt = qt, ut = at)
. (14)

Let Rden denote the denominator of equation (14). Us-
ing the definition of ξt, we can write the denominator as
Rden =

∑

a/∈βt

∑

z/∈βt

∑

z/∈αt
PtK0:t, where this equality

holds because of a similar argument as given for Lden. As
before Ai

t−di
and K0:t are independent of the variables of

summation {z /∈ αt} and hence we can write Rden as

Rden =
∑

a/∈βt

∑

z/∈βt

(
n∏

i=1

Ai
0:t−di

)

K0:t

∑

z/∈αt

n∏

i=1

Ai
t−di+1:t

︸ ︷︷ ︸

R̂den

Let us determine explicitly which variables R̂den depends
on. For notational convenience, denote

T = A1
t−d1+1:t . . . A

n
t−dn+1:t

If T depends on zis then we must either have t−di ≤ s or
t − dk −Mik ≤ s for some k ∈ Chi. The first inequality
holds if zis occurs in Ai

t−di+1:t and the second holds if

it occurs in Ak
t−dk+1:t. If R̂den depends on zit−Ni−r then

either t − di ≤ t − Ni − r or t − dk −Mik ≤ t − Ni − r
for some k ∈ Chi, and these conditions imply that either
r ≤ di−Ni or r ≤ max{dk +Mik | k ∈ Chi}−Ni. Using
the definition of bi in equation (7), these two inequalities

imply that r ≤ bi. Thus R̂den depends on {ait−di:t−1 | ∈

V} and {zit−Ni−bi:t−Ni
| i ∈ V} and hence is independent

of variables {a /∈ βt} and {z /∈ βt}. Thus, we can write

Rden =




∑

a/∈βt

∑

z/∈βt

n∏

i=1

Ai
0:t−di

K0:t




∑

z/∈αt

n∏

i=1

Ai
t−di+1:t

(15)

Let Rnum denote the numerator of equation (14).
Then, Rnum =

∑

a/∈βt

∑

z/∈βt

∑

z/∈αt+1
Pt+1K0:t. Using

the same argument as for Rden we can write the numer-
ator as

Rnum =

(
∑

a/∈βt

z/∈βt

n∏

i=1

Ai
0:t−di

K0:t

)
∑

z/∈αt+1

n∏

i=1

Ai
t−di+1:t+1

(16)

From equation (15) and equation (16) we have

R =

∑

z/∈αt+1

∏n
i=1 A

i
t−di+1:t+1

∑

z/∈αt

∏n
i=1 A

i
t−di+1:t

. (17)

The result follows from equations (13) and (17).

The next lemma evaluates the cost function g̃t for the
induced MDP and shows that it is independent of the
POMDP policy.

Lemma 2 The cost function as defined in equation (3)
is independent of the POMDP policy K.

Proof The proof follows from the definition of g̃t and
uses an argument similar to that in Lemma 1. The proof
is omitted for space constraints.

The following lemma shows that the conditional prob-
ability density function for the state at time t is same for
the induced MDP and the original POMDP.

Lemma 3 For all t ≥ 0, we have

Prob (x̂t = ẑt | ξ0:t = q0:t, u0:t−1 = a0:t−1)

= Prob (x̂t = ẑt | ŷ0:t = ŝ0:t, u0:t−1 = a0:t−1) ,

where we have used the notation γt (s0:t, a0:t−1) = qt.

Proof The proof trivially follows from the definition of
the sequence ξ0:t and the sequence ŷt.

Proof of Theorem 2 From Lemmas 1, 2, and 3, we
have that ξt as defined in equation (8) is a sufficient in-
formation state for a networked MDP.

IV-B Networked MDP with Action Delays

In this section, we extend our result to the case where the
control action does not take effect immediately. Consider
a networked Markov decision process with action delays.
The system dynamics are xi

t+1 = f i
(
xi
t, {x

j
t−Mji

| j ∈

Pai}, ui
t−Pi

, wi
t

)
, for all i ∈ V. Here ui

t−Pi
is the control

action applied to subsystem i at time t− Pi.

To obtain a sufficient information state for a networked
MDP with action delays, we convert this system into a
networked MDP with no action delays. To do this, let us
define a new state x̂i

t = (xi
t, u

i
t−Pi:t−1) for all i ∈ V. As

before, if any Pi = 0, we interpret the list ui
t−Pi:t−1 as

empty and thus x̂i
t = xi

t. This new state is chosen such
that the state evolution of each subsystem at time t+ 1
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depends on the current state and action at time t. Thus,
a networked MDP with action delays can be reformulated
as a networked MDP with no action delays and with
system dynamics given as x̂i

t+1 = f̂ i
(
x̂i
t, {x̂

j
t−Mji

| j ∈

Pai}, ui
t, w

i
t

)
for all i ∈ V. Using Theorem 2, we know

that a sufficient information state for this new system
consists of past states x̂i

t−bi−Ni:t−Ni
and past control ac-

tions ui
t−di:t−1 for all i ∈ V. Let us define d̂i by

d̂i =

{

di if Pi = 0

bi +Ni + Pi otherwise
(18)

Using this definition, it is easy to check that a sufficient
information state for a networked MDP with action de-
lays consists of past states xi

t−bi−Ni:t−Ni
and past control

actions ui
t−d̂i:t−1

for all i ∈ V. This gives us the following

theorem.

Theorem 3 For a networked Markov decision process
with action delays, the set

ξt =
{

ui
t−d̂i:t−1

, xi
t−Ni−bi:t−Ni

| i ∈ V
}

is a sufficient information state.

IV-C Discussion

From Theorem 2, we note that every networked MDP has
a sufficient information state ξt given by equation (8),
which depends only on the finite past history of the
states and control actions. Thus, from Definition 1 we
have that associated with every networked MDP is a
tuple (Ã, g̃) where Ãt is the transition matrix given by
Ãt+1(qt+1, qt, at) = Prob

(
ξt+1 = qt+1 | ξt = qt, ut = at

)

and g̃t is the cost function associated with this new MDP.
The cost function is given by equation (3). From The-
orem 1 we note that an optimal controller for the origi-
nal POMDP can be found by considering the associated
sufficient information state MDP. An optimal controller
can be found using dynamic programming [4, 18] over
the state space Q generated by ξt. This holds for both
finite horizon as well as infinite horizon average cost and
discounted cost models. In our earlier conference pa-
per [19], we showed that the constants bi and di relate to
the Markov blanket of the Bayesian network associated
with the networked MDP. We also provided a numerical
example in [14], where we showed that for a certain class
of linear systems, these information requirements are also
necessary for the optimal control.

V Conclusions

We studied networked MDPs with delays between sub-
systems. Each subsystem transmits its state to a central-
ized controller via a link with an associated delay. The
control action applied to each subsystem takes effect af-
ter a certain delay. Since the controller does not have

access to the current state of the system, these systems
are a special case of POMDPs. We show that for this
special class of POMDPs, a sufficient information state
is a function of a finite number of past system states and
the past controller inputs. The number of past states as
well as past inputs depends only on the underlying graph
structure of the networked MDP as well as the associated
delays. We also give explicit bounds on the number of
past states and inputs required to compute an optimal
control action for networked MDPs with delays. This re-
sult shows that the controller synthesis can be achieved
at substantially lower computational cost. A dynamic
programming algorithm based on the finite information
state can be used to compute the optimal controller for
such systems.
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