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Abstract

We study a class of decentralized team decision problems
over discrete state spaces with non classical information
structures. We present a simple class of problems, where
an optimal solution can be obtained via coding. For
the example presented, we explicitly construct a coding
scheme, called the binary sum coding scheme, and show
that it is optimal. This class of problems is motivated by
a famous mathematical puzzle called the hats problem.

1 Introduction and Prior Work

The study of team decision problems as well as the role of
information patterns in decision making was initiated by
Marschak in his work on the theory of organizations [12].
Radner [16] provided a mathematical framework to study
such problems and provided a solution for a special class
of team decision problems.

The role of information structures in decision making
was emphasized in the work of Witsenhausen [19]. Specif-
ically, it was shown that with non-classical information
structures, a non-linear controller may outperform the
best linear controller even in the case of linear quadratic
Gaussian (LQG) systems. This was one of the first exam-
ples that highlighted the role of information in decision
making. In that problem, there are two decision mak-
ers. The objective of the decision makers is to minimize
a quadratic cost function. Witsenhausen showed that,
from the point of view of the first decision maker, there
are two opposing choices. One is to use the action to
encode information, and signal to the other player. We
refer to this option as coding or signaling. Although sig-
naling helps the second player to make a better decision,
choosing a large action for signaling can increase the cost
function, and so the other option is to control the action
to directly minimize the cost. It is this tension between
control and signaling that is exploited by Witsenhausen
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to construct a non-linear controller. In fact, it was shown
in [15] that a simple non linear controller based on quan-
tization and maximum likelihood decoding can perform
arbitrarily better than the best linear controller. In other
words, a controller in which the first decision maker sig-
nals its information to the second decision maker can
outperform the best linear controller.

Ho and Chu [8] identified a condition on information
structures (called partially nested) for which a linear con-
troller is optimal. It was also shown in [3] that when
the cost function does not contain product term between
decision variables, a linear controller is indeed optimal
for LQG team decision problems. The work by Ho and
Chu provided a class of decentralized control problems
for which coding is unnecessary.

The objective of this paper is to find and analyze a
decentralized control problem where the coding objective
is aligned with the cost minimization objective. This
allows one to use a coding scheme to design an optimal
decentralized control policy.

This connection between signaling and decision mak-
ing has been recognized earlier. One of the earliest works
in this field was in the context of non-cooperative game
theory [4]. The author considered a two person non-
cooperative game where the control of the first player is
also the information to the second player. It was shown
that the players behave as if they have the same informa-
tion. This transparent information constraint is attained
by means of coding. The idea of using action to signal
intent to other players has also been used to explain the
role of reputation in economic theory [14]. In the con-
text of control theory, this connection was first alluded
to in [9].

In this paper, we study a team decision problem where
the use of coding allows us to explicitly construct an op-
timal controller. The problem is inspired by a famous
mathematical puzzle called the hats problem: There are
N prisoners standing in a line, each given a hat colored
black or white. Each prisoner cannot see his own hat
or the hats of prisoners behind him, but he can see the
hats of all the prisoners standing in front of him in the
line. The prisoners are then to guess the color of the
hat above their own head. The guess of each prisoner is
heard by all the other prisoners. If it is true, the pris-
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oner is freed, otherwise he is executed. The goal is to
find a guessing strategy which minimizes the number of
prisoners executed.

While the model considered in our paper allows for
communication between users (through their guesses),
there is the other symmetric variant of the hats prob-
lem in which no communication is allowed between the
prisoners but every prisoner can see the hats of all the
other prisoners. In particular, [10] considers the symmet-
ric variant of the hats problem and explores its connec-
tions with Hamming codes. Under a similar setting, [5]
and [6] present worst-case analysis for different versions
of the symmetric hats problem. In this work we con-
sider a stochastic framework in which the hats are drawn
according to a given distribution and the expected num-
ber of correct guesses is to be maximized. Our problem
has some similarities with the Witsenhausen’s example
in terms of the tension between signaling and control.
Each prisoner can choose his guess to maximize his own
probability of correct guess or he can give some informa-
tion about other hats colors through his guess signal. In
terms of information pattern, the problem is similar to
that of [4]. However, compared to that work, we con-
sider an N player team decision problem. Furthermore,
we provide an explicit coding scheme and show that it
is optimal. In contrast to [8], the team decision prob-
lem considered here does not satisfy the notion of par-
tially nested information structure. Although the prob-
lem looks similar to Witsenhausen’s counterexample, it
differs in two major aspects: first the problem is defined
on a discrete space, second the cost of action is implicit
in our problem and third there is no noise in the signal-
ing channel. Surprisingly, this allows us to construct an
optimal controller while the optimal solution for Witsen-
hausen’s problem is not yet known.

This problem can be viewed as a bridge between con-
trol theory and network coding theory. On the control
side, it provides valuable insights into the design of de-
cision rules in the presence of non-classical information
structures. In particular, we hope to use this problem as
a starting point in understanding a larger class of team
decision problems that can be effectively solved using
coding mechanisms. On the network coding side, this
work introduces a new paradigm for effective use of net-
work coding, namely decentralized team decision. Cur-
rent research in this area includes, but is not limited to
[7], [11], [13], [17], [18] and [20].

The rest of the paper is organized as follows: Section
2 presents the problem formulation. In Section 3, we will
propose the optimal coding scheme called the binary sum
coding. The proof of the optimality is given in Section 4.
Section 5 provides an extension of the problem when the
observations at each player are noisy. Section 6 concludes

the paper.1

Notation. In the remainder of the paper we use bold
letters (e.g. x, u, I) to represent the random variables
and the corresponding regular letters (e.g. x, u, I) to
represent their realizations. We use subscripts to denote
particular elements of a vector. We denote Bn to be
the n-fold Cartesian product of the set {0, 1}. That is
Bn = {0, 1}×· · ·×{0, 1} n-times, with the interpretation
that B0 = ∅.

2 The Hats Problem

Let us consider N players (prisoners) where player i is as-
signed a binary state variable (hat color) xi. x1, . . . ,xN

are i.i.d. Bernoulli random variables where Prob(xi =
1) = p ≤ 1

2 . For i = 1, . . . , N , player i observes
xi+1, . . . ,xN . The action (guess) of player i is a binary
variable ui and is observed by all other players. The cost
of player i’s action is 1{ui 6=xi}, where 1{A} is the indica-
tor function of the event A. The objective is to find a
decision strategy that minimizes the expected total cost

E

( N
∑

i=1

1{xi 6=ui}

)

A decision strategy (denoted by s) consists of a per-
mutation ρs and a decision rule µs. The permutation
ρs =

(

ρs
1, · · · , ρs

N

)

is an order in which the players make
decision. Thus ρs

k = i implies that player i makes its
decision at the k-th step. A player making a decision at
the k-th step knows the previous actions uρs

1
, · · · ,uρs

k−1

as well as the state of players xρs
k
+1, · · · ,xN . Let Is

k be
the information vector available to a player making deci-
sion at the k-th step under the decision strategy s. Then,
we have

Is
k =

(

uρs
1
, · · ·uρs

k−1
,xρs

k
+1 · · ·xN

)

A decision rule µs =
(

µs
1, · · · , µs

N

)

maps the information
available to a player making decision at the k-th step to
an action. That is,

µs
k : Bk−1+N−ρs

k → B,

and the action uρs
k

= µs
k

(

Is
k

)

. Given a strategy s, the
cost function is given as

Js
N = E

[

N
∑

k=1

1n

uρs
k
6=xρs

k

o

]

,

1An earlier version of this work was published as an extended
abstract in the Proceedings of the 2009 Allerton Conference on
Communications, Control and Computing [1].
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where the expectation is with respect to the state vector
(x1, . . . ,xN ). Due to space limitations, in this paper we
only consider the class of strategies with deterministic
permutation and decision rule. However, using a similar
approach as presented in this work, the results can be
extended to the cases with randomized decision rules as
well.

3 Binary Sum Coding Strategy

A classic solution to the hats problem is given as follows:
the first prisoner, being able to see the hat color of all
other prisoners, calculates the binary sum of their hat
colors. He then reports the binary sum as his own hat
color. The second prisoner hears the hat color of the
first prisoner and also knows the hat color of all pris-
oners in front of him. By subtracting the binary sum
of all hat colors he sees from the hat color of the first
prisoner, the second prisoner can compute its own hat
color correctly. Continuing in this manner, all prisoners
from second prisoner onwards can correctly guess their
hat color. This strategy, which we call as the binary sum
coding strategy, ensures that all prisoners except the first
one can correctly compute his hat color. As we show
below, we cannot do better than this strategy. An in-
tuitive explanation for that is that the color of the first
prisoner’s hat is not known to any one and hence there
is always a possibility that the first prisoner will get his
hat color wrong.

Let us formally define the binary sum coding strategy
as follows:

Definition 1. For the N player hats problem, a binary
sum coding strategy (or just coding strategy, for short)
consists of the permutation ρcode =

(

1, 2, · · · , N
)

and

µcode =
(

µcode
1 , · · · , µcode

N

)

, where

µcode
k (u1, · · · ,uk−1,xk+1, · · · ,xk) =

u1 ⊕ · · · ⊕ uk−1 ⊕ xk+1 ⊕ · · · ⊕ xN .

The following proposition establishes that the binary
sum coding strategy results in correct guesses for all play-
ers except possibly player 1.

Proposition 2. Given any N , the binary sum coding
strategy has the property that

uk = xk

for all k = 2, · · · , N .

Proof. We prove the proposition by induction on k.
Note that in the binary sum coding strategy the decisions

are made sequentially. Furthermore, u1 = x2 ⊕ · · ·⊕xN .
For k = 2, we have

u2 = u1 ⊕ x3 ⊕ · · · ⊕ xN

= x2 ⊕ · · · ⊕ xN ⊕ x3 ⊕ · · · ⊕ xN

= x2.

Let us assume that uk = xk for all k = 2, · · · , n. Then
for k = n + 1, we have

un+1 = u1 ⊕ · · · ⊕ un ⊕ xn+2 ⊕ · · · ⊕ xN

= x2 ⊕ · · · ⊕ xn+1 ⊕ · · · ⊕ xN ⊕ x2 ⊕ · · · ⊕ xn⊕

xn+2 ⊕ · · · ⊕ xN

= xn+1.

Here the second equality follows from the induction hy-
pothesis as well as the definition of u1. This proves the
proposition.

We will show in the next section that the binary sum
coding strategy is the optimal solution to the hats prob-
lem stated in Section 2. Note that as stated above, the
optimality of this scheme in the worst case scenario (min-
imizing the maximum cost) is trivial, however, this is not
the case for our problem. In particular, if 0 < p < 1/2,
the binary sum as the first player’s action increases its
individual cost over taking the constant action u1 = 0.
(Note that, since there is no knowledge about x1 other
than the fact that it is more likely to be 0, the optimal
action to minimize his cost is to choose u1 = 0 all the
time.) This introduces a tension between coding and con-
trol. It turns out that in our scenario, coding wins in a
sense that this sacrifice on the first player’s part ensures
the best expected outcome for the players as a whole.

4 Optimality of Binary Sum Coding

Strategy

The following theorem is the main result in this section.

Theorem 3. For the N player hats problem, the binary
sum coding strategy given by scode = {ρcode, µcode} is op-
timal and achieves an optimal cost of J∗

N = 1
2 − 1

2 (1 −
2p)N .

Before we present the proof, we make the following
definition.

Definition 4. For the N player hats problem and for any
strategy s, the perfect set associated with that strategy
(denoted by P s

N ) is given by

P s
N =

{

x ∈ BN | uρs
k

= xρs
k

for all k = 1, 2, · · · , N
}

,

where uρs
k

= µs
k

(

Is
k

)

and Is
k =

(

uρs
1
, · · ·uρs

k−1
, xρs

k
+1 · · ·xN

)

.
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Note that ρs is a permutation of players associated
with the strategy s. In other words, the perfect set asso-
ciated with any strategy is a set of all possible initial hat
configurations such that all resulting actions (guesses)
match the states (hat colors). As a first step let us com-
pute the perfect set associated with the binary sum cod-
ing strategy.

Lemma 5. For the N player hats problem, the perfect
set associated with the binary sum coding strategy (P code

N )
is given as:

P code
N =

{

x ∈ BN | x1 = x2 ⊕ · · · ⊕ xN

}

.

Proof. From Proposition 2, we know that for the
binary sum coding strategy, we have uk = xk for all
k ≥ 2. Furthermore, for any x ∈ BN , the first action is
given as u1 = x2 ⊕ · · · ⊕ xN . Thus, the perfect set for
the binary sum coding strategy is the set of all initial hat
configurations where x1 = u1. This proves the lemma.

The next lemma gives the probability of the perfect set
generated by the binary sum coding strategy.

Lemma 6. The probability of the perfect set associated
with the binary sum coding strategy is given by

Prob
(

P code
N

)

=
1

2
+

1

2
(1 − 2p)

N
.

Proof. We prove the lemma by induction on N . For
the case of N = 2, we have

Prob
(

P code
2

)

= Prob {x1 = x2}

= p2 + (1 − p)2

=
1

2
+

1

2
(1 − 2p)

2
.

Let us assume that the lemma holds for all N =
2, · · · , k. From Lemma 5, we know that Prob

(

P code
k+1

)

=
Prob {x1 = x2 ⊕ · · · ⊕ xk+1}. Thus, we have

Prob
(

P code
k+1

)

=

Prob {xk+1 = 0} .Prob {x1 = x2 ⊕ · · · ⊕ xk}

+ Prob {xk+1 = 1} .Prob {x1 6= x2 ⊕ · · · ⊕ xk}

Using induction hypothesis, we get that

Prob
(

P code
k+1

)

= (1 − p) Prob
(

P code
k

)

+ p(1 − Prob
(

P code
k

)

)

=
1

2
+

1

2
(1 − 2p)

k+1

where the last equality follows by substituting the value
of Prob

(

P code
k

)

. This proves the lemma.

Having established the properties of the binary sum
coding strategy, we now focus our attention on any arbi-
trary strategy. The following lemma gives a simple lower
bound on the cost function associated with any strategy s
in terms of the perfect set associated with that strategy.

Lemma 7. For any given decision strategy s , we have
Js

N ≥ 1 − Prob(P s
N ) with equality if the strategy is the

binary sum coding strategy.

Proof. From the definition of the cost function, we
have

Js
N =

N
∑

k=1

Prob
{

uρs
k
6= xρs

k

}

≥ Prob
{

uρs
k
6= xρs

k
, for some k

}

= 1 − Prob
{

uρs
k

= xρs
k
for all k

}

= 1 − Prob (P s
N ) .

Here the inequality follows from the union-of-events
bound. This bound is tight for the binary sum coding
strategy since according to the Proposition 2, only the
first player ever makes a mistake. Therefore, the above
inequality becomes an equality for the binary sum coding
strategy and this completes the proof.

Corollary 8. The cost associated with the binary sum
coding strategy is given by

Jcode

N =
1

2
−

1

2
(1 − 2p)

N

Proof. Trivially follows from Lemmas 6 and 7.

Definition 9. For any set S ⊆ Bn we define the internal
Hamming distance of the set S (denoted by d(S)) as

d(S) = min
a,b∈S,
a6=b

n
∑

i=1

1{ai 6=bi}.

The next lemma places a lower bound on the internal
Hamming distance of a perfect set associated with any
strategy.

Lemma 10. For any strategy s, the internal Hamming
distance associated with the perfect set P s

N is at least 2.
That is,

d(P s
N ) ≥ 2.

Proof. Let x, x′ ∈ P s
N and x 6= x′. There must exist

at least one index i such that xρs
i
6= x′

ρs
i
. Let’s consider

such i. Then, we have

xρs
i

= µs
i

(

uρs
1
, · · · , uρs

i−1
, xρs

i
+1, · · · , xN

)

= µs
i

(

xρs
1
, · · · , xρs

i−1
, xρs

i
+1, · · · , xN

)

,

where the last equality follows from the fact that x ∈ P s
N

and hence uρs
k

= xρs
k

for all k. Similarly, we have x′
ρs

i
=

µs
i

(

x′
ρs
1

, · · · , x′
ρs

i−1

, x′
ρs

i
+1, · · · , x′

N

)

. Since, xρs
i
6= x′

ρs
i
, it
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implies that xρs
k
6= x′

ρs
k

for some k < i or xj 6= x′
j for

some j > ρs
i . Thus, the Hamming distance between any

two x, x′ ∈ P s
N is at least two. This proves the lemma.

Definition 11. For any a ∈ Bn, define

gn(a) =
n

∏

i=1

[pai + (1 − p)(1 − ai)]

Furthermore, define fn : S ⊆ Bn → R as

fn(S) =
∑

a∈S

gk(a).

Note that fn(S) is the probability associated with the
set S ⊆ Bn.

Definition 12. Let us define Θn as the maximum prob-
ability associated with a subset of Bn with internal Ham-
ming distance of at least 2. That is,

Θn = max
S⊂{0,1}n

d(S)≥2

fn(S).

The next lemma places an upper bound on the value
of Θn.

Lemma 13. For any N ≥ 2, we have

ΘN ≤
1

2
+

1

2

(

1 − 2p
)N

Proof. It is easy to verify that the lemma holds for
N = 2. Now let’s assume that the lemma holds for all
values of N less than n and consider the case where N =
n. Consider S ⊆ Bn with d(S) ≥ 2. We have

fn(S) = fn(S0) + fn(S1),

where

S0 = {a ∈ S | an = 0}

S1 = {a ∈ S | an = 1} .

Using the definition of fn(S), we can thus write

fn(S) =
∑

a∈S0

gn(a) +
∑

a∈S1

gn(a).

Define a truncation operator T : Bn → Bn−1 as T (a) =
(

a1, · · · , an−1

)

for all a ∈ Bn. Note that for all a ∈ S0,
the last component of a is 0. Thus, for all a ∈ S0, we
have

gn(a) = (1 − p)

n−1
∏

i=1

[pai + (1 − p)(1 − ai)]

= (1 − p)gn−1(T (a)).

Similarly, for all a ∈ S1, we have gn(a) = pgn−1(T (a)).
Let us define Q0 as the image of the set S0 under the
truncation operator. That is, Q0 = T (S0) and similarly
define Q1 = T (S1). We can then write

fn(S) = (1 − p)
∑

a∈Q0

gn−1(a) + p
∑

a∈Q1

gn−1(a) (1)

= (1 − p)fn−1(Q0) + pfn−1(Q1). (2)

Note that Q0 ∪ Q1 ⊆ Bn−1. Also the assumption of
d(S) ≥ 2 implies that Q0 ∩ Q1 = φ. Thus, we have
that fn−1(Q0 ∪ Q1) = fn−1(Q0) + fn−1(Q1) ≤ 1. This
implies that fn−1(Q1) ≤ 1− fn−1(Q0). Substituting this
in equation (2), we get that

fn(S) ≤ (1 − p)fn−1(Q0) + p
(

1 − fn−1(Q0)
)

(3)

=
(

1 − 2p
)

fn−1(Q0) + p. (4)

Note that the set Q0 is derived from the set S0 by re-
moving the last component. Furthermore, the internal
Hamming distance of the set S0 is at least 2. Since the
last component of all elements in S0 is 0, the internal
Hamming distance is preserved by removing the last ele-
ment. Thus, d(Q0) ≥ 2. Furthermore Q0 ⊆ Bn−1. This
implies that

fn−1(Q0) ≤ Θn−1

≤
1

2
+

1

2
(1 − 2p)n−1,

where the first inequality follows from Definition 12 and
the second inequality is due to the inductive hypothesis.
Substituting the above inequality in (4), we get that

fn(S) ≤
(

1 − 2p
)

(

1

2
+

1

2

(

1 − 2p
)n−1

)

+ p

=
1

2
+

1

2

(

1 − 2p
)n

.

Since S was an arbitrary subset of Bn with internal Ham-
ming distance of at least 2, this proves the inductive step
and hence the lemma.

Proof of Theorem 3. From Lemma 7, we have that
Js

N ≥ 1−Prob (P s
N ). From Lemma 10, we know that for

any strategy s, d(P s
N ) ≥ 2 and from Definition 12, we

have
Prob (P s

N ) ≤ ΘN .

Thus, for any strategy s, we have

Js
N ≥ 1 − ΘN

≥
1

2
−

1

2
(1 − 2p)

N

= Jcode
N .

Here the second inequality follows from Lemma 13 and
the last equality follows from Corollary 8. Thus, the
binary sum coding strategy achieves the minimum cost.
This proves the theorem.
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5 Noisy Observations

In this section, we establish the fact that the optimality
of binary sum coding relies heavily on the noiseless obser-
vation of the states. We consider the same information
structure and cost function as in the previous sections
but add noise to the observations made by each player.
For simplicity, let us assume a 2-player scenario where
player 2 does not observe any state variable but player 1
observes x̃2 such that

x̃2 =

{

x2 with probability 1 − ǫ

1 − x2 with probability ǫ

where 0 < ǫ < 1/2 is the crossover probability of the
binary symmetric channel through which the state of the
second player is observed by the first player. Assuming
Prob{xi = 1} < 1/2, we want to investigate whether
the first player should still report what he observes or
he should minimize his own cost by using the constant
decision function u1 = 0. It is easy to check that for this
scenario, the optimal decision order should be ρ = (1, 2)
since the action of player 2 cannot add to the first player’s
information. Also, we have

Prob{x̃2 = 0} = (1 − ǫ) Prob{x2 = 0} + ǫProb{x2 = 1}

= (1 − p)(1 − ǫ) + pǫ

>
1

2
.

Therefore, if player 1 decides to signal what he observes,
he should use the action u1 = x̃2 (as opposed to the
other signaling option u1 = 1 − x̃2). In this case, the
best action for the second player is u2 = u1. This will
result in the total cost of

Jcode = Prob{x1 6= x̃2} + Prob{x2 6= x̃2}

= pProb{x̃2 = 0} + (1 − p) Prob{x̃2 = 1} + ǫ

= 2
(

p(1 − p)(1 − 2ǫ) + ǫ
)

On the other hand if the first player decides to minimize
his own cost by choosing the constant policy u1 = 0, the
second player should also do the same (u2 = 0) and the
resulting cost will be

Jno−code = Prob{x1 = 1} + Prob{x2 = 1} = 2p.

Comparing Jcode and Jno−code, we obtain a threshold

ǫ∗ =
p2

1 − 2p(1 − p)
,

for which coding (u1 = x̃2) is optimal if and only if ǫ < ǫ∗.
In the case of ǫ∗ ≤ ǫ ≤ 1/2, it is optimal to use the con-
stant non-coding strategy. As can be seen in the above
figure, for p < 1/2, ǫ∗ is also less than 1/2 which means
there are cases where player 1 has positive information (in
terms of mutual information) about the second player’s
state but reporting that information is not optimal.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.05

0.1
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0.4
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ε*

Figure 1: Crossover Threshold ǫ∗

6 Discussion and Conclusion

Decentralized control problems with non-classical in-
formation structures have been notoriously intractable
(See [17] for some recent results). Witsenhausen [19]
showed that for such problems, a non-linear controller
based on signaling can outperform the best linear con-
troller. Inspired by a mathematical puzzle called the hats
problem, we present another class of decentralized con-
trol problems with non-classical information structures.
For this particular class of problems, we show that an
optimal solution can be obtained via coding.

The hats problem gives rise to several interesting ques-
tions. One question that arises is how much a player
should signal? Imagine a scenario where the cardinality
of the action set is different from the cardinality of the
state space. Thus, a player could use a certain amount
of control action to signal while using the remaining con-
trol action to lower its own cost. This tradeoff between
signaling and minimizing a player’s own cost is an inter-
esting problem and is being currently investigated.

We believe that the problem studied in this work can
be used as a starting point in characterizing a more gen-
eral class of decentralized control problems which can be
solved using coding mechanisms. The solution provided
in this paper can be viewed as a special class of net-
work codes. While the effectiveness of network coding
in achieving the capacity of a network has been exten-
sively explored from information theoretic point of view
[2], this work introduces a new paradigm for effective use
of network coding, namely decentralized team decision.
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