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Abstract

We give an optimal dynamic programming algorithm to
solve a class of finite-horizon decentralized Markov de-
cision processes (MDPs). We consider problems with a
broadcast information structure that consists of a cen-
tral node that only has access to its own state but can
affect several outer nodes, while each outer node has ac-
cess to both its own state and the central node’s state,
but cannot affect the other nodes. The solution to this
problem involves a dynamic program similar to that of a
centralized partially-observed Markov decision process.

1 Introduction and Prior Work

Decentralized control systems consist of several con-
trollers having limited access to different sets of informa-
tion. This is an attractive architecture for many types
of interconnected systems. Unfortunately, solving for the
optimal decentralized controller is in general very hard,
even when only two controllers are involved [10, 6, 2]. Re-
search on decentralized control has thus concentrated on
finding special cases allowing for practical computation
of the optimal controllers.

In this paper, we consider a class of Markov deci-
sion processes (MDPs), and we provide a method of dy-
namic programming for constructing the optimal decen-
tralized controller. We call this class of problems broad-

cast MDPs. The solution technique turns out to be
similar to methods used to solve centralized partially-
observed MDPs (POMDPs).

Two related works deserve special mention. The first
is a very recent paper by Swigart and Lall [9] that
gives an explicit recursive solution for a two-player lin-
ear quadratic regulator, using spectral factorization tech-
niques. This paper is important because it greatly re-
duces the complexity of solving for the optimal con-
trollers, and also gives key insight on what the optimal
controllers do. Our paper gives essentially the same type
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of result, except this time in a general broadcast MDP
setting. Indeed, one can formally apply our MDP algo-
rithm to the LQG setting to get the same results.

The second work is a paper by Mahajan, Nayyar, and
Tenenketzis [5], which considers systems where each con-
troller has an infinite memory to store common observa-
tions, but only a finite memory to store private observa-
tions. Like our paper, they then show that the problem
can then be solved by centralized POMDP methods, al-
though the size of the POMDP is exponential with the
size of the finite memory. One of the main contributions
of our paper is to show that for broadcast MDPs, we only
need the most recent private observation to compute the
optimal control, even if there is an infinite private mem-
ory available on each controller.

There are other classes of decentralized MDPs whose
solution is significantly more tractable than the general
case. These include systems where controllers share their
information after a one-step time delay [4], and systems
where the different subsystems evolve independently but
whose cost function is coupled [1].

2 Notation

In this paper, we use a variant of MATLAB indexing
notation that other authors have found convenient. We
denote the (xt, xt+1, . . . , xτ ) as simply xt:τ . The sub-
scripted indices will always refer to time.

We will also use superscripted indices, which will
always denote player or node identity. Thus x

i:j
t =

(xi
t, x

i+1
t , . . . , x

j
t ) refers to some object or number given

at time t across players i to j. To avoid confusion, we
will never use a superscript to denote exponentiation of
any kind.

When appropriate, we will omit parentheses around
function arguments or drop the composition operator be-
tween functions. Thus if F : X → Y , and x ∈ X, then
we will sometimes denote F (x) as simply Fx. This is
especially handy when there are several compositions of
functions, for example if F : X → Y and G : Y → Z

and H : Z → W , then we denote H(G(F (x))) as simply
HGFx, and the composition H ◦G◦F as HGF . Though
this notation is like that of matrices, we emphasize that
the functions F , G, or H need not be linear.
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3 Broadcast MDPs : Definition

A broadcast MDP with M players is a collection of
2M stochastic processes X = (X1, . . . ,XM ) and U =
(U1, . . . , UM ), where Xi

t and U i
t represent the state and

control action of player i at time t ∈ N. The distribu-
tion of (X,U) is determined by the following functions:

1. The initial distributions pi
0 : X i

0 → R, where
pi
0(x

i
0) represents the probability that initial state

of player i is xi
0.

2. The transition laws p1
t+1 : X 1

t+1 × X 1
t × U1

t → R

for player 1, where

p1
t+1(x

1
t+1|x

1
t , u

1
t )

represents the conditional probability that the next
state is x1

t+1 given the current state and action are
(x1

t , u
1
t ).

3. The transition laws pi
t+1 : X i

t+1 ×X 1
t ×U1

t ×X i
t ×

U i
t → R for players i ≥ 2, where

pi
t+1(x

i
t+1|x

1
t , u

1
t , x

i
t, u

i
t)

represents the conditional probability that the next
state is xi

t+1 given the current state and action of
player 1 is (x1

t , u
1
t ), and the current state and action

for player i is (xi
t, u

i
t).

4. The control laws K1
t : X 1

0 × · · · × X 1
t → U1

t for
player 1, where K1

t (x1
0:t) represents the control ac-

tion given the history of states is x1
0:t.

5. The control laws Ki
t : X 1

0 × · · · × X 1
t × X i

0 × · · · ×
X i

t → U i
t for players i ≥ 2, where Ki

t(x
1
0:t, x

i
0:t) rep-

resents the control action given the history of states
for player 1 and i are (x1

0:t, x
i
0:t), respectively.

We call the sets X i
t and U i

t the state and action spaces

for player i at time t, and assume the sets are all finite.
The tuple (M,X ,U , p,K) is called the parameters of
the broadcast MDP. We define the finite-dimensional dis-
tributions of X inductively as follows: The distribution
of X1:M

0 is

f0(x
1:M
0 ) =

M
∏

i=1

pi
0(x

i
0) (1)

Moreover, if ft is the distribution of X1:M
0:t , then the dis-

tribution of X1:M
0:t+1 is

ft+1(x
1:M
0:t+1) = ft(x

1:M
0:t )p1

t+1(x
1
t+1|x

1
t ,K

1
t (x1

0:t))

×

M
∏

i=2

pi
t+1(x

i
t+1|x

1
t ,K

1
t (x1

0:t), x
i
t,K

i
t(x

1
0:t, x

i
0:t)) (2)

It is easy to verify that these finite-dimensional distribu-
tions are consistent, and thus completely determine the
distribution of X. The control action U i

t is defined as

U i
t =

{

K1
t (X1

0:t), i = 1

Ki
t(X

1
0:t,X

i
0:t), i ≥ 2

so U is derived from X.

Let (X,U) be a broadcast MDP with parameters
(M,X ,U , p,K). For each time t, let ct : X 1

t ×· · ·×XM
t ×

U1
t × · · · × UM

t → R be functions called cost functions.
We then define the expected cost at the time horizon

N to be

J =

N
∑

t=0

E[ct(X
1:M
t , U1:M

t )]

The N-horizon broadcast MDP problem is then
to find control laws K1:M

0:N that minimize J . The tuple
(N,M,X ,U , p, c) specifies the parameters of the prob-
lem. Of course, when there is only M = 1 player, then a
broadcast MDP reduces to a classic single-player MDP.

4 Optimal Controller Structure

We now prove a key structural result about the optimal
control laws.

Theorem 1. For any N -horizon broadcast MDP prob-

lem, there are optimal control laws where each control law

for player i ≥ 2 only depends on the history of player 1’s
states and player i’s current state.

Proof. Let (N,M,X ,U , p, c) be the parameters of the
problem, and K1:M

0:N be a set of optimal control laws,
which exist because there are only a finite number of
control laws. We wish to transform K into the desired
form without affecting optimality.

The simple idea behind the proof is to choose any
player i ≥ 2 and fix the control laws for the remaining
players. Then the problem of finding the optimal control
laws for player i reduces to a single-player MDP problem.
We omit the details, but one can verify that the param-
eters of this single-player problem are (N, 1, X̃ , Ũ , p̃, c̃),
where the state and action spaces are

X̃t = X 1
0 × · · · × X 1

t ×X i
t , Ũt = U i

t

and the initial distributions are

p̃0(x
1
0, x

i
0) = p1

0(x
1
0)p

i
0(x

i
0)

and the transition functions are

p̃t+1(x
1
0:t+1, x

i
t+1|y

1
0:t, x

i
t, u

i
t)

=











p1
t+1(x

1
t+1|x

1
t ,K

1
t (x1

0:t))

×pi
t+1(x

i
t+1|x

1
t ,K

1
t (x1

0:t), x
i
t, u

i
t)

, x1
0:t = y1

0:t

0, otherwise

Finally, the cost functions are

c̃t(x
1
0:t, x

i
t, u

i
t) =

∑

x
2:i−1

0:t
,x

i+1:M

0:t

(

∏

j 6=1,i

f
j
t (xj

0:t|x
1
0:t−1)

)

× ct(x
1:M
t ,K1

t (x1
0:t),K

2
t (x1

0:t, x
2
0:t), . . . ,K

i−1
t (x1

0:t, x
i−1
0:t ),

ui
t,K

i+1
t (x1

0:t, x
i+1
0:t ), . . . ,KM

t (x1
0:t, x

M
0:t))
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where we define

f
j
t (xj

0:t|x
1
0:t−1) = p

j
0(x

j
0) . . . p

j
t (x

j
t |x

1
t−1,K

1
t−1(x

1
0:t−1),

x
j
t−1,K

j
t−1(x

1
0:t−1, x

j
0:t−1))

We then apply the standard result for single-player MDPs
which states that optimal control laws only need to de-
pend on the current state. Thus without affecting opti-
mality, we can replace Ki

t with a control law that only
depends on the history of player 1’s state and player i’s
current state. Repeating the argument for the other play-
ers i ≥ 2 completes the proof.

Thus for players i ≥ 2, we will henceforth restrict our-
selves to control laws of the form Ki

t : X 1
0 × · · · × X 1

t ×
X i

t → U i
t .

5 The Transition and Cost Operators

Given sets X and Y , we define F(X,Y ) to be the set
of functions mapping X to Y . We abbreviate the set of
real-valued functions F(X, R) as simply F(X).

Let (M,X ,U , p,K) be parameters to a broadcast
MDP. We define the joint initial distribution as the
function b0 : X 1

0 × · · · × XM
0 → R, where

b0(x
1:M
0 ) =

M
∏

i=1

pi
0(x

i
0)

We define the joint control law at time t as Kt =
(K1

t , . . . ,KM
t ). This tuple has a dual use as a function,

where we define

Kt(x
1
0:t, x

2:M
t )

= (K1
t (x1

0:t),K
2
t (x1

0:t, x
2
t ), . . . ,K

M
t (x1

0:t, x
M
t ))

Now given the joint control law Kt, define the transition

operator

Pt+1(Kt) : F(X 1
0 × · · · × X 1

t ×X 2
t × · · · × XM

t ) →

F(X 1
0 × · · · × X 1

t+1 ×X 2
t+1 × · · · × XM

t+1)

where bt+1 = Pt+1(Kt)bt iff

bt+1(x
1
0:t+1, x

2:M
t+1 ) = p1

t+1(x
1
t+1|x

1
t ,K

1
t (x1

0:t))

×
∑

x2:M
t

(

M
∏

i=2

pi
t+1(x

i
t+1|x

1
t ,K

1
t (x1

0:t), x
i
t,K

i
t(x

1
0:t, x

i
t))

× bt(x
1
0:t, x

2:M
t )

)

(3)

for all (x1
0:t, x

2:M
t ). The meaning of the transition opera-

tor is given by the following lemma:

Lemma 2. Let (X,U) be a broadcast MDP with param-

eters (M,X ,U , p,K). For each t, define

bt = Pt(Kt−1) . . . P1(K0)b0

Then bt is the distribution of (X1
0:t,X

2:M
t ).

Proof. The t = 0 case is clearly true by (1). Now
suppose bt is the distribution of (X1

0:t,X
2:M
t ). Let ft be

the distribution of X1:M
0:t , so that distribution of X1:M

0:t+1

is ft+1 given in (2), i.e.

ft+1(x
1:M
0:t+1) = ft(x

1:M
0:t )p1

t+1(x
1
t+1|x

1
t ,K

1
t (x1

0:t))

×
M
∏

i=2

pi
t+1(x

i
t+1|x

1
t ,K

1
t (x1

0:t), x
i
t,K

i
t(x

1
0:t, x

i
t))

Now take the sum of both sides over the variables x2:M
0:t .

By definition of Pt+1(Kt) given in (3), this gives

∑

x2:M
0:t

ft+1(x
1:M
0:t+1) = Pt+1(Kt)bt = bt+1

so bt+1 is the distribution of (X1
0:t+1,X

2:M
t+1 ). The result

follows by induction.

Now if ct is the cost function and Kt are the control
laws at time t, then we define the cost operator

Ct(Kt) : F(X 1
0 × · · · × X 1

t ×X 2
t × · · · × XM

t ) → R

where

Ct(Kt)bt

=
∑

x1
0:t

,x2:M
t

ct(x
1:M
t ,Kt(x

1
0:t, x

2:M
t ))bt(x

1
0:t, x

2:M
t ) (4)

for all bt.

The transition and cost operators give us a classic ex-
pression for the expected cost.

Theorem 3. Let (M,X ,U , p,K) be parameters of a

broadcast MDP (X,U), and c0, . . . , cN be associated cost

functions. Then the expected cost at time horizon N is

J =

N
∑

t=0

Ct(Kt)Pt(Kt−1) . . . P1(K0)b0 (5)

Proof. By Lemma 2, Pt(Kt−1) . . . P1(K0)b0 is the dis-
tribution of (X1

0:t,X
2:M
t ). Thus

E[ct(X
1:M
t , U1:M

t )] = E[ct(X
1:M
t ,Kt(X

1
0:t,X

2:M
t ))]

= Ct(Kt)Pt(Kt−1) . . . P1(K0)b0

and the theorem follows.

We remark with the transition and cost operators ap-
propriately defined, the formula for the cost given in (5)
holds even for the most general decentralized MDPs.

6 Dynamic Programming

The formula given in (5) suggests the following recursive
structure for the expected cost.
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Theorem 4. Let (N,M,X ,U , p, c) be parameters of a

finite-horizon broadcast MDP problem. Then given the

control laws K, define the value functions

Vt : F(X 1
0 × · · · × X 1

t ×X 2
t × · · · × XM

t ) → R

by the backward recursion

VN = CN (KN ) (6)

Vt = Vt+1Pt+1(Kt) + Ct(Kt) (7)

Then the expected cost at the time horizon N is J = V0b0.

Proof. Expanding the recurrence gives

Vt =
N

∑

τ=t

Cτ (Kτ )Pτ (Kτ−1) . . . Pt+1(Kt)

for each t. Thus J = V0b0 by Theorem 3.

The value functions Vt have a natural partial ordering.
We say that Vt ¹ Wt if Vtb ≤ Wtb for all nonnegative
functions b. Those familiar with Markov decision theory
know that for single-player MDPs, it is possible to choose
control laws to minimize the value functions Vt over this
partial order by applying the recursion

VN = min
KN

CN (KN )

Vt = min
Kt

[Vt+1Pt+1(Kt) + Ct(Kt)]

with the optimal control laws are those achieving these
minimums. The minimums are possible because there is a
separate variable in Kt corresponding to each coordinate
in the representation of the linear function Vt.

In the decentralized or partially observed case, how-
ever, some players that do not have access to the global
state of the system, so in general we cannot minimize the
value functions in this way. We must settle for something
much weaker and computationally harder.

Theorem 5. Let (N,M,X ,U , p, c) be parameters of a

finite-horizon broadcast MDP problem. Define the opti-

mal value functions V ∗
t by the backward recursion

V ∗
NbN = min

KN

(CN (KN )bN ), for all bN (8)

V ∗
t bt = min

Kt

(V ∗
t+1Pt+1(Kt)bt + Ct(Kt)bt), for all bt

(9)

and define the Q-functions Qt(Kt) by the equations

QN (KN ) = CN (KN )

Qt(Kt) = V ∗
t+1Pt+1(Kt) + Ct(Kt)

Let b0 be the joint initial distribution, and choose control

laws K∗
0 , . . . ,K∗

N according to the forward recursion

K∗
t ∈ argmin

Kt

Qt(Kt)bt

bt+1 = Pt+1(K
∗
t )bt

Then the control laws K∗ are optimal, i.e. they minimize

the expected cost over the time horizon N .

Proof. By Theorem 4, the expected cost given the
control laws K0, . . . ,KN is V0b0, where Vt is defined by
the recursion

VN = CN (KN )

Vt = Vt+1Pt+1(Kt) + Ct(Kt)

Let Φt be the map from (Kt, . . . ,KN ) to Vt, so that
Φ0(K0, . . . ,KN )b0 is the expected cost. We claim that

V ∗
t bt = min

Kt,...,KN

Φt(Kt, . . . ,KN )bt

This is clearly true for t = N , since ΦN (KN ) = CN (KN ).
Moreover, if the claim is true for time t + 1, then

min
Kt,...,KN

Φt(Kt, . . . ,KN )bt

= min
Kt

(

min
Kt+1,...,KN

(Φt+1(Kt+1, . . . ,KN )Pt+1(Kt)bt)

+ Ct(Kt)bt

)

= min
Kt

(V ∗
t+1Pt+1(Kt)bt + Ct(Kt)bt)

= V ∗
t bt

so it is claim is true for time t. The claim follows by
induction.

The above equations also show that if t < N and we
wish to minimize Φt(Kt, . . . ,KN )bt, we can first choose
Kt to minimize

V ∗
t+1Pt+1(Kt)bt + Ct(Kt)bt = Qt(Kt)bt

and then choose Kt+1, . . . ,KN to minimize

Φt+1(Kt+1, . . . ,KN )Pt+1(Kt)bt

Of course, when t = N , we just need to choose KN to
minimize

ΦN (KN )bN = CN (KN )bN = QN (KN )bN

Thus to minimize the expected cost Φ0(K0, . . . ,KN )b0,
first choose K0 to minimize Q0(K0)b0. Then choose
(K1, . . . ,KN ) to be a minimum of Φ1(K1, . . . ,KN )b1,
where b1 = P1(K0)b0, and keep going until we reach
time N . But this precisely describes the control laws
(K∗

0 , . . . ,K∗
N ), and so K∗ minimizes the expected cost as

desired.

The last theorem actually holds for quite general de-
centralized Markov decision processes if the transition
and cost operators are appropriately defined. It is im-
portant to note that the optimal value functions V ∗

t are
highly nonlinear, and they are in fact piecewise-linear
concave (i.e. a pointwise minimum of a finite number of
linear functions). Techniques for how to effectively com-
pute such representations via linear programming can be
found in [8, 3]. Despite these techniques, however, the
problem of computing a representation of the optimal
value functions is still very difficult [7].
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7 Simplifying the Dynamic Program

While very useful conceptually, the dynamic program-
ming algorithm in Theorem 5 does not take advantage
of the structure within a broadcast MDP. As we shall
see in this section, the dynamic program can be greatly
simplified if we factor out player 1’s state history, which
is available to all players.

Let (N,M,X ,U , p, c) be parameters of a broadcast
MDP problem. We call any element of the set

U1
t ×F(X 2

t ,U2
t ) × · · · × F(XM

t ,UM
t )

a partial control law at time t. Like the joint control
law, a partial control law kt = (k1

t , k2
t , . . . , kM

t ) has a dual
use as a function, where we define

kt(x
2:M
t ) = (k1

t , k2
t (x2

t ), . . . , k
M
t (xM

t ))

Given x1
t ∈ X 1

t and a partial control law kt at time t,
we define the partial transition operator

Pt+1(x
1
t , kt) : F(X 2

t ×· · ·×XM
t ) → F(X 2

t+1 ×· · ·×XM
t+1)

where βt+1 = Pt+1(x
1
t , kt)βt iff

βt+1(x
2:M
t+1 )

=
∑

x2:M
t

M
∏

i=2

pi
t+1(x

i
t+1|x

1
t , k

1
t , xi

t, k
i
t(x

i
t))βt(x

2:M
t )

We also define the partial cost operator

Ct(x
1
t , kt) : F(X 2

t × · · · × XM
t ) → R

where for all βt ∈ F(X 2
t × · · · × XM

t ), we have

Ct(x
1
t , kt)βt =

∑

x2:M
t

ct(x
1:M
t , kt(x

2:M
t ))βt(x

2:M
t )

The partial transition operator and cost operators are
related to the full transition and cost operators by the
following lemma.

Lemma 6. Let (N,M,X ,U , p, c) be parameters of a

broadcast MDP problem. Let Kt be any joint control law

at time t. Then bt+1 = Pt+1(Kt)bt iff

bt+1(x
1
0:t+1, ·) = p1

t+1(x
1
t+1|x

1
t ,K

1
t (x1

0:t))

× Pt+1(x
1
t ,Kt(x

1
0:t, ·))bt(x

1
0:t, ·)

for all x1
0:t+1. Moreover, we have

Ct(Kt)bt =
∑

x1
0:t

Ct(x
1
t ,Kt(x

1
0:t, ·))bt(x

1
0:t, ·)

Proof. Follows immediately from the definitions.

Given x1
t ∈ X 1

t , define the partial value functions

V∗
t (x1

t ) : F(X 2
t × · · · × XM

t ) → R where

V∗
N (x1

N )βN = min
kN

CN (x1
N , kN )βN , for all βN

and for t < N ,

V∗
t (x1

t )βt = min
kt

[

∑

x1
t+1

(

p1
t+1(x

1
t+1|x

1
t , k

1
t )

×V∗
t+1(x

1
t+1)Pt+1(x

1
t , kt)βt

)

+Ct(x
1
t , kt)βt

]

, for all βt

Define also the partial Q-functions Qt(x
1
t , kt), where

QN (x1
N , kN ) = CN (x1

N , kN )

and for t < N ,

Qt(x
1
t , kt) = Ct(x

1
t , kt)

+
∑

x1
t+1

p1
t+1(x

1
t+1|xt, k

1
t )V∗

t+1(x
1
t+1)Pt+1(x

1
t , kt)

It is easy to show that partial value and Q-functions
are also piecewise-linear concave. Most importantly, the
domain of the partial value functions or Q-functions does
not grow as time progresses, which makes representing
them more practical. Moreover, we can relate to the
optimal value functions defined in Theorem 5 by the fol-
lowing lemma.

Lemma 7. Let (N,M,X ,U , p, c) be parameters of a

broadcast MDP problem. Then

Qt(Kt)bt =
∑

x1
0:t

Qt(x
1
t ,Kt(x

1
0:t, ·))bt(x

1
0:t, ·) (10)

V ∗
t bt =

∑

x1
0:t

V∗
t (x1

t )bt(x
1
0:t, ·) (11)

for any Kt and bt.

Proof. First note that if (10) holds, then so does (11),
since

V ∗
t bt = min

Kt

Qt(Kt)bt

= min
Kt

∑

x1
0:t

Qt(x
1
t ,Kt(x

1
0:t, ·))bt(x

1
0:t, ·)

=
∑

x1
0:t

min
Kt(x1

0:t
,·)
Qt(x

1
t ,Kt(x

1
0:t, ·))bt(x

1
0:t, ·)

=
∑

x1
0:t

V∗
t (x1

t )bt(x
1
0:t, ·)

Now by Lemma 6, we have

QN (KN )bN = CN (KN )bN

=
∑

x1
0:N

CN (x1
N ,KN (x1

0:N , ·))bN (x1
0:N , ·)

=
∑

x1
0:N

QN (x1
N ,KN (x1

0:N , ·))bN (x1
0:N , ·)
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so the result is true for time t = N . Moreover, if the
result is true for time t + 1, then by Lemma 6 again, we
have

Qt(Kt)bt

= V ∗
t+1Pt+1(Kt)bt + Ct(Kt)bt

=
∑

x1
0:t+1

(

p1
t+1(x

1
t+1|x

1
t ,K

1
t (x1

0:t))

× V1
t+1(x

1
t ,Kt(x

1
0:t, ·))Pt+1(x

1
t ,Kt(x

1
0:t, ·))bt(x

1
0:t, ·)

)

+
∑

x1
0:t

Ct(x
1
t ,Kt(x

1
0:t, ·))bt(x

1
0:t, ·)

=
∑

x1
0:t

Qt(x
1
t ,Kt(x

1
0:t, ·))bt(x

1
0:t, ·)

so the result is true for time t. The result follows by
induction.

We now can present the dynamic programming algo-
rithm for broadcast MDPs in its simplified form. This
version uses only the partial Q-functions, which are much
easier to compute than the original Q-functions.

Theorem 8. Let (N,M,X ,U , p, c) be parameters of a

broadcast MDP problem. Let K0, . . . ,KN be control laws

such that given any x1
0:N ∈ X 1

0 × · · · × X 1
N , there is a

sequence β0, . . . , βN satisfying the recursion

β0(x
2:M
0 ) =

M
∏

i=2

pi
0(x

i
0) for all x2:M

0

Kt(x
1
0:t, ·) ∈ argmin

kt

Qt(x
1
t , kt)βt

βt+1 = Pt+1(x
1
t ,Kt(x

1
0:t, ·))βt

Then K0, . . . ,KN is optimal.

Proof. By Theorem 5, if

b0(x
1:M
0 ) =

M
∏

i=1

pi
0(x

i
0), for all x1:M

0

K∗
t ∈ argmin

Kt

Qt(Kt)bt

bt+1 = Pt+1(K
∗
t )bt

for each t, then K∗
0 , . . . ,K∗

N is optimal. We now show
that if the control laws satisfy the conditions of this the-
orem, they will satisfy the above conditions as well, thus
guaranteeing optimality.

We first note that for any x1
0, bt(x

1
0, ·) is a nonnegative

scalar multiple of β0. Now suppose that for each x1
0:t,

bt(x
1
0:t, ·) is a nonnegative scalar multiple of the computed

βt. Now by Lemma 7, we have

Qt(Kt)bt =
∑

x1
0:t

Qt(x
1
t ,Kt(x

1
0:t, ·))bt(x

1
0:t, ·)

so if for each x1
0:t, we choose Kt(x

1
0:t, ·) so that it is

a minimum of Qt(x
1
t ,Kt(x

1
0:t, ·))bt(x

1
0:t, ·), then this will

also minimize the function Qt(Kt)bt. Moreover, by pos-
itive homogeneity of Qt(x

1
t ,Kt(x

1
0:t, ·)), any Kt(x

1
0:t, ·)

that minimizes Qt(x
1
t ,Kt(x

1
0:t, ·))βt will also minimize

Qt(x
1
t ,Kt(x

1
0:t, ·))bt(x

1
0:t, ·).

Finally, from Lemma 6 we have bt+1 = Pt+1(Kt)bt iff

bt+1(x
1
0:t+1, ·) = p1

t+1(x
1
t+1|x

1
t ,K

1
t (x1

0:t))

× Pt+1(x
1
t ,Kt(x

1
0:t, ·))bt(x

1
0:t, ·)

Thus if the bt(x
1
0:t, ·) is a nonnegative scalar multiple of

βt, then bt+1(x
1
0:t+1, ·) is a nonnegative scalar multiple of

βt+1 = Pt+1(x
1
t ,Kt(x

1
0:t, ·))βt. The theorem follows by

induction.
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