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Abstract

We propose a heuristic approach to approximately com-
pute the optimal decentralized control for linear systems.
The method exploits the notion of quadratic invariance,
which characterizes a class of convex problems in decen-
tralized control design, and extends the application to
general unstructured models. The plant model is approx-
imated such that the decentralized information structure
is quadratically invariant under the approximate plant.
Then the optimal design is efficiently found via convex
optimization, and it is applied back to the original full
plant. A simple convex condition to prove the closed loop
stability in this setup is presented. The method finds a
satisfactory decentralized control design efficiently, and
furthermore, the resulting design can be used as a good
initial point for local optimization algorithms. A numer-
ical example on a simplified turbine engine model is pre-
sented for demonstration.

1 Introduction

Multiple control units in decentralized architectures of-
fer solutions to overcome the inevitable problems with
the classical centralized control systems, by reducing the
computation and communication burden imposed on the
central control unit. We consider such decentralized con-
trol architectures where the control functions are dis-
tributed to several units, each with access to a differ-
ent subset of the measurements or delayed information.
The units may be able to communicate, typically over a
data network, with associated random delays and limited
bandwidth. Systematic and efficient design of decentral-
ized policies in such architectures is a fundamental and
central issue for networked control.

One of the critical factors limiting these technological
developments is that the model-based control synthesis
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procedures which have been so effective at centralized
control do not currently have counterparts for decentral-
ized control. Although good heuristics are known in some
cases, and certain special cases have been solved exactly,
for the general problem there is currently no method that
can in general numerically compute, for example, the
optimal mean-square performance achievable by decen-
tralized control, even for the highly specialized scenario
of low dimensional linear time-invariant state-space sys-
tems. It no longer fits within the existing paradigm (Ric-
cati equations, etc) for optimal centralized control prob-
lems; this is the key obstacle to the overall problem, and
a tractable algorithm for finding the optimal controller,
even the optimal linear controller, does not yet exist [4].

A number of local optimization algorithms have been
suggested [6, 7, 8, 10], of which the convergence largely
depends on the choice of initial feasible point. Branch-
and-bound techniques were applied to find the globally
optimal design [1, 14], however they usually result in
extremely large computational load even for small-sized
problems. A recent work [13] introduces the notion of
quadratic invariance (QI) which characterizes the largest
known class of tractable problems in structured control
design problems. It shows that for a large range of prac-
tical problems, one can compute the minimum achievable
mean-square error, and a controller which is optimal.

We propose a heuristic design procedure extending
the application of quadratic invariance to general non-
structured plants. It reduces the synthesis problem to
a quadratically-invariant one, where well-known compu-
tational techniques based on semidefinite programming
may be used. Given a desired decentralized control struc-
ture, an approximate plant model which is quadratically
invariant with the given structure is found. Then, the
optimal solution for the approximate plant is easily com-
puted, and it is expected to attain acceptable control per-
formance when applied to the original full plant; in fact, a
simple convex condition guarantees this. The design can
be further improved by existing local search algorithms.
In this paper, a heuristic coordinatewise search scheme is
used to locally solve the bilinear matrix inequality (BMI)
representation.

The suggested method was applied to a jet engine con-
trol design problem. Current engine control systems are
typically a centralized control characterized by a Full Au-
thority Digital Engine Control (FADEC) with point-to-
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point analog communications to sensors and actuators.
The FADEC is a large and heavy computer system which
is often fuel cooled to protect the control electronics. Fur-
thermore, future systems with advanced control capabil-
ity and enhanced health management functions will re-
quire additional sensor/actuator units and more frequent
communication. Therefore, engine control systems that
have distributed processing elements and decentralized
control functions are anticipated [2, 3].

The numerical experiments demonstrate that this
unique design procedure efficiently computes decent de-
centralized controllers, and the proposed methods can
be served as a promising alternative to the existing lo-
cal optimization techniques for designing decentralized
controllers.

2 Decentralized Control Design

For centralized control architectures with widely ac-
cepted control objective functions such as the H2 norm or
the H∞ norm of the closed-loop system, there are several
well known methods that solve the problem efficiently.
Such problems can be expressed using the following gen-
eralized plant description.

minimize
∥

∥P11 + P12K(I − GK)−1P21

∥

∥

subject to K stabilizes P

where P11, P12, and P21 describe the input-output inter-
connection of the models. G represents the plant model
and K is the controller to be designed.

The above objective function is not convex in the
variable K, but the problem can be transformed to a
convex one by change of variables according to Q =
K(I −GK)−1. The optimal control K∗ is generally full,
which represents the centralized control authority.

Synthesizing optimal decentralized controls requires
additional constraints and this makes the problem far
harder. Optimal decentralized control synthesis can be
described as follows, by adding the structural constraint.

minimize
∥

∥P11 + P12K(I − GK)−1P21

∥

∥

subject to K stabilizes P

K satisfies the information constraint

The last constraint, which is generally a sparsity pat-
tern constraint, describes the decentralized control ar-
chitectures. The change of variables, which helped the
centralized problem, is of no use in this case since it
transforms the linear information constraints to complex
nonconvex constraints. In general, finding the optimal
control for such a decentralized setup is very hard, and
no algorithm is known to efficiently solve the problem in
polynomial time [4]. In the next section, we suggest a
design method for an approximate solution to such prob-
lems, based on the recently introduced quadratic invari-
ance idea.

2.1 Quadratic invariance method

Quadratic invariance characterizes a simple algebraic
condition of the plant model and the controller model,
under which the optimal decentralized control problem
reduces to a convex problem.

Suppose U and Y are Banach spaces, and let F be the
space of functions K : Y → U . As a general represen-
tation of decentralization constraints, we call a subspace
S ⊂ F an information constraint.

We consider finding optimal linear controllers, and de-
fine the following class of information constraints.

Definition 1. Suppose G : U → Y is linear, and S is an
information constraint. S is called quadratically in-

variant under G if every element of S is linear, and

KGK ∈ S for all K ∈ S

We can show that for the linear decentralized control
problem with a quadratically invariant information con-
straint, the optimal controller may be found via convex
optimization. Further, this controller is optimal over the
class of all controllers; i.e., no nonlinear controller has
better performance.

Theorem 2. Suppose G : U → Y is linear, S is a closed
quadratically invariant information constraint, and for
every K in the subspace S the operator I−GK is invert-
ible. Then

K ∈ S ⇐⇒ K(I − GK)−1 ∈ S

Proof. See [13] for details.

The theorem says that the quadratic invariance guar-
antees the convexity of the information constraint set un-
der the transformation according to Q = K(I − GK)−1.
This gives the equivalent problem.

minimize ‖P11 + P12QP21‖
subject to Q ∈ RH∞ ∩ S

This is now an infinite dimensional convex optimiza-
tion problem, and the H2 norm case can be solved by
standard methods [12]. This implies that if the system
and the controller jointly satisfy some simple algebraic
condition, the optimal decentralized control problem may
be easily solved.

The notion of quadratic invariance is powerful for
plants with some sparsity patterns. However it is not ap-
propriate for application to general full models, i.e., for
full plant models, the only quadratically invariant class
of controllers are full (centralized) controllers.

In approximately computing the optimal decentralized
control laws for general linear systems, we suggest an in-
tuitive heuristic procedure extensively applying the no-
tion of quadratic invariance to the full models.

2



Quadratic invariance method:

1. Desired decentralized control structure S is spec-
ified, on the given full plant G. Say,

S =

[

• •
◦ •

]

G =

[

• •
• •

]

Note that S is not quadratically invariant under
G and finding optimal K∗ ∈ S is hard.

2. Find a sparse approximation G̃ for the given
model, such that S is quadratically invariant un-
der G̃.

G̃ =

[

• •
◦ •

]

Now the optimal control K̃ ∈ S can be efficiently
computed.

3. Find the optimal control K̃ for G̃.

K̃ =

[

• •
◦ •

]

∈ S G̃ =

[

• •
◦ •

]

4. Apply the computed control K̃ back to G.

K̃ =

[

• •
◦ •

]

G =

[

• •
• •

]

Suppose that a control structure requirement, e.g., di-
agonal, triangular, or some other sparsity patterns that
meets the system design specification, is given. If it al-
lows some sparse plant models under which the control
structure is quadratically invariant, then we can approx-
imate the plant model to such sparse ones and compute
the optimal decentralized control for the approximate
plant via off-the-shelve convex optimization tools.

The approximate plant model is obtained by truncat-
ing some elements of the original transfer function ma-
trix. For example, suppose that the control structure S

is required on the full plant G, where

S =





• • •
◦ ◦ •
◦ ◦ •



 G =





g11 g12 g13

g21 g22 g23

g31 g32 g33





It can easily be checked that S is quadratically in-
variant under upper triangular plants. Hence the sparse
approximation G̃ of G is simply

G̃ =





g11 g12 g13

0 g22 g23

0 0 g33





We may use the computed solution K̃ back to the orig-
inal full plant G, and it is expected to attain acceptable
control performance provided that the truncated sparse
model dominates the full system dynamics, as in weakly
coupled systems.

2.2 Stability condition

An intuitive conjecture is that for ‖G− G̃‖∞ sufficiently
small, applying the QI-designed optimal control K̃ ∈ S

back to the original plant G would still stabilize the sys-
tem. To claim this formally, let us partition G into the
QI part G̃, and the off-QI part Gd.

G = G̃ + Gd

where the control S is quadratically invariant under G̃,
and trace G̃T Gd = 0.

Lemma 3. Consider a stable plant G, and let K̃ be the
QI-designed optimal decentralized control on G̃. Then the
feedback interconnection of K̃ on G is internally stable if
‖GdQ̃‖∞ < 1, where Q̃ = K̃(I − G̃K̃)−1.

Proof. The feedback system is internally stable if and
only if K̃(I−GK̃)−1 is stable. Also, the following identity
holds.

K̃(I − GK̃)−1 = K̃
(

I − (I − G̃K̃)−1GdK̃
)

−1
(I − G̃K̃)−1

= Q̃(I − GdQ̃)−1

Since Gd and Q̃ are stable, the above is stable if
‖GdQ̃‖∞ < 1, as required.

The above can be interpreted as the robust stability
condition of the QI system with respect to the additive
model uncertainty Gd.

We can derive a similar condition for unstable plants.
Consider an unstable plant G with the unstable QI part
G̃, and suppose that Kn ∈ S stabilizes both G and G̃.
Then the optimal decentralized control for the unstable G̃

is obtained from the optimal solution Q̃ associated with
the following prestabilized plant.

minimize
∥

∥P11 + P12Kn(I − G̃Kn)−1P21

+ P12(I − KnG̃)−1Q(I − G̃Kn)−1P21

∥

∥

subject to Q ∈ RH∞ ∩ S

where the optimal control K̃ is determined by K̃ = Kn +
Q̃(I + G̃cQ̃)−1, where G̃c = G̃(I − KnG̃)−1.

Corollary 4. Suppose that an unstable plant G and the
unstable QI part G̃ are stabilized by Kn, and let K̃ be the
QI designed optimal decentralized control on G̃. Then the
feedback interconnection of K̃ on G is internally stable if
‖(Gc − G̃c)Q̃‖∞ < 1, where Gc = G(I − KnG)−1, G̃c =

G̃(I −KnG̃)−1 and Q̃ = (K̃ −Kn)
(

I − G̃c(K̃ −Kn)
)

−1
.

Proof. The prestabilized plant can be described by
[

P11 + P12Kn(I − G̃Kn)−1P21 P12(I − KnG̃)−1

(I − G̃Kn)−1P21 G̃c

]

Since S is quadratically invariant under G̃c[13],
Lemma 3 can be directly extended to the prestabilized
plant, which leads to the above statement.
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Now the QI design optimization can be modified in-
cluding this stability condition. For stable plants, the
optimal solution Q̃ to the following problem

minimize
∥

∥P11 + P12QP21

∥

∥

subject to Q ∈ RH∞ ∩ S

‖GdQ‖∞ < 1

and K̃ = Q̃(I + G̃Q̃)−1 guarantees the closed loop stabil-
ity with the original plant. The counterpart for unstable
plants can be derived equivalently using the prestabilized
plant description.

The above is an infinite dimensional convex optimiza-
tion problem. In this case, solving for the exact solu-
tion is not obvious as in [12] because of the last H∞

norm condition. A series of convergent solutions may be
found using the finite dimensional approximation tech-
niques [5, 9].

2.3 Performance improvement by coordinate-

wise descent method

The design obtained by the quadratic invariance method
is optimal for the approximated model. However, the
design is not necessarily optimal for the original model;
possibly not even locally optimal. Thus it can be further
improved by local search methods such as an iterative
algorithm presented below.

Express the plant P and the controller K in the fol-
lowing state-space realization.

P :





A Bw B

Cz Dzw Dz

C Dw 0



 K :

[

AK BK

CK DK

]

If we constrain the optimization over a set of fixed
order controllers, the decentralized H2 control problem
in the previous section can be equivalently written in the
following BMI representation.

minimize trace Q

subject to

[

ATP + PA PB
BTP −I

]

< 0

[

P CT

C Q

]

> 0, P > 0, D = 0

[

AK BK

CK DK

]

satisfies the

information constraint

where A,B, C, and D describe the closed loop dynamics.

[

A B
C D

]

=





A + BDKC BCK Bw + BDKDw

BKC AK BKDw

Cz + DzDKC DzCK Dzw + DzDKDw





Coordinatewise descent method:

1. Initialize a controller with the design obtained
from the QI method.

2. Fix (AK , BK , CK ,DK), and solve the resulting
SDP in P and Q.

3. Fix P, and solve the resulting SDP in
(AK , BK , CK ,DK) and Q.

4. Go to 2 and iterate the process until the progress
reaches the termination criteria.

Note that the first matrix inequality is bilinear in
(AK , BK , CK ,DK) quadruple and P. However for fixed
(AK , BK , CK ,DK), it is linear in P and Q, reducing the
problem to a semidefinite programming (SDP). Similarly
the problem reduces to an SDP for fixed P.

Based on this observation, we can improve the QI
design by iteratively solving the two alternating LMIs.
Note that this process guarantees to monotonically non-
increase the objective value from the initial design.

Since the convergence of such a local coordinatewise
descent scheme is sensitive to the choice of the initial
controller, the QI design as the initial point can result in
a very useful design in practice.

3 Numerical Example

3.1 Decentralized control of a turbine engine

A linearized model of the GE F404 turbine engine at the
rated thrust condition at 35,000 ft altitude was taken
from [11], and then scaled for design convenience. The
scaled model follows below, and the states, the measure-
ments, and the control inputs are given in Table 1.

»

Ap Bp

Cp Dp

–

=

2

6

6

6

6

4

−1.4600 3.3880 0 0.1840 0.4578
0.2219 −2.2300 0 0.1630 0.0015
1.4670 −4.8375 −0.4000 1.5325 −0.0978

0 0 1.0000 0 0
1.0000 0 0 0 0

3

7

7

7

7

5

The above model has no pure integrator, thus needs
to be augmented with additional integrators at the input
terminal in order to achieve zero steady state error. The
augmented system with xT =

[

uT
p xT

p

]

and u = u̇p is
shown below.

[

A B

C D

]

=





0 0 I

Bp Ap 0
Dp Cp 0





The classical LQG/LTR approach suggests a target
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feedback loop of the following form.

ẋ = Ax + Bu + Lw

y = Cx +
√

µv
L =

[

−(CpA
−1

p Bp)
−1

CT
p (CpC

T
p )−1

]

where w and v can be interpreted as zero mean process
and measurement noise with unit intensity, i.e., EwwT =
I, EvvT = I. L is chosen as above to match the singular
values in all directions at low and high frequency regions.

The design problem with zT =
[

(Cx)T √
ρuT

]

can
be written in the following generalized plant description.
µ = 0.01 and ρ = 10−6 are chosen here.

»

z

y

–

=

2

4

C(sI − A)−1L 0 C(sI − A)−1B
0 0

√
ρI

C(sI − A)−1L
√

µI C(sI − A)−1B

3

5

2

4

w
v

u

3

5

Two decentralized H2 controls (an upper triangular
controller and a diagonal controller) were synthesized us-
ing the QI method. The centralized H2 control (LQG
solution) is also presented here and compared for com-
manded step changes in turbine temperature. The sta-
bility measure, ‖GdQ̃‖∞, turns out to be well below 1 for
both optimal QI designs (0.7183 for the upper triangular
control and 0.9026 for the diagonal control). Therefore
relaxing the stabililty constraint ‖GdQ̃‖∞ < 1 does not
change the optimal solution in these cases, and the solu-
tions presented here were obtained as such. This reduces
the computational complexity in the design optimization.

Simulation results are shown in Figure 1, where slight
degradation in results between the centralized and the de-
centralized cases, including lack of disturbance rejection,
is observed. Because the decentralized controls work with
less information compared to the full centralized case, the
observed performance degradation is not surprising at all.

Both of the QI designs can be further improved by
the coordinatewise descent (CD) method, though only
the diagonal controller is demonstrated here. The con-
vergence profile and the response to turbine temperature
command are shown in Figure 3 and Figure 2.

Achieved H2 norms are summarized in Table 2, which
displays the obvious improvement in the QI+CD case
compared to the QI only case.

Variable Description

xp N2 Fan speed
N2.5 High pressure compressor speed
Tt4.5 Turbine total temperature

yp Tt4.5 Turbine total temperature
N2 Fan speed

up Wf Fuel flow rate
Aj Nozzle area

Table 1: State variables (xp), measurements (yp), and
control inputs (up) for the turbine engine model. All the
variables are scaled.
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Figure 1: Response to turbine temperature command.
An upper triangular controller and a diagonal controller,
both designed by the QI method, are compared with the
centralized LQG control.

Controller Objective value
(

‖ · ‖2

2

)

Full (LQG) 0.2990
Diagonal (QI) 0.3214
Diagonal (QI+CD) 0.3168

Table 2: Achieved objective values (squared H2 norms)

4 Concluding Remarks

We proposed a new design approach for decentralized
control problems, and presented a simple condition to
guarantee stability of the closed loop system.

The procedure in this paper makes use of a heuristic to
reduce the synthesis problem to a quadratically-invariant
one, for which well-known computational techniques ex-
ist. The plant model was approximated such that the
decentralized information structure is quadratically in-
variant under the approximated plant model. Then the
optimal design was efficiently found using convex opti-
mization techniques, and it was applied to the original
plant. A simple convex condition on the controller vari-
ables was shown to guarantee the stability of the sug-
gested design method.

The designed controller was further improved by a co-
ordinatewise descent method, which monotonically non-
increase the objective value. Since the convergence of the
coordinatewise descent method is sensitive to the perfor-
mance of the initial controller, the QI design as an initial
guess can be a clever choice.

Simulation results demonstrate that the proposed ap-
proach finds a decent control design for a simplified lin-
ear jet engine model efficiently. The designed decentral-
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Figure 2: Response to turbine temprature command.
The diagonal controller designed by the QI method
(solid) is improved by the coordinatewise descent method
(dash-dotted).
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Figure 3: Performance improvement by the coordinate-
wise descent method.

ized controller exhibited approximately 10% performance
degradation compared to the centralized control case.

Information delay throughout the communication net-
works can be considered in the same framework, and the
performance degradation from it can be investigated too.
Hence the proposed design technique is able to present
promising candidates for future control systems in decen-
tralized architectures with distributed intelligence.

Further studies may include computational techniques
to manage the stability/performance condition in the de-
sign optimization. This will lend the proposed method to
a systematic synthesis for a class of decentralized optimal
control problems. Addressing the same problem in the
robust control framework will be interesting too. More
practically, realistic engine models including the impact
of the communication delay should be considered.
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