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Connections and disconnections: acquired
dyslexia in a computational model of reading
processes

KARALYN PATTERSON, MARK S. SEIDENBERG,
and JAMES L. McCLELLAND '

Introduction

In this chapter we describe a new, parallel distributed processing (PDP) model
of visual word recognition and pronunciation, the acquisition of these skills,
and their breakdown following brain injury. The model consists of a working,
computational simulation of the process of learning to recognize and
pronounce written words. In developing this model we were motivated by two
general concerns. The first is that, since word recognition is a key component
of reading, a comprehensive account of word recognition is critical to an
understanding of this important human cognitive skili. A basic characteristic
of reading comprehension is that it occurs ‘on-line’, i.e. essentially as the
stimulus is perceived. This characteristic derives in part from the fact that
words are recognized rapidly and usually effortlessly; a large amount of
research has addressed the types of knowledge and processes that support this
capacity, the kinds of information that become available as part of the
recognition process, and how this information contributes to other aspects of
reading. Furthermore, word recognition presents important developmental
issues; learning to read words is among the first tasks confronting the
beginning reader, and problems in reading acquisition are typically associated
with deficits in this skill. Finally, reading impairments that are a
consequence of brain injury are often associated with deficits in word
recognition; studies of these acquired forms of dyslexia have provided
important evidence concerning the reading process and its neurological
realization. As reading résearchers, one of our primary goals was to develop
a computational model that incorporates much of what is known about
these aspects of word recognition.

The other primary motivation for this work was the observation that word
recognition provides a domain in which to explore the properties of the
connectionist or parallel distributed processing (PDP) approach to under-
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standing human cognition. This approach represents the modern realization
of Hebb's (1949) idea that complex human behaviours emerge from the
operation of aggregations of simple neuronal processing units. The approach
has generated broad interest among cognitive- and neuro-scientists, and has
been applied to a wide range of problems in perception, learning, and
cognition (e.g. McClelland and Rumelhart 1986; Rumelhart and McClelland
1986a). The first generation of connectionist models illustrated the basic
principles and the potential of this approach, but were limited in scope. As a
relatively mature area of research, word recognition presented a domain in
which to develop a second-generation model capable of simulating a broad
range of behavioural phenomena in detail. Such a comprehensive model
would provide a basis for assessing the value of the connectionist approach in
the development of explanatory theories. :

The plan of the paper is as follows. We first provide an overview of the
model, describing its basic structure and operation. We then summarize the
model’s account of the task of naming words aloud. This material is developed
in greater detail elsewhere (Seidenberg 1988a; Seidenberg and McClelland
1988a,b), so our treatment of these issues will necessarily be limited. The main
focus of this paper concerns our initial explorations of the model’s potential to
account for certain reading disorders that are observed following brain injury.
Although it is by no means a complete theory of word recognition and
pronunciation, the model provides a plausible account of some basic
phenomena concerning normal performance; we sought to determine whether
aspects of pathological performance could be captured in terms of damage to
this system. This work represents one of the first attempts to describe and
explain pathological performance following brain injury by ‘lesioning’ a
working computational model of normal performance. Although these studies
are as yet preliminary in nature, we think that this effort illustrates the utility
and potential of the approach.

Overview of the model

We conceive of a lexical processing module with the general form illustrated in
Fig.7.1. The long-term goal is an integrated theory that accounts for various
aspects of lexical processing involving orthographic, phonological, and
semantic information. Such a theory would specify how these types of
information are represented in memory, and how they are used in tasks such as
deriving the meaning of a word from its written form, deriving the spelling of a
word from its meaning or its pronunciation, and deriving a pronunciation
from spelling. The implemented model, represented by that part of Fig. 7.1 in
heavy outline, is concerned with how readers recognize letter strings and
pronounce them aloud. The model consists of a network of interconnected
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MAKE /mAk/

Fig. 7.1 General framework for processing of words in reading: the implemented
model is in bold outline.

processing units. There are 400 units used to code orthographic information,
200 hidden units, and 460 units used to code phonological information. There
are connections from all orthographic units to all hidden units, and from all
hidden units to all phonological units. In addition, there is a set of connections
from the hidden units back to the orthographic units. The connections
between units carry weights that govern the spread of activation through the
system. As will become clear below, these weights encode what the model
knows about written English, specifically orthographic redundancy (i.c. the
frequency and distribution of letter patterns in the lexicon) and the
correspondences between orthography and phonology.

Orthographic and phonological representations

The orthographic and phonological codes for words (and non-words) are
represented as patterns of activation distributed over a number of primitive
representational units. Each processing unit has an activation value ranging
from 0 to 1. The representations of different entities are encoded as different
patterns of activity over these units. The details of these representational
schemes are described elsewhere (Seidenberg and McClelland 1988a,b); here
we summarize some of their main features.

The phonological representation we employed was the one developed by
Rumelhart and McClelland (1986b). The phonemes in a letter string are
encoded as a set of triples, each specifying a phoneme and its flankers. The
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word MAKE, for example, consists of three such triples or ‘Wickelphones’ (in
honor of Wickelgren 1969). The correspondence between Wickelphones and
units is one-to-many. Each Wickelphone is encoded as a pattern of activation
over a sct of units representing phonetic features. Each unit represents a triple
of phonetic features, one feature of the first of the three phonemes in each

Wickelphone, one feature of the second of the three, and one of the third. For

example, there is a unit that represents [vowel, fricative, stop]. This unit
should be activated for any word containing a Wickelphone in which this
sequence occurs, such as the words POST and SOFT. Word boundaries are
also represented in the featural representation, so that there is a unit, for
example, that represents [vowel, liquid, word-boundary]; this unit would
come on in words like CAR and CALL. In Rumelhart and McClelland’s
(1986h) scheme, there are 460 units and each Wickelphone activates 16 of them
(see their paper for discussion).

The representation used at the graphemic level has similarities with that
used at the phonological level, but it consists of 400 units set up according to a
slightly different scheme. For each unit, there is a table containing a list of 10
possible first letters, 10 possible middle letters, and 10 possible end letters.
These tables are generated randomly, except for the constraint that the symbol
for beginning/end of word does not occur in the middle position. When the
unitis on, it indicates that the string being represented contains one of the 1000
possible triples that could be made by selecting one member from the first list
ol 10, one from the second, and one from the third. Each letter triple activates
about 20 units. Though each.unit is highly ambiguous, over the full set of 400
such randomly constructed units, the probability that any two sequences of
three letters would activate all and only the same units in common is effectively
zero.

In sum, both the phonological and the orthographic representations can be
described as coarse-coded, distributed representations of the sort discussed by
Hinton, McClelland, and Rumelhart (1986). The representations allow any
letter and phoneme sequences to be represented, subject to certain saturation
and ambiguity limits that can arise when the strings get too long. Thus, there is
a minimum of built-in knowledge of orthographic or phonological structure.
The use of a local context-sensitive coding scheme promotes the exploitation
of local contextual similarity as a basis for generalization in the model; that is,
what the model learns to do for a grapheme in one local context (e.g. the M in
MAKE) will tend to transfer to the same grapheme in similar local contexts
(e.g. M in MADE and MATE and, to a lesser extent, M in contexts such as
MILE and SMALL). Note that we do not claim that these encoding schemes
are fully sufficient for representing all of the letter or phoneme sequences that
form words (see Pinker and Prince 1988). However, we are presently applying
the model only to monosyllables, for which the representation is adequate (see
Seidenberg and McClelland, 1988b, for discussion).
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Processing in the model

The model takes a letter string as input and yields two types of output: (1)-a
pattern of activation across the phonological units; and (2) a recreatjon of the
input pattern across the orthographic units. The former can be thought of as
the model’s computation of a phonological code for the input, and will be
discussed in some detail because of its relevance to the word naming task. The
latter can be considered a representation of the orthographic input in a short-
term sensory store and is critical to our account of lexical decision (Seidenberg
and McClelland 1988a.,b). Each word-processing trial begins with the
presentation of a letter string, which the simulation program then encodes into
a pattern of activation over the orthographic units, according to the
representational assumptions described above. Next, activations of the hidden
units are computed on the basis of the pattern of activation at the orthographic
level. For each hidden unit, a quantity termed the net input is computed: this is
the activation of each input unit times the weight on the connection from that
input unit to the hidden unit, plus a bias term unique to the unit. The bias term
may be thought of as an extra weight or connection to the unit from a special
unit that always has activation of 1.0. The activation of the hidden unit is
then determined from the net input using a non-linear function called the
logistic function. The activation function must be non-linear for reasons
described in Rumelhart, Hinton, and McClelland (1986). It must be
monotonically increasing and have a smooth first derivative for reasons
having to do with the learning rule. The logistic function satisfies these
constraints.

Once activations over the hidden units have been computed, these are used
to compute activations for the phonological units and new activations for the
orthographic units based on feedback from the hidden units. These activations
are computed following exactly the same procedures already described: first
the net input to each unit is calculated, based on the activations of all of the
hidden units; then the activation of each of these units is computed, based on
the net inputs.

Learning

When the model is first initialized, the connection strengths and biases in the
network are assigned random initial values between —0.5 and +0.5. This
means that each hidden unit computes an entirely arbitrary function of the
input it receives from the orthographic units, and sends a random pattern of

. excitatory and inhibitory signals to the phonological units and back to the

orthographic units. This also means that the network has no initial


common
Pencil

common
Pencil

common
Pencil

common
Pencil


136 Patterson, Seidenberg, and McClelland

knowledge of spelling patterns or of correspondences between spelling and
sound. Thus, the model is effectively tabula rasa; the abilities to re-create the
orthographic input and generate its phonological code arise as a result of
learning from exposure to letter strings and the corresponding strings of
phonemes.

Learning occurs in the model in the following way. An orthographic string
is presented and processing takes place as described above, producing first a
pattern of activation over the hidden units, then a feedback pattern on the
orthographic units and a feedforward pattern on the phonological units. At
this point these two output patterns produced by the model are compared to
the correct, target patterns that the model should have produced. The target
for the orthographic feedback pattern is simply- the orthographic input
pattern; the target for the phonological output is the pattern representing the

correct pronunciation of the presented letter string. A real-world counterpart .

of this second procedure would be a child seeing a letter string and hearing a
teacher or other person say its correct pronunciation.

For each graphemic and phonemic unit, the difference between the correct
or target activation of the unit and its actual activation is computed. The
learning procedure adjusts the strengths of all of the connections in the
network in proportion to the extent to which this change will reduce a measure
of the total error, E. This algorithm is the ‘back-propagation’ learning
procedure of Rumelhart, Hinton, and Williams (1986). Readers are referred to
Rumelhart et al. for an explanation of how the weights are modified. The most
important feature is that the rule changes the strength of each weight in
proportion to the size of the effect that changing it will have on the error
measure. Large changes are made to weights that have a large effect on E, and
small changes are made to weights that have a small effect on E.

The training corpus

The model was trained on all of the monosyllabic words consisting of three or
more letters in the Kucera and Francis (1967) word count, minus proper
nouns, foreign words, abbreviations, and words that are formed by the
addition of a final -s or -ed inflection. This is not a complete list of the
uninflected monosyllabic words in English; for example, the word FONT is

one of many that do not appear in Kucera and Francis. Nevertheless, the-

corpus provides a reasonable approximation of the set of monosyllables in the
vocabulary of an average American reader. To this list we added a number of
words that had been used in some of the experiments that we planned to
simulate. The resulting corpus contained 2897 words.

The training regime was divided into a series of 250 epochs. In each epoch,
each word had a probability of being presented that was a logarithmic function
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of its Kucera and Francis frequency. The most frequent word (THE) had a
probability of about 0.93; words occurring once per million had probabilities
of about 0.05. Thus, the expected value of the number of presentations of a
word over 250 epochs ranged from about 230 to about 12. Since the sampling
process is in fact random, about 5 per cent of the lowest-frequency items will
have occurred less than six times during training. ‘

This sampling method is not intended to mimic the experience of children
learning to read in American culture. In the model, all words are available for
sampling throughout training, with frequency represented by the probability
of selection on a given learning trial. In actual experience, however, frequency
derives in part from age at acquisition; words that are higher-frequency for
adults tend to be learned earlier by children. Moreover, our treatment of
frequency only approximates the differences in familiarity that are relevant to
skilled readers, for two reasons. First, there are known inaccuracies in
standard frequency norms (Gernsbacher 1984), especially in the lower-
frequency range. Second, our encoding of frequency greatly underweights the
advantage of higher-frequency words relative to words of lower frequency. In
the Kucera and Francis (1967) count, for example, frequencies range from
about 70 000 to 1; with the logarithmic compression used in our model, the
ratio of highest-frequency word to lowest- is only about 16 to I.

Characterizing the model’s performance

The model produces patterns of activation across the orthographic and
phonological units as its output. For word naming, we assume that the pattern
over the phonological units serves as the input to a system that constructs an
articulatory-motor program, which in turn is executed by the motor system,
resulting in an overt pronunciation response. In reality, we believe that these
processes operate in a cascaded fashion: the response is triggered when the
articulatory-motor program has evolved to the point where it is sufficiently
differentiated from other possible motor programs. Thus, activation would
begin to build up first at the orthographic units, propagating continuously
from there to the hidden and phonological units and from there to the motor
system.

The simulation model simplifies this procedure. Activations of the
phonological units are computed in a single step, and the construction and
execution of articulatory-motor programs are unimplemented. Activations

.computed in this manner can be shown to correspond to the asymptotic

activations that would be achieved in a cascaded process (Cohen, Dunbar,
and McClelland 1988). We use the phonological error score—the sum of the
squared differences between the target activation value for each phonological
unit and the actual activation computed by the network—to relate the model’s
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performance to experimental data on latency and accuracy of word-naming
responses. The error score is a measure of how closely the pattern computed by
the net matches the correct pronunciation (or any other specified pronuncia-
tion). In general, after training the error score is lower for the correct
pronunciation than for any other.

Even though the correct phonological code may be the best match to the
pattern of activation over the phonological units, there is still considerable
variation in error scores, and we assume that lower error scores are correlated
with faster and more accurate responses under time pressure. The rationale for
the accuracy assumption is simply that a low error score signifies a pattern
produced by the network that is relatively clear and free from noise, providing
a better signal on which the articulatory-motor programming and execution
processes can operate. The rationale for the speed assumption is that in a
cascaded system, patterns that are relatively clear (low in error) at asymptote
reach a criterion level of clarity relatively quickly. Simulations demonstrating
this point are presented in Cohen, Dunbar, and McClelland (1988).

The error score should not be viewed as a literal measure of the accuracy of
an overt response made by the network. The error scores can never actually
reach zero, since the logistic function used in setting the activations of units
prevents activations from ever reaching their maximum or minimum values.
With continued practice, error scores simply get smaller and smaller, as
activations of units approximate more and more closely to the target values of
1 and 0. This improvement continues well beyond the point where the correct
answer is the best match to the pattern produced by the network.

We also calculate an orthographic error score, analogous to the phonologi-
cal error score, which provides a measure of the familiarity and redundancy of
a letter string. This measure plays an important role in our account of lexical
decision performance, but will not be considered further here (see Seidenberg
and McClelland 1988a,b).

In sum, when presented with letter strings, the model produces ortho-
graphic and phonological codes which provide the basis for performing tasks
such as lexical decision and naming. We characterize the model’s performance
in terms of error scores calculated for different types of stimuli after different
amounts of training, and relate these to human performance on these tasks.
Because the model contains such a large pool of words, we can perform very
close simulations of many empirical phenomena reported in the literature,
often using the identical stimuli as in a particular experiment. :

Summary of the model’s performance

Seidenberg and McClelland (1988a,b) describe a broad range of behavioural
phenomena simulated by the model. Here we briefly summarize results from
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simulations of the task of naming words and non-words aloud. We focus on
naming because the acquired forms of dyslexia discussed below are typically
associated with impairments on this task. The problem of learning to read
single words aloud in English is largely determined by properties of the writing
system. The alphabetic writing system for English is a code for representing
spoken language; units in the writing system—letters and letter patterns—lar-
gely correspond to speech units such as phonemes. However, the correspon-
dence between the written and spoken codes is notoriously complex; many
correspondences are inconsistent (e.g. -AVE is usually pronounced as in
GAVE, SAVE, and CAVE, but there is also HAVE) or wholly arbitrary (e.g.
-OLO- in COLONEL, -PS in CORPS). These inconsistencies derive from
several sources: there is a competing demand that the orthography preserve
morphological information; there are diachronic changes in pronunciation;
there is lexical borrowing and historical accident. In fact, the English
orthography partially encodes several types of information (orthographic,
phonological, syllabic, morphological) simultaneously. Thus, English pro-
vides an example of what can be termed a quasiregular system: a body of
knowledge that is systematic but admits many exceptions (Seidenberg 1988a).
In such systems the relationships among entities are statistical rather than
categorical.

During the training phase, the model is exposed to a significant fragment
of written English. The effect of the learning rule is that the model picks up on
facts about orthographic-phonological correspondences and encodes them
in terms of the weights on connections betwecn units. Eventually, the weights
achieve values that permit the model to produce the correct output for
almost any word in the training set, despite the quasiregular character of the
writing system. By ‘correct’” we mean that the error score for the correct
pronunciation is typically very much smalier in magnitude than the error
score for an incorrect pronuncation. As already mentioned, even when the
best fit is the correct phonological code, the size of the error score varies; i.c.
the model performs better on some stimuli than on others. How well it
performs on a given stimulus depends on factors such as the frequency of the
word and its similarity to other words in the corpus. We evaluate the model
by comparing its performance on different types of words to that of human
subjects. :

Consider two classes of words that have been studied in a large number of
behavioural experiments. Regular words such as MUST, LIKE, and CANE
contain spelling patterns that recur in a large number of words, always with
the same pronunciation. MUST, for example, contains the ending -UST; all
monosyllabic words that end in this pattern rhyme (JUST, DUST, etc.). The
words sharing the critical spelling pattern are termed the neighbours of the
input string (Glushko 1979). Neighbours have been primarily defined in ter'{ns
of word-endings, also termed rimes (Treiman and Chafetz 1987) or bodies


common
Pencil

common
Pencil

common
Pencil

common
Pencil


140 Patterson, Seidenberg, and McClelland

(Patterson and Morton 1985), although other aspects of word structure also
matter (Taraban and McClelland 1987; Kay 1987). Exception words such as
HAVE, SAID, and LOSE contain a common spelling pattern which in this
particular word is pronounced irregularly. That is, since -AVE is usually

pronounced as in GAVE and SAVE, the word HAVE is characterized by an’

exceptional spelling-to-sound correspondence. In terms of orthographic
structure, regular and exception words are similar: both contain spelling
patterns that recur in many words. Whereas regular words are thought to obey
the pronunciation ‘rules’ of English, exception words do not. Given that these
two word classes are similar in orthographic structure, and that they can be
equated for other factors such as length and frequency, then differences
between them in terms of processing difficulty must be attributed to the one
dimension along which they differ, regularity of spelling-sound correspond-
ences.

Studies examining the processing of such words have yielded the following
results. First of all, there are frequency effects: higher-frequency words are
named more quickly than lower-frequency words. In addition, regularity
effects—faster naming latencies for regular words compared to exceptions—are
substantial with lower-frequency items, but may be small or non-existent for
higher-frequency words (Andrews 1982; Seidenberg et al. 1984; Seidenberg
1985b; Waters and Seidenberg 1985; Taraban and McClelland 1987). In short,
there is a frequency by regularity interaction. In Taraban and McClelland’s
study, the difference between lower-frequency regular and exception words

was a statistically significant 32 ms, while the difference for higher-frequency '

“words was a non-significant 13 ms.

To examine the model’s performance on these types of words, we used the -

identical stimulus set studied by Taraban and McClelland (1987, Experi-
ment 1). Figure 7.2 presents the model’s performance on this set of high- and
low-frequency regular and exception words after different amounts of training.
Each data point represents the mean phonological error score for the 24 items
of each type used in the Taraban and McClelland experiment. Training
reduces the error scores for all words following a negatively accelerated
trajectory. Throughout training, there is a frequency effect: the model
performs better on the words to which it is exposed more often. Note that
although the test stimuli are dichotomized into high- and low-frequency
groups, frequency is actually a continuous variable and it has continuous
effects in the model. Early in training, there are large regularity effects for both
high- and low-frequency items; in both frequency classes, regular words
produce smaller error scores than exception words. Additional training
reduces the regularity effect for higher-frequency words, to the point where it is
eliminated by 250 epochs. However, the regularity effect for lower-frequency
words remains. Figure 7.3 demonstrates the similarity of results from Taraban
and McClelland’s adult subjects and from the model.
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Fig. 7.2 The model’s mean phonological error scores at various stages in training for
the words used by Taraban and McClelland (1987).

The frequency-by-regularity interactions obtained in two additional
studies, with different sets of stimulus words (Seidenberg 1985b, Experiment
2; Seidenberg et al. 1984a, Experiment 3), have been recreated with equal
success by the model’s performance (see Seidenberg and McClelland 1988b).
Indeed, following simulations of 14 conditions from eight experiments
comparing regular and exception words, Seidenberg and McClelland
obtained a correlation of 0.915 between the experimental data (difference in
naming latency between regular and exception words) and the model’s
performance (difference in phonological error score between regular and
exception words).

The model is revealing about the behavioural phenomena in two respects.
First, it is clear that in the model the frequency by regularity interaction results
because the output for both types of higher-frequency words approaches
asymptote before the output for the lower-frequency words. Hence the
difference between the higher-frequency regular and exception words is
eliminated, while the difference between the two types of lower-frequency
words remains. This result suggests that the interaction observed in the
behavioural data is attributable to a kind of ‘floor’ effect due to the acquisition
of a high level of skill in de-coding common words. In the model, the
differences between the two types of lower-frequency words would also
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Fig. 7.3 Results of the Taraban and McClelland (1987) study (top panel) and the
model’s performance at 250 epochs (lower panel)

diminish if training were continued for more epochs. This aspect of the model
provides an explanation for Seidenberg’s (1985) finding that there are
individual differences among skilled readers in terms of regularity effects. The
fastest subjects in his study showed no regularity effect, even for words that are
‘lower’ in frequency according to standard norms. The model suggests that the
fastest readers may have encountered lower-frequency words more often than

the slower subjects, with the result that these words effectively become ‘high-

frequency’ items.

Second, the model provides a theoretical link between effects of frequency
and regularity. Both effects are due to the fact that connections that are
required for correct performance have been adjusted more frequently in the
required direction for frequent or regular items than for infrequent or irregular
items. This holds for frequent words simply because they are presented more
often. It holds for regular words because they make use of the same

connections as other, neighbouring, regular words. Hence, regularity effects
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are frequency effects: both derive from the effects of repeated adjustment of
connection weights:in the same direction.

Not only in its simulation of frequency and regularity effects but, more
generally, the model’s performance is determined by the connection weights
which reflect the aggregate effects of many individual learning trials with the
items in the training set. In effect, learning results in the recreation within
the network of significant aspects of the structure of written English. Because
the entire set of weights is used in computing the phonological codes for all
words, and because all of the weights are updated on every learning trial, there
is a sense in which the output for a given word is a function of training on all
words in the set. Differences between words derive from facts about the writing
system distilled during the learning phase. The main influence on the
phonological output is the number of times the model was exposed to the word
itself; after a sufficient amount of training, this is the only factor relevant to
performance on ‘high-frequency’ words. Performance on less-frequent words,
however, is also affected by exposure to other words. Words that resemble one
another in spelling-sound correspondences have mutually beneficial effects on
the weights; words that are similar in spelling but dissimilar in pronunciation
have mutually inhibitory effects on the weights. Performance is then
determined by the cumulative effects of training on the weights.

To see this more clearly, consider the following experiment. We test the
model’s performance on the low-frequency regular word TINT; with the
weights from 250 epochs, it produces an error score of 8.92. We train the model
on another word, adjusting the weights according to the learning algorithm,
and then re-test TINT. By varying the properties of the training word, we can
determine which aspects of the model’s experience exert the greatest influence
on the weights relative to the target. In effect, we can simulate the phonological
priming effects studied by Meyer, Schvaneveldt, and Ruddy (1974), Hillinger
(1980), Tanenhaus, Flanigan, and Seidenberg (1980), and others. For
example, Meyer et al. observed that lexical decision latencies to a target word
such as ROUGH were facilitated when preceded by the rhyming prime
TOUGH but inhibited when preceded by the similarly spelled non-rhyme
COUGH. For the purposes of the simulation, we examined the cumulative
effects of a sequence of ten prime (learn)—target (test) trials. The primes were a
rhyming orthographic neighbour (MINT), a non-rhyming orthographic
neighbour (the exception word, PINT), a word with the same consonants but
a different vowel (TENT), and an unrelated control (RASP). The data are
presented in Fig. 7.4.

The results indicate, first, that overlap in the ends of words (word-bodies or
rimes) has greater impact than overlap in word-beginnings. Thus, priming
TINT with MINT has greater impact than priming TINT with TENT (it also
has greater impact than priming with a word such as TINS or TILT). The
model supports the common assumption that the terminal segments of words
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'Fig. 7.4 Effects on the phonological error score for TINT of training with MINT,
PINT, TENT or RASP.

are especially critical to naming (Glushko 1979; Meyer, Schvaneveldt, and
Ruddy 1974; Seidenberg et al. 1984a; Patterson and Morton 1985; Brown
1987; Treiman and Chafetz 1987). This fact derives from properties of the
learning algorithm and the training corpus. Word-bodies turn out to be salient
because there is more redundancy at the ends than at the beginnings. The
learning algorithm picks up on these regularities, which have a large impact on
the weights. Importantly, these same characteristics of the model also dictate
that the effective relationships between words are not limited to word-bodies.
These units happen to be especially salient, but they are not the only aspects of
word structure relevant to processing. Thus, in the priming experiment, both

TENT and RASP have small effects on the weights relevant to TINT, as do’

many other words. Experimental data by Kay (1987) confirm the relevance to
naming of neighbourhoods defined over word-initial segments.

The other important point is that the model encodes facts about the
consistency of spelling-sound correspondences. Thus, priming TINT with
MINT has a large positive effect on the weights, but priming with PINT has
complementary negative effects. It is clear, then, why the model performs
better on regular words than on exceptions. The model’s training on MINT

‘and HINT and LINT and PRINT, matching in both spelling pattern and '

pronunciation, pushes the values of the weights in the same direction. The
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exception word PINT suffers because the weights come to reflect the fact that
words ending in -INT typically rhyme with MINT. Having been exposed to
PINT and its pronunciation, the model produces the correct phonological
code for PINT; however, this code yields a larger error score than for a
comparable regular word, owing to the impact of training on the gang of
words like MINT. )

The impact of the model’s experiences during training can be evaluated not
only by presenting words from the training vocabulary but by presenting
novel words. Non-words have played an important role in experimental
considerations of how people convert print to sound, because such stimulus
items can be constructed along any dimensions that the experimenter fancies.
In a widely cited study, Glushko (1979) demonstrated that readers are quicker
to pronounce non-words (like TIFE) derived from a word-body whose
neighbourhood has a regular, consistent pronunciation (LIFE, KNIFE,
WIFE, etc.) than to pronounce nonwords (like TIVE) with an inconsistent
neighbourhood (FIVE v. GIVE). As Seidenberg and McClelland (1988b) have
shown, the significant 22 ms difference obtained in Glushko’s Experiment 2 is
mirrored by a significant difference of over two points in the model’s
phonological error scores for these two types of non-word.

The foregoing description of the model’s performance in word naming has
focused primarily on regularity effects. This is partly due to the prominence of

" this issue in the literature on reading over the past decade or so, and partly

because regularity effects are particularly germane to certain types of reading
disorders, to which we now turn. Before doing so, however, we wish to
emphasize that evaluations of the model’s naming performance are by no
means restricted to the contrast between regular and exception words.
Seidenberg and McClelland (19884,b) and Seidenberg (1988a) present
successful simulations of experiments on many other characteristics of words,
and the reader is referred to these papers for a picture of the full scope of the
model.

" Acquired dyslexia

We turn now to questions concerning the impairments of word naming
characteristic of certain forms of acquired dyslexia. We have suggested that the
model provides a good characterization of a broad range of phenomena
related to the naming performance of skilled readers, and that it provides an
integrated explanation for these phenomena in terms of the consequences of
learning. As a learning model, it also speaks to the issue of how these skills are
acquired. Furthermore, the model provides an interesting perspective on the
kinds of impairments characteristic of developmental and acquired dyslexias.
Devé!ppmen_t_al dyslexia, which could be seen as a failure to acquire the
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knowledge that underlies word recognition and naming, is discussed in

Seidenberg and McClelland (1988). Acquired dyslexia, arising from damage to
a fully developed normal system, is discussed here.

Acquired dyslexia refers to impairments in reading processes observed
following brain injury in people who were previously normal readers. Several
different types of acquired dyslexia have been identified, each characterized by
impairments to selected aspects of processing (for recent reviews, see Coltheart
1985; Ellis and Young 1988). Many of these impairments relate to the process
of naming words aloud; in fact, word-naming performance has provided the
primary basis for distinguishing among different varieties of acquired dyslexia.
These impairments presumably reflect damage to part(s) of the neural
machinery responsible for word recognition and pronunciation. Since our
model provides a computational account of some of this machinery, it should
be possible to simulate word-naming impairments by selectively damaging the
model. In this section we report some preliminary experiments of this sort.

Acquired forms of dyslexia have primarily been discussed in the context of a
class of ‘dual-route’ models. As the name implies, these accounts emphasize
the idea that two different procedures or mechanisms are required in order to
account for naming performance. The mechanisms are distinguished in terms
of the types of knowledge representations involved and the types of letter
strings to which these are suited. One mechanism involves rules encoding the
reader’s knowledge of the correspondences between spelling and pronuncia-
tion characteristic of written English. These mapping rules can be used to
construct a correct pronunciation of any letter string that obeys them-—speci-
fically, regular words such as MUST and regular non-words such as NUST;
the rule-based procedure will generate incorrect pronunciations for words that
violate the rules (e.g. exceptions such as HAVE). This mechanism has been
termed a ‘non-lexical’ or ‘subword-level’ process because the rules involve
generalizations concerning spelling sound correspondences rather than
knowledge of whole specific words. The other mechanism involves stored

represcntations of the pronunciations of known words. The idea here is that

the reader identifies a familiar word (directly on the basis of its spelling, and
possibly further by consulting its meaning) and then accesses a stored
representation of its pronunciation. This mechanism could apply to all known
words, but would fail in the case of novel strings such as non-words, which lack
represemauons in memory. This mechanism has been termed a ‘lexical’ or
‘word-level’ process because the relevant knowledge representations concern
the pronuncmllons of individual words. Further descriptions of dual-routine
accounts of word naming can be found in Patterson, Marshall, and Coltheart
(1985).!

The major theoretical alternative to the dual-routine model, analogy
theory, carved things up slightly differently. Analogy theories proposed by
Glushko (1979), Marcel (1980), Humphreys and Evett (1985) and others
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contain a single type of knowledge representation relevant to pronunciation:
they eliminated the separate rule-based knowledge about correspondences
between graphemes and phonemes, leaving only the lexical representations,
which were thought to be employed in naming both words and non-words. As
Patterson and Coltheart (1987) noted, however, these models |mphc1tly
preserved the distinction between two phonological procedures in naming:
while a word could be named by accessing a stored .phonological represen-
tation, the pronunciation of a non-word still had to be created by segmenting
known words and cobbling together the phonology of the mdmdual segments
comprising the non-word.

In summary, most theorizing about how readers (of English) translate
orthography to phonology has assumed that different naming mechanisms are
required for the correct pronunciation of exception words on the one hand and
non-words on the other. One of the main contributions of the Seidenberg and
McClelland (1988a,b) model is that it accomplishes this translation process
with a single mechanism employing weighted connections between units. All
items—regular and irregular, word and non-word—are pronounced using the
knowledge encoded in the same sets of connections. This model also differs
from dual-routine accounts in that there are no rules specifying the regular
spelling-sound correspondences of the language, and there is no lexicon in
which the pronunciations of words are listed. The model also differs from
proposals by Glushko ( 1979) and Brown (1987) in that there are no lexical
nodes representing individual words and no influences from orthographic
neighbours at the time of processing a word. Where the model agrees with
these accounts is in regard to the notion that regularity effects result from a
conspiracy among known words. In the present model, this conspiracy is
realized in the setting of connection strengths. Words with similar spellings
and pronunciations produce overlapping, mutually beneficial changes in the
connection weights.

Some of the evidence thought to support the distinction between two
naming prbcesses came from studies of normal readers pronouncing various
types of letter strings. However, this general class of theories perhaps took
even greater comfort from the neuropsychological literature. In particular, the
patterns of reading performance in two ‘varieties’ of acquired dyslexia,
phonological and surface dyslexia, have been considered to provide crucial
evidence. Phonological dyslexic patients (Beauvois and Derouesné 1979;
Shallice and Warrington 1980; Patterson 1982) show a dissociation between
word and non-word naming; in some cases (e.g. Funnell 1983), the dis-
sociation can be dramatic, with around 90 per cent success on words of any
class or length but total failure to read aloud even the simplest non-words.
Surface dyslexic patients (Marshall and Newcombe 1973; Shallice and
Warrington 1980; Coltheart et al. 1983) show a dissociation between regular
and cheption word naming. Though performance on exception words has
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not, in any case thus far recorded, been at zero, once again the dissociation can
be substantial: for example, about 90 per cent success on low-frequency
regular words compared with 40 per cent on low-frequency exception words
(Bub, Cancelliere, and Kertesz 1985) or, distinguishing amongst ‘levels’ of
regularity, around 80 per cent correct on regular words v. 35 per cent on very
irregular words (Shallice, Warrington, and McCarthy 1983).

If phonological dyslexia could be considered to-reflect almost total
disruption of the routine for subword-level translation, and surface dyslexia
could be considered to indicate severe disruption of the routine for word-level
translation, it is easy to sec why these neuropsychological dissociations have
been emphasized, nay treasured, by dual-routine theories. Accordingly, they
represent a challenge to any theory proposing a single process by which ali
letter strings, whether regular words, exception words or non-words, are
converted from orthography to phonology. Failure to account for these
patterns would weaken this proposal, while a demonstration that such
dissociations could arise within a truly single-routine theory like the model
outlined here would constitute a powerful argument against the need for
postulating multiple routines.

We shall have nothing to say about phonological dyslexia because we have
only just begun to consider how the model might account for it. The pattern of
reading performance observed in surface dyslexia, on the other hand, seems
ideally suited to one kind of evaluation of the model. Some of the earliest
studied cases of surface dyslexia (¢.g. Marshall and Newcombe 1973) appeared
to use their impaired oral reading skill to make sense of the printed word,
yielding slow responses, multiple responses, and generally poor performance.
More interestingly, three recent studies of patients with impaired comprehen-
sion (for both speech and reading) reveal (1) a high degree of accuracy in
naming regular words and non-words; and (2) word-naming latencies at least
within the range of age-matched controls. The description of ‘reading without
semantics’ has been offered for the first of these cases (Shallice, Warrington,
and McCarthy 1983) and is equally appropriate for the other two cases (Bub,
Cancelliere, and Kertesz 1985; McCarthy and Warrington 1986). Reading
without semantics is of course precisely what the Seidenberg and McClelland
model does. Therefore it seems highly relevant to an evaluation of the model to
ask the following question: after the model has been trained to the high level of
successful ‘oral reading’ performance described earlier, if it is now damaged in

_various ways, will we observe the characteristics of surface dyslexic reading?

The remainder of this chapter is largely devoted to exploring this question.
Before we begin, it may be helpful to have a slightly more expanded
description of reading performance by surface dyslexic patients. As empha-
sized for neuropsychological impairments in general (Caramazza 1986), and
for this pattern of impaired reading in particular (Patterson, Marshall, and
Coltheart 1985), no two patients are identical and so a syndrome label should
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be taken as a loose descriptive device rather than a precise classification. In
fact, the naming performance of patients described as surface dyslexics varies
greatly. With these caveats in mind, we began by assuming that the following
features, observed in what are perhaps the most ‘pure’ and certainly the best-
studied surface dyslexic patients, provided a starting point for our explora-
tions of damage to the model: -

1. Most central, and already mentioned, is the patients’ significantly greater
success in naming of words (like PINE) that have regular, typical spelling-
to-sound correspondences than of words (like PINT) with exceptional or
atypical spelling-to-sound correspondences. ,

2. Accuracy in naming non-words can be relatively intact, or at least within
the (widely varying: Masterson 1985) range of non-word reading skill
shown by normal subjects.

3. At least some surface dyslexic patients’ accuracy in word naming mimics a
characteristic, discussed earlier, of normal subjects’ latencies in word
naming: an interaction between frequency and regularity. In the best
demonstration of this interaction (by Bub, Cancelliere, and Kertesz 1985),
the patient showed an advantage on regular over exception words of 15 per
cent for high-frequency words but 50 per cent for low-frequency words.

4. The most common type of reading error is the regularization of an
exception word, e.g. PINT—/pint/ rhyming with HINT, COME—/kOm/
rhyming with DOME, etc. (Note: pronunciations will be rendered here not
in the international phonetic alphabet but, rather, in terms of the phonemic
encoding scheme used in the model, taken from Rumelhart and McClelland
(1986b), and reproduced here as Table 7.1.) All patients thus far reported do
make errors of some other types, such as occasional errors on regular words
(e.g. HORSE—/hWs/, BASE—/pAs/) and non-regularization errors on
exception words (e.g. FLOOD—/lOd/, LOSE—/1Us/) (a}l gxamples from
Shallice, Warrington, and McCarthy 1983). The majority of errors,
however, are strict regularizations.

5. Finally, as already mentioned, the patients’ reading speed can be roughly
normal. : :

In the following sections, we report experiments in which we observed the
effects of different types of damage to the simulation model on pgrfoqnance
with different types of words and non-words. We shall only be cons.ldem!g the
oral reading performance (not lexical decision) of surfaoe.dys'lexlc patients;
accordingly, when we talk about output from the model, this will alway§ refer
to error scores calculated over the phonological output units. The primary
goal of the experiments was exploratory: how would the model pgrform when
different components were damaged? A second goal was to determine wthther
damage to the model would produce the types of errors characteristic of
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Table 7.1 The phonemic categorization system used in the model, plus a
pronunciation key '

Place
Front Middle Back
V/L u/s V/L U/S V/L u/s
Interrupted  "Stop b p d t g k
Nasal m - n — N -—
Continuous
consonant Fric. v/D f/T z S Zfj S/C
Lig/SV w/l — r — y h
Vowel High E i (o] " U u
Low A € I aja w */0

Key: N =ngin sing; D=thin the; T = th in with; Z=zin azure; S=sh in ship; C = ch in chip; E=ee
in beet; i=iin bit; O=o0a in boat; "=u in but or schwa; U=00 in boot; u =00 in book; A =ai in
bait;e=ein bet; [=i ein bite;a=a in bat; a =a in father; W =ow in cow; s =aw in saw, 0 =0 in
hot.

Reproduced from Rumelhart and McClelland (1986b Table 5, p. 235).

surface dyslexic patients. Ultimately, we would like to achieve simulations of
specific cases of surface dyslexia, capturing both their qualitative and
quantitative aspects, but we have not done so as yet. In the final section of the
paper we discuss some of the issues that need to be addressed if additional
research is to achieve this ultimate goal. .

One final introductory comment: the model was developed on the basis of,
and has been extensively evaluated relative to, data from normal readers. By
comparison, these explorations of the neuropsychological implications of the
model are at an embryonic stage. At many points in what follows, we shall
have to say (or, rather, to save the reader from boredom, we shall hope that it is
generally understood) that much more work on this approach is needed before
acomprehensive story can be told. Our justification for offering this somewhat
premature account is that, as we have already suggested, neuropsychological
dissociations could be considered a major challenge to this kind of model
which eschews separate routines, rule-based systems and other notions that
have played a central role in cognitive neuropsychology. Even if premature,
then, it seems useful to indicate some of the ways in which the model might
respond to this challenge. ‘

Overview of methods

The general procedure involved in these explorations was as follows. All lesion
studies were done using the weights created after 250 epochs of training, when
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the model had reached the nearly asymptotic level of performance illustrated
earlier. All experiments were concerned with effects of damage (‘lesions’) to the
system; in a later section we discuss other types of pathology that might be
simulated. Lesions were made at the three different locations within the model
where changes take place as a result of learning: weights on the connections
from orthographic input units to hidden units (‘early’ weights); the hidden
units themselves; and weights on the connections from hidden units to
phonological output units (‘late’ weights). Damage was inflicted by zeroing a
proportion of the connections or units at the lesion site. In the first,
parametric, study to be reported, the proportions of damaged connections or
units tested were 0.1, 0.2, 0.4 and 0.6. Damage was introduced probabilisti-
cally; with a damage value of 0.4, for example, the output from a random 40
per cent of the specified connections or units was zeroed. For any given lesion
experiment, then, we shall be looking at performance for a particular
combination of location and level of damage.

Although all representations and processes within the model are distributed
(such that the model never, for example, assigns a single hidden unit to a
particular word), it is by no means the case that all units are activated. In
fact, in the processing of any given word, the majority of hidden units are not
activated by the input; on average, about 24 of the 200 hidden units will be
activated for any word. The result of this, when combined with probabilistic
damage, is high variability from one lesion test to the next. In order to
produce a larger pool of data yielding a more stable and less idiosyncratic
picture of the model’s behaviour when damaged, all lesion experiments for
any stimulus set at any particular location and level of damage consisted of
ten tests.

The data from a lesion experiment will consist of two measures. The first is
the phonological error scores (means and standard deviations) for different
pronunciations of the stimulus words being tested. Typically only two
pronunciations of each word were tested; for the exception word PINT, for
example, the pronunciations of primary interest were the correct one /plnt/
and the regularization /pint/. These mean phonological error scores will
represent averages both over words within the set being tested (N to be
specified for each experiment) and over tests (N =10). The second measure
concerns the relative error scores for the two pronunciations of a given word
on a given test. If the model is performing correctly, then it should of course
‘prefer’ the pronunciation /plnt/ to the pronunciation /pint/. If, when
damaged, it yields a lower score for the alternative pronunciation, we call this
areversal. We counted as reversals any cases where the alternative score was at
least one full point lower than the score for the correct pronunciation. This
measure will be given as reversal rate, meaning the percentage of occasions in a
particular lesion experiment where an alternative pronunciation was pre-
ferred.
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Arguments have been offered elsewhere (earlier in this chapter and in
Seidenberg and McClelland 1988) for the adequacy of the phonological error
score as a measure of naming performance by normal readers; and the
impressive similarity between functions derived from the model and those
from real subjects (as illustrated above) supports this rationale. There are,
however, two aspects of this error score which make it less than ideal for lesion
studies. The first is a substantive issue: the error score combines accuracy and
latency in a single measure. While this may offer a reasonable characterization
of normal readers, operating at relatively full efficiency with a minimum of
errors and a maximum of speed, it is not necessarily so satisfactory for
pathological data. If, for example, one patient reads slowly and makes many
errors while another reads quickly with (approximately) the same error rate,
then no single speed-accuracy trade-off function will characterize both. In the
model, a high error score could represent a fast, wrong reading, a slow, correct

reading, or a slow, wrong reading; when trying to relate the model’s .

performance to patients, it would be informative if we could discriminate
among those alternative interpretations. With the present measure, we
cannot. -

The other problem is a purely practical, procedural one: the error score
represents the degree to which the pattern of activation over the phonological
output units differs from the ideal pattern for the specified phonological code.
In general, for simulations of normal data (but note that it may not always be
safe to assume that the model in its normal, undamaged state ‘knows’ the
correct pronunciation for all words; in fact, it does not), it will be adequate to
specify only the correct pronunciation. But as soon as we wish to simulate
error-prone patients, then in order to discover what sorts of pronunciation
errors the model may make when it has been lesioned, we are required to
specify every pronunciation of interest in order to identify the pronunciation
yielding the lowest error score. This nuisance is admittedly of concern to the
authors rather than to the readers of this chapter. We mention it here only to
explain why, for many of the lesion studies to be reported below, we test two
‘pronunciations of each word rather than many.

Experiment 1: the effect of different locations and levels of damage

To provide a basic introduction to the way in which the model’s performance
degrades under conditions of damage, we begin with a parametric exploration
of the three locations and four levels of damage mentioned above. The
stimulus items for this experiment, all four-letter words from the model’s
vocabulary, were the 16 regular words and 16 exception words listed in Table
7.2. The two sets were approximately balanced for both Kucera and Francis
frequency and orthographic error scores; thus we can be reasonably
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Table 7.2 The 16 regular and 16 exception words used in Experiment 1,
with their correct and alternative pronunciations, mean Jfrequencies* and
mean orthographic and phonological error scores from performance of the
undamaged model after 250 epochs of training

Regular COR OTH Exception COR REG
T
COVE /kOv/ /kUv/ MOVE - mmUy/ /mOv/
TINT Jtint/ /tInt/ - PINT /pInt/ /pint/.
BEAD /bEd/ /bed/ DEAD /ded/ /dEd/
FOUL /fWI/ /foY SOUL /SOVY /sWI/
HOWL /hWi/ /hOl/ BOWL /bOl/ /oWI/
LEAF NEf/ Nlef/ DEAF /def/ JdEf/
HOOP /hUp/ /hup/ HOOD /hud/ /hud/
LAKE /NNAk/ flak/ LOSE MUz/ N0z/
FILE /Iy /Al/ FOOT /fut/ /fUt/
PASS /pas/ /pos/ POST /pOst/ /p#st/
DAMP /damp/ /domp/ courp /kU/ /kWp/
PINE /pln/ /pin/ POUR /pOr/ /pWr/
BEND /bend/ /bEnd/ PEAR /pAr/ /pEr/
SKIN /skin/ /skln/ TOMB /tUm/ /tom/
MEET /mEt/ /mAt/ MONK /mank/  /monk/
DEAL /dEl/ /del/ AUNT /ant/ /=nt/
40.1 X frequency 45.6
5.8 X orthographic error score 6.1
4.1 X phonological error score 4.8

*From Kucera and Francis 1967.

confident that any differences in behaviour between the two sets should be
genuinely attributable to regularity of spelling-to-sound correspondences.
Alsoshown in Table 7.2 are the two pronunciations tested for each word. For
the exception words, the alternative (to the correct, or COR) pronunciation
was of course the regularization (REG). For regular words, it is not always
obvious what the alternative should be, but we attempted to make these
other (OTH) pronunciations as plausible as possible, for example choosing a
pronunciation of the vowel or vowel combination which occurs in other
words.

" The mean phonological error scores for the two pronunciations of the
words in the two sets are shown in Fig. 7.5 (regular) and Fig. 7.6 (exception).
The abscissa in each graph represents level of damage, from none
(performance of the model in its normal state) to proportion of damage =0.6.
For both regular and exception words, COR phonological error scores rise in
a monotonic, indeed essentially linear, fashion with increasing level of
damage. The effect of level of damage is much more striking than that of
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" Regular words N= 16

Oth

- N N NN
® O N & O
T T T T T

-
(=]
T

Mean phonological error score
=
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Damage to:
Weights 1US —+ HUS  o--o0
Hidden Units —
Weights HUs . Output ...

i 1 1 - 1
Normal 0.1 0.2 0.4 0.6
Proportion damaged
Fig. 7.5 The model's mean phonological error scores for correct and other

pronunciations of regular words under normal conditions and with various locatjions
and levels of damage.

location of damage: in fact, considering only the COR means, location
appears to be relatively inconsequential. Damage to early weights consis-
tently yields slightly lower scores than damage to either hidden units or late
weights; but means for these latter two locations are virtually indistinguish-
able.

Three further aspects of the results in Figs 7.5 and 7.6 need to be highlighted:

1. Error scores for REG and OTH pronunciations also rise as a function of
damage, but very much less dramatically than those for COR. This is
probably not a ceiling effect because it is possible to obtain considerably
higher error scores (on other types of words or with additional damage). As
a result of this difference in rate of increase, the error scores for the correct
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Exception Words N:16

Mean phonological error score

Damage to:
Weights 1Us — HUs .__,

Hidden Units -——e
Weights HUS — Output o....

1 1 i
Normal 0.1 0.2 0.4 0.6
Proportion damaged

Fig. 7.6 The model’s mean phonological error scores for correct and regularized
pronunciations of exception words under normal conditions and wnh various
locations and levels of damage.

and for the alternative pronunciations begin to converge at higher levels of
damage, especially for exception words.

2. With regard to the two classes of words, COR scores for the regular words
are consistently, though only marginally, lower than COR scores for the
exception words; OTH scores for the regular words, on the other hand, are
quite a bit higher than REG scores for the exception words. (This can be

* seen more easily in Table 7.3 where mean values are listed. ) The net result is
“that theré is a smaller difference between COR and REG scores for
exception words than between COR and OTH scores for regular words.

3. Where location of damage has a notable effect is not on the means but on
the standard deviations of the COR scores. Of particular interest, because
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the corresponding means are so similar, is the fact that damage to hidden
units is associated with high variability in COR scores, while damage to
connections between hidden units and output units produces very much
lower standard deviations. These standard deviations are shown beside
their corresponding means in Table 7.3.

Table 7.3  Results from Experiment 1 for regular and exception words with
different proportions of damage to hidden units or to connections from hidden
units to output units: means and standard deviations of phonological error
scores for the two different pronunciations, and reversal rates—the proportion
of occasions on which the REG or OTH pronunciation yielded a lower error
score than the COR pronunciation

Proportion damaged
0.1 0.2 04 0.6

Damage to hidden units

Regular words
mean (s.d.)error COR 7.6 (3.8) 128 (59) 202 (79) 289 (8.6)
mean (s.d.) error OTH 31.9(11.1) 34.0(10.7) 364 (11.3) 41.2(10.8)
reversal rate 0 0 2.5% 7.5%

Exception words
mean (s.d.)error COR 84 (40) 127 (53) 21.3 (7.6) 29.7 (8.1)
mean (s.d.) error REG 260 (8.8) 280 (8.7) 300 (9.1) 358(10.2)
reversal rate 1.3% 2.5% 16.3% 23.8%

Damage to connections
Jfrom hidden units to
output units

Regular words
mean (s.d.)error COR 79 (2.5). 120 (3.1) 202 (3.8) 290 (3.8)
mean (s.d.) error OTH 322 (10.7) 334 (9.8) 363 (8.3) 40.6 (6.7)
reversal rate : 0 0 0 0

Exception words
mean (s.d.)error COR 92 (24) 134 (2.7) 215 (32) 299 (3.6)
mean (s.d.) error REG 260 (7.9) 275 (74) 318 (72) 364 (6.7)
reversal rate 0 0 1.3% 8.3%

The importance of these three points is revealed when we turn to the other
measure of interest. Table 7.3 shows reversal rates under conditions of damage
to hidden units and to late weights, the two locations which yielded virtually
identical mean error scores. The first point (convergence between scores for
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correct and for alternative pronunciations with increasing level of damage)
means that while small amounts of damage yield few if any occasions on which
the alternative pronuncnauon produces a lower score, higher levels of damage
produce a number of preferences for the alternative pronunciation. The
second point (less distance between COR and REG error scores for exception
words than between COR and OTH error scores for regular words) means
that any combination of location and level of damage which produces
reversals at all produces higher reversal rates for exception than for regular
words. The third point (higher variability around the mean for damage to
hidden units than for late weights) has the outcome of substantial reversal
rates when hidden units are disrupted, but low reversal rates with zeroing of
late weights. When the effects of these three points are considered together, the
complete picture is a notable number of reversals only for exception words and
only given higher levels of damage to hidden units.

The interpretations of both the difference between regular and exception
words and the effect of increasing level of damage are reasonably obvious.
Even when 60 per cent of the normally encoded information at some level is
unavailable, the model generally prefers the correct pronunciation of regular
words because the correspondences embodied in regular words are in essence
overlearned in the model. Exception words are more vulnerable to damage,
but they are sufficiently well learned via distributed representations that their
COR pronunciations are typically preferred so long as damage level is low.
When about half of the hidden units are inactivated, however, pronunciations
r_eﬂectmg overlearned REG correspondences begin to be more attractive for
some exception words on some tests. ' '

The interpretation of the location effect is less obvious. Recall that it is not
the case that lesioning late weights results in better performance (i.e. lower
mean error scores) than lesioning hidden units: it simply results in more
consistent, less variable performance. It is clear why this should have the effect
that it has oh reversal rates: given that the COR means are always lower than
the REG means, it is only when the COR scores vary considerably around the
mean that some of them will turn out to be higher than the corresponding
REG scores. But why is such variability associated only with damage to
hidden units and not with damage to late weights? We suggest that while all
representations are distributed, some representations are more distributed
than others, There are only 200 hidden units, and on average only about 24 of
these are activated for any given word. With 60 per cent probabilistic damage,
one infliction of damage could by chance knock out a number of the relevant
24 units, while the next lesion might happen to hit none of the crucial units:
thus, high variability from one test to the next. By contrast, the number of

. connections from hidden units to output units germane to any given word is

much larger. Each of the 20-odd hidden units relevant to a word is connected
to all 460 phonological units: if the model were performing without error, 16 of
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these phonological units would be activated for each phoneme in the correct
pronunciation. Zeroing the weights on 60 per cent of these connections will
indeed have a deleterious effect on performance; but because the ‘knowledge’
“at this level is distributed over such a large humber of connections, any
random 60 per cent loss will produce deleterious effects similar to any other.
There are marked differences in reversal rates for individual exception
words within the set, but we defer discussion of this until Experiment 4, where

we consider the variables that make words prone or resistant to regulariza- '

tion.

In summary of Experiment 1, increasing levels of damage at all three
locations produces steady increments in the phonological error scores
associated with correct pronunciations of known regular and exception
words. Higher levels of damage at the location of the hidden units yield a
significant number of tests on which the model ‘prefers’ the regularized
pronunciation of an exception word to the correct pronunciation, just as
surface dyslexic patients often do in oral reading. Accordingly, most of the
remaining lesion experiments will concentrate on this location and level of
damage.

Experiment 2: lesions and novelty

In earlier sections of this chapter we discussed how the model in its normal
state performs both on words in its vocabulary and on novel stimuli (non-
words). Experiment 1 demonstrated how the model in various damaged states
performs on regular and exception strings, but only ones from its premorbid
vocabulary. The purpose of Experiment 2 was to examine how the model deals
with novelty once it has been damaged. As explained in the introduction to
lesioning the. model, at least some surface dyslexic patients (c.g., Bub,
Cancelliere, and Kertesz 1985; McCarthy and Warrington 1986) show normal
accuracy in non-word reading, though other reported cases of surface dyslexia
are either at the bottom end of the range of normal performance (e.g. Kay and
Lesser 1985) or frankly impaired at non-word naming (e.g. Masterson 1985).

For ‘our initial exploration of novelty, the stimulus items were triplets

consisting of an exception word, a regular word, and a non-word, matched for .

orthographic ‘body’ or rime: for example, COME, HOM E,and NOME. This
design enabled us to test the model’s performance using the identical two
pronunciations of each body within a triplet: the stimulus items (N=20
triplets) with their alternative pronunciations are shown in Table 7.4. The
regular pronunciation of a body will of course be considered the correct
pronunciation for both the regular word and the non-word members of the
triplet but the incorrect pronunciation of the exception word; correspond-
ingly, the irregular pronunciation will be correct for the exception word but
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Table 7.4 Stimulus items for Experiment 2: triplets of exception words,
regular words and non-words matched for body, with the two alternative
pronunciations tested for each triplet

Pronunciation of body

Exception word  Regular word Non-word Regular  Exception
PUT CuT DUT Ay Jut/
PINT HINT RINT fint/ /int/
GROSS CROSS BROSS [es/ /Os/
CASTE HASTE NASTE JAst/ /ast/
TOUCH COUCH BOUCH JWC/ /AC/
BOWL HOWL POWL /Wl /ol
COME HOME NOME /Om/ /Am/
STEAK BLEAK SHEAK /Ek/ JAk/
GIVE FIVE MIVE v/ fiv/
DEAF LEAF NEAF /Ef/ fef/
SOUL FOUL DOUL /W1l /ol
PEAR GEAR MEAR /Er/ JAr/
GLOVE GROVE BLOVE JOv/ /Av/
BULL DULL TULL N ful/
SWEAT TREAT SNEAT /Et/ "~ fet/
LOSE NOSE BOSE /Oz/ /Uz/

.BLOWN CROWN TROWN /Wn/ /On/
FLOOD BROOD FROOD /Ud/ /Ad/
POST LOST FOST /est/ /Ost/
HAVE GAVE BAVE JAv/ Jav/

incorrect for both the regular word and non-word. Reversals will then be
instances of phonological error scores REG <IRR for exception words and
IRR <REG for regular words and non-words. In order to make reversals a
meaningful concept for the non-words, it is obviously necessary to ensure that
in its normal, undamaged state, the model prefers the REG to the IRR
pronunciation of all of the non-words. The original set of triplets (N =30)
turned out to contain 10 items where this was not the case. These have been
eliminated, yielding 20 triplets. '

Table 7.5 shows the mean phonological error scores (and standard
deviations) for the two pronunciations of the 20 items in each word set, both
for undamaged performance and with damage to hidden units, p=0.6 (where
Njcell =10 runs x 20 items). With the model in healthy condition, perform-
ance differs as a function of word class in two ways. First, mean phonological
error scores for the COR pronunciations (which are, remember, REG for
regular words and non-words but IRR for exception words) have the ardering
of regular words < exception words <non-words; this of course reflects what
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Table 7.5  Results for Experiment 2. Columns correspond to: (1) the mean
phonological error scores for the correct pronunciation of the stimulus items;
(2) the standard deviations associated with Column 1 means; (3) the mean
phonological error scores for the other pronunciation (regular for the
exception words, irregular for the regular words and non-words); (4) s.d.’s
Jor Column 3 means; (5 ) the difference between the means in Columns 3 and
1;(6) the percentage of tests (N=200) on which a particular item had a
lower error score for OTH than for COR

M @ 3) “) (5) (6)
XCOR (sd) XOTH (sd) OTH-COR Reversals

(%)
Undamaged
regular 44 (1.8) 28.9 9.8) 245 —-
exception 5.1 (2.5) 269 (11.5) 218 —
non-word 114 4.2) 24.6 9.5) 13.2 —
Damage HU'’s p=0.6

regular 27.1 (8.0) 36.8 9.2) 9.7 9
exception 28.1 (7.7) 337 9.6) 5.6 24
non-word 29.2 8.1) 35.2 9.4) 6.0 21

the model knows about these three types of letter string. Second, mean error
scores for the OTH pronunciations have the reverse ordering, non-
words <exception words < regular words. Once again, this is to be expected,
reflecting as it were the model’s confidence in its preferred pronunciation. The
net result, also shown in Table 7.5, is that the difference between OTH and
COR pronunciations is biggest for regular words and smallest for non-words.

Turning to damaged performance, we see that the ordering of error scores
for correct pronunciations of the three word classes is maintained, but only
just: the discrepancies among them are now small. In particular, the major
advantage (in undamaged performance) for familiar lexical items over
unfamiliar strings is ail but lost. The difference between OTH and COR means
is much reduced in all three conditions; most interestingly, the exception
words, which yielded a difference score not very dissimilar to regular words
under normal conditions, show a difference score virtually identical to the
non-words after lesioning.

Table 7.5 also shows reversal rates (percentage of tests on which
OTH<COR) for the three string types. Experiment 1 taught us the
‘importance of variability to reversal rates, and its role can be seen again here,
not in the standard deviations per se (which are quite constant across word
class under damaged conditions) but in terms of the standard deviations
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relative to the OQTH-COR difference score. For regular words, where this
difference score is larger than 1 s.d., the reversal rates are low; for exception
words and non-words, where the difference score is less than 1 s.d., the reversal
rates are substantially higher.

The reversal rates for the regular and excepuon words merely replicate
(albeit with different stimulus items) those teported for Experiment 1 (Table
7.3). The interesting finding from Experiment 2 is the notable number of
reversals for non-words. This aspect of the model’s performance seems to
constitute a good match for some surface dyslexic patients but not others. The
patients studied by Bub, Cancelliere, and Kertesz (1985) and McCarthy and
Warrington (1986) were both asked to read aloud Glushko’s (1979) list of 43
‘exception’ pseudowords, which are very similar to the non-words used here.
These two patients showed normal accuracy of non-word reading (indis-
tinguishable, in fact, from Glushko’s university-student subjects), with few
irregular pronunciations (e.g BLEAD—/bled/ rather than /bIEd/): 4/43 (9 per
cent) and 3/43 (7 per cent), respectively. On the other hand, a surface dyslexic
patient studied by Kay and Lesser (1985) made some outright errors in his
non-word reading, and his acceptable responses included a somewhat larger
proportion (19 per cent) of irregular pronunciations. A question for future
exploration is whether other features of the model’s lesioned performance have
a greater resemblance to Kay and Lesser’s patient than to the Bub,
Cancelliere, and Kertesz and McCarthy and Warrington patients.

The relatively high and approximately equal reversal rates for exception
words and non-words are intriguing in their suggestion that damage can de-
stabilize the model’s performance on two different types of items in roughly the
same way (at least as assessed by this somewhat gross measure, simple
preference for an alternative plausible pronunciation). The exception words
are familiar orthographic sequences to the model, but embody letter-sound
correspondences that are atypical. The non-words offer correspondences
which (at least most often, over the range of known words) are typical; but
since the non-words are not familiar orthographic sequences, the model is
much less confident about an appropriate pronunciation for them. Only for
items that are both familiar and regular does the damaged model retain a
reliable preference for the ‘correct’ pronunciation.

Experiment 3: frequency effects

The most notable feature of surface dyslexic oral reading, the tendency to
regularize words with an irregular spelling-to-sound correspondence, is
strongly modulated by frequency for at least some reported patients. M.P., the
case studied by Bub, Cancelliere, and Kertesz (1985), made few regularization
errors or, indeed, errors of any kind in oral reading of high-frequency
exception words. As word frequency declined, her error rate increased
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steadily, and virtually all her errors were regularizations. Such’ dramatic
frequency effects do not, however, characterize all surfacé dyslexic patients.
For H.T.R. (Shallice, Warrington, and McCarthy 1983), regularity seems to
have been such a powerful determinant of reading success that with highly
irregular words (e.g. SUEDE, UNIQUE or BUSINESS) she mispronounced
the majority of words whatever their frequency. On the other hand, for mildly
irregular words (more like the ‘exception’ words that we have been testing
here, e.g. DREAD, CROW), H.T.R.’s success showed some sensitivity to
frequency. Experiment 3 was an attempt to determine whether the model’s
tendency to produce regularization errors (reversals) is modulated by word
frequency.

This evaluation was made using three sets of exception words; their
frequency characteristics are listed in Table 7.6. In the first set, rather than

Table 7.6  Description of the word sets used to assess frequency effects after
damage

Word sét (N) X Frequency Frequency range
(1) Very high frequency words  (20) 1859.8 424-5146
(2) Glushko words
low (10) 14.6 2-36
low-medium (8) 69.3 51-88
medium-high (8) 218.1 108424
high-very high 9) 1643.9 630-3941
(3) Body-matched pairs
lower-frequency member (n 167.6 5- 938
higher-frequency member (1) 1046.8 230-3292

comparing different levels of frequency, we simply selected the 20 virtually
highest-frequency exception words in the model’s vocabulary, words like
ARE, HAVE, ONE, WERE, SAID, WHAT. The question is whether such
exalted frequency values ‘protect’ words from reversing. The second set
consisted of 35 items from Glushko’s (1979) list of exception words; these are
4-5 letter words with reasonably common spelling patterns (i.e. o
orthographically weird words are included), all of which, of course, are in the
model’s vocabulary. For purposes of evaluating frequency effects, the 35 items
were divided into four frequency bands, as shown in Table 7.6. F inally, we
selected 22 items consisting of 11 ‘body’-matched pairs with one higher- and
one lower-frequency member in each pair; examples of these items with their
K-F frequencies in parentheses are GOOD (807)-HOOD (7) and FOUR
(359)-POUR (9). As can be seen in Table 7.6, there was considerable overlap
in frequency between the two sets as a whole; none the less, within each
matched pair, there was always a substantial discrepancy in frequency. The
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highest frequency item is the lower set, WHERE (938), was matched with
THERE (2724).

Table 7.7 presents mean error scores (and s.d.’s) for the COR and REG
pronunciations for each list, plus reversal rates. It appears that frequency is
not the major determinant of susceptibility to reversal in the model. It has

Table 7.7 Mean (s.d.) phonological error scoresfbr COR and REG
pronunciations of the various frequency lists with damage~to hidden units
p=20.6, plus reversal rates

Word set XCOR (sd.) XREG (sd) Reversals
o (%)

(1) Very high frequency

words 29.5 (8.4) 347 9.0) 29
(2) Glushko words

fow 320 8.1 350 8.1) 37

low-medium 30.2 (7.4) 36.3 (10.7) 28

medium-high 29.6 (8.6) 348 (9.9) 31

high-very high 284 (8.2) 353 (10.0) 26

(3) Body-matched pairs
lower—frequency

member 298  (8.0) 30.7 (8.0) 46
higher—frequency
member 288 8.1) 316 (7.9) 35

some influence: in the set of body-matched words (list 3), the lower-frequency
members reversed more often than the higher-frequency members, and within
the four frequency bands of the Glushko words (set 2), the low-frequency items
showed the highest reversal rate. On the other hand, considering all word sets
in Table 7.5, there are several comparisons where lists with large-frequency
differences yield essentially identical reversal rates, for example the very high
frequency words and the Glushko low-medium words, or the higher-
frequency items of set 3 and the Glushko low words. It is clear (1) that being
very common does not protect a word from reversing when the model is
damaged; and (2) that we shall have to look to some variable(s) other than
frequency if we want to discover the basis for susceptibility to reversal. That is
precisely what we shall do next, in Experiment 4.

Experiment 4: preferred pronunciations, phonemic features, and
regularizations

As indicated in the introduction to lesioning the model, the current form of
output from the model (phonological error scores) requires any pronunciation
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of intesest for a given letter string to be gxplicitly tested. Under damaged
conditions, the model may, as we have already seen, prefer the regularized
pronunciation ‘of an exception word; but. this_enly informs us that the
regularization is a preferred pronunciation, not that it is the preferred
pronunciation; another pronunciation could, under the same lesioned
conditions, yield a still lower error-score. Regularizations as alternative
pronunciations derive from some pre-suppositions about the principles
underlying - translation from: orthography to phonology. For a more
theoretically neutral exploration of the question of preferred pronuncia-
tions, we tested a small set of exception words by varying the vowel segments
of each word to include every possible vowel pronunciation within the
model’s phonemic coding scheme. Vowels seemed a sensible choice since
they tend to have more variable letter-sound correspondences than do
consonants. .

The model's phonemic coding scheme, taken from Rumelhart and
McClelland’s (1986) past-tense verb learning model and illustrated earlier in
Table 7.1, codes vowels in terms of three dimensions: place (front, middle,
back), length (long, short), and height (high, low). Thus, for any given word,
thereare 3 x.2 x 2= 12 possible vowel pronunciations, which can be illustrated
with respect to the test word PINT. The correct pronunciation is of course
/pInt/, where the vowel is middle, long and low. There are then four
pronunciations which differ from the correct one by a single vowel feature:
/pAnt/ and /pWnt/ move the place from middle to front and from middle to
back, respectively, without changing length or height; /pant/ changes the
length without affecting place or height; and /pOnt/ changes height only. Five
pronunciations involve changes in two of the three features: for example,
/pent/ involves a change in both place and length, /p”nt/ in both height and
length, and so on; and two vowel pronunciations involve a change in all three
dimensions.

The exception words used for this evaluation were the first 10 words from
the set of 16 listed in Table 7.2. As in other experiments, we did an initial test
with the model in its normal, undamaged condition and then 10 runs with
damage to hidden units, p=0.6. Instead of the usual two error scores to be
compared, each test in this experiment yields 12 error scores for each word,
corresponding to the 12 possible pronunciations of the vowel. For this
experiment, then, we must distinguish between reversal rate (proportion of
occasions on which. the single alternative corresponding to the regularized
pronunciation yielded the lowest error score). Of course it is possible for
more than one alternative (indeed, in principle, for all- 11 alternatives) to
produce error scores lower than the correct. pronungiation; -but for
simplicity’s sake, -and becanse we are interested in actual preferences, we
shall only discuss data concerning the lowest. score for each word on each
test.
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‘Table 7.8 displays the phonological error scores (means and s.d.’s), under
both nermal and damaged conditions, for COR pranunciations, and for
pronupgiations differing from COR by ONE, TWO, or THREE vawel
features. It is clear that the model is highly sensitive to phonemic distance, as

Table 7.8 - Phanological error scores (means and st,andaid deviatiopis) for.a
set of 10 exception words tested against all possible pronunciations of the
vowel segment :

Normal . o Damaged .
(N) X (s.d.) (N) X (s.d.) Lowest score
(%)
COR (10) 43 (1.3)  (100) 308 (7:3) 44
ONE (40) 185 (2.5) (400) 360 (8.4) 37
TWO (50) 326 3.3) (500) 406 (8.8) 17
THREE (20) 464 (40) (200) 448  (9.0) 2

Each word has one correct pronunciation, four pronunciations differing from correct by ONE
phonemic feature in the model's coding scheme for vowels, five pronunciations differing by TWO
features, and two pronunciations differing by all THREE features. The table shows the model’s
normal performance and also with damage to hidden units, p=0.6. The last column indicates the
proportion of damaged tests for which the lowest phonological error score corresponded to the
correct pronunciation or to pronunciations differing by ONE, TWO or THREE features.

measured by number of features differing between correct and alternative
pronunciations. Especially when undamaged, but also when lesioned, the
model’s error scores are monotonigally related to the number of features
altered. o e - ‘

Such differences in error scores, and their associated standard deviations,

.iranslatg thgmsg}vc# into reversal rates in the way that we have come to expect.
As shown in the final .colume of Table 7.8, with lesioning, the COR
. pronunciation. yielded the lowest score on only 44/100 tests; thus overall
- reversal rate was 56 per cent. Of these 56/100 tests resulting in a reversal, the
_ preferred pronunciation was substantially more likely to be a ONE-feature
‘,,chai;ge than a TWO-feature change and was very unlikely indeed to be a

. propungiation differing from COR by THREE features. ,

_ . This resujt. has important consequences for the interpretation of our
lesioning -results. First. of. all, it essentially solves a puzzle .concerning
regularization rates for specific exception words. As mentioned at the end of

- Experiment 1, the probability that the damaged model will prefer a regularized
préhunciatipn of an exception word varies spbstantially across different
qxééption words. Because monosyllabic exception words in English by no
.means constitute an unlimited pool, the same words tend to turn up

. repeatedly; for example, each. of the 14 words in Table 7.9 happens to have
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Table 7.9  For a set of 14 exception words: the number of times each has
heen tested with damage to hidden units, p=0.6: the word’s overall
regularization rate; and the number of vowel features (in the.model’s
phonemic coding scheme) by which the regularized pronunciation differs from
the correct pronunciation.

Word ' (N tests)  Regularization rate No. of features
‘ o differing
(%) betw,een: COR and
REG '
HOOD (70) 57 ONE
BULL (50) 56 . ONE
COME k (70) 54 ONE
GLOVE (50) 52 : ONE-
SOME (50) 50 - ONE
GOOD (50). 46 ONE
FOOT " (50) 40 : ONE
DEAF (60) 23 TWO
SOuUL - (60) 18 . - TWO
HEAD (60) 17 TWO
FLOOD ' (40) 15 TWO
POST (60) ‘ 7 THREE
PINT (60) 5 THREE
BOTH" - (40) 0 " THREE

been examined under conditions of damage to hidden units, p=0.6, in no less
than four and, for some words, in as many as seven different tests. For these
particular words, then, there are very stable estimates of their tendency to
regularization. We spent a considerable amount of time and effort attempting
to determine what factor(s) might account for the marked variation in
regularization rate listed in Table 7.9. Our third experiment demonstrated
that frequency was not the crucial variable, and a number of other
explorations (such as orthographic neighbourhood: what proportion of words
with_that ‘body’ have a regular or an irregular spelling-to-sound correspond-
ence) similarly failed to explain these dramatic differences in reversal rate. As
the final column of Table 7.9 indicates, .the determining factor is almost
certainly the number of vowel features, in the model’s phonemic coding
scheme, by which the regularized pronunciation differs from the correct
pronunciation. - . S

- It might be worth adding the reassuring note that this discovery of the major
factor contributing to reversals in no way compromises our crucial finding of
higher reversal rates for exception than for regular words. Recall that in
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Experiment 2, regular and exception words were matched for body and tested
with the same two pronunciations. This means that the distance in phonemic
vowel features between the correct and the alternative pronunciation was
identical for the regular and exception words in:Experiment-2. None the:less,
damage -resulted in a substantial ‘difference between the word classes in
reversal rate. - o v e -
The second important implication of this discovery concerns the model’s
success in simulating the reading performance of surface dyslexic patients.
Regularization of the word PINT i$ often used in descriptions of such patients,
partly because it is in fact a frequent error by real patients and partly because
investigators of reading disorders thought that they understood why it should
be such a frequent error. In the terminology of Henderson (1982) and
Patterson and Morton (1985), PINT is a heretic word: all of the 12 other
monosyllabic words ending in -INT are pronounced regularly, as in MINT. If
a neurological injury could selectively disrupt some component of the system
for rétrieving pronunciations of whole familiar words, forcing a patient to rely
on some other procedure involving grapheme-phoneme mapping rules or
analogies with other known words, it seemed obvious that PINT should then

‘be pronounced /pint/. As it happens, though, the vowel in /pint/ differs from

/pInt/not by ONE or by TWO but by THREE phonemic features. Therefore,
although the patient ‘data suggest that -this ought- to- be a common
regularization error, the model virtually never prefers /pint/ to /pInt/. Note
that this is tiot to say that the damaged model always prefers the correct
pronunciation for PINT. In fact, in Experiment 4 /pInt/ yielded the lowest
score on only 5/10 tests. The preferred pronunciation in these reversals was,
however, not ‘the regularization /pint/, differing from /pInt/ by THREE
features, but rather the pronunciation /pAnt/, differing from /pInt/ by only
ONE feature. , '
- The obvious next step was to return to the reading data from surface
dyslexic patients to see whether their reading performance might be influenced
by this variation of phonemic feature distance which so strongly constrains the
model’s preferred pronunciations. An error corpus from each of two patients,
H.T.R. (Shallice, Warrington, and McCarthy 1983)and K.T. (McCarthy and
Warrington 1986) was subjected to the following analysis. In order to make
the data set as similar as possible to the results from the model, we included
only monosyllabic words in which the patient’s error was restricted to the
vowel segment of the word. This produced an error set of N=61 for H.T.R.
and N=88 for K.T. Each error was coded in terms of the distance (ONE,
TWOQ or THREE features) between the correct pronunciation and the
patient’s reading response to the word. The reversal errors by the model in
Experiment 4 (N'=56) were coded in the same way. The results, scored as a
percentage of responses corresponding to ONE, TWO or THREE features
changed, are shown in Table 7.10.
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Table 7.10 (1) The proportions of the model’s reversals and of the patients’
.errors (on.the vowel segment of monasyllabic words only) that involve a
:change in ONE, TWQ or THREE phonemic vowel features. (2) The
percentage of the errors in (1) corresponding to exact regularizations of the
exception target word. (3) Asin (2), but restricted to words for which the . -
regularization differs from the correct pronunciation by just ONE feature

. Model HTR.: K.T.:
(N) (56) (61) (88)
(%) (%) (%)

" (1) ONE 66.1 - 59.0- 522
TWO 304 31.1 31.8
THREE ’ 36 P98 159

" (2) % regularizations v 19.6 78.8 81.8

(3) % regularizations for words where i ) '
regularized pronunciation is a :
ONE-feature change 308 - 79.2 90.2

Much to our surprise, the patients’ behaviour in this regard is very well
simulated by the model. H.T.R. and, in particular, K.T. are a little more likely
than the model to produce responses differing from the correct pronunciation
by THREE features (for example, they both read PINT as /pint/!); but the
similarities in these values are much more striking than the differences. In fact,
this outcome goes beyond mere simulation. Itis a prediction from the model to
the data, and constitutes an analysis of the patient data that, we claim, no one
would have thought of doing without the model’s prediction. What this
outcome means is that while PINT—/pint/ may be a frequcnt surface dyslexic
reading error, it is not a typical one. Just as in the damaged model, typical
reading errors by the patients (at least these two patients) involve a change in
Just a single phonemic feature.

Although the behaviour of the model and the patxents concur closely in this
regard, there is in fact one major difference between them. Remember that the
56 observations for the model in this analysis include not just regu-
larizations but all reversals. Likewise, the 61 and 88 errors for H.T.R. and
K.T,, respectively, are the patient equivalent of reversals: they include not just
regularizations but any reading error where the patient’s pronunciation was
(only) a misreading of the vowel. We can therefore now ask: for the model and
for the ‘patients, what proportion of these reversal errors correspond to the
single altérnative that happens to be the regularized pronunciation of that
exception word? As shown in the line of Table 7.10 labelled ‘% regulariza-
tions’, this proportion is high for the two patients but low for the model.
Although the patients and the model make roughly the same proportions of
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errors involving ONE- or TWO- [cature changes, the patients appear to
differentiate among the various opuons at each level, selectively favouring the
pronungiation corresponding to the exact regulanzatxon For the model, on

: the other hand, all alternatives within each level seem to be, more or less

equivalent: the regularization has no special status.

- Since the word sets used in this comparison between H.T.R., K.T., and the
model were not the same, they do not contain the same proportion of words
for which the regularized pronunciation is ONE, TWO:or THREE features
different from the correct pronuriciation. Given the dependence of errors on
closeness of phonemic features, such unmatched lists will mean unequal
‘opportunities’ for regularization. As the last line of Table 7.10 demonstrates,
however, the picture is only slightly altered if we restrict the comparison to the
subset of words within each of these sets where the regularization involves a
ONE-feature change. Maximizing the likelihood of regularization in this way
increases the model’s proportion of reversals that are regularizations from
roughly 20 per cent to 30 per cent; but the comparable values for H.T.R. and
K.T., respectively, are 80 per cent and 90 per cent.?

This difference in tendency to regularization may in fact be a reflection of a
more general difference: the model is much more likely that the patients to
produce errors which are ‘implausible’ realizations of the vowel, in the sense
that no existing word in English embodies that pronunciation of the vowel
grapheme. The patients do make such errors; for example, H.T.R. read SOUL
as'/sYl/ and BALD as /bOld/, and K.T. read ROOK as /rok/. There are no
English words in which OU is pronounced /Y/, A is pronounced /Of or OO is
pronounced /o/. For want of any better description or account, such errors by
surface dyslexic patients -have ' typically been described as ‘visual’ or
‘orthographic’ (see, for example, Coltheart et al. 1983), and indeed these three
examples from the two patlcms demonstrate why: /sYI/, /bOld/ and /rok/
actually correspond to the phonology of the real words SOIL, BOLD, and
ROCK, each of whlch is orthographically similar to the target word
engendering the error response. But, of course, one cannot be sure that these

. responses represent visual confusions by the patient: they could arise in the

process of translation from orthography to phonology just as we assume the

_patients’ regularization errors.do.

The point germane-to this discussion is that such errors with implausible
grapheme—phoneme vowel correspondences are relatively rare in the patients’
error corpora: in the subsets of errors being considered here, only 4/61=6.6
per cent of H'T.R.’s errors and 3/88 = 3.4 per cent of K. T.’s errors were of this
type. By co‘ntrast lobkmg at the reversal errors by the model in Experiment 4,
34/56=160.7 per cent of these have implausible correspondences. (Note: this is
34 tokens, 1 le actual instances of reversal, but only 20 types, lc different
pronuncnatlons ) For example, as already mentioned, the model’s most
common revqrsal error for PINT (preferred on 4/ 10 tests) was /pAnt/; in no
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real English word is the single vowel I pronounced /A/. Since regularizations
never represent.implausible correspondences (on the contrary, they represent
the most typical correspondence, which is why they are called regular), we
suggest that the apparent difference between the model and the patients in
regularization rate may be wholly or partly attributable to a difference in the
likelihood that the vowel correspondence will be a legitimate one.

This characteristic of the model’s lesioned performance clearly does not
provide a good match for the behaviour of real patients. The next step in our
investigations, but going beyond the scope of this chapter, will be to explore
the basis of this difference between model and patient performance. Below we
consider some directions that this investigation could take.

Summary of the lesioning experiments

Like other connectionist models of cognitive processing where the effects of
damage have been investigated (e.g. Sejnowski and Rosenberg 1986; Hinton
and Shallice, personal communication), the model described here performs in
a reasonable manner when lesioned. Phonological error scores, the model’s
way of indicating its response to a stimulus item, increase monotonically with
amount of damage. These augmented scores could be taken to reflect an
increase in the proportion of incorrect naming responses, or an increase in the
latency of responses, or both. Future work on the model will attempt to
differentiate between these two aspects of any oral reading response. The
precise location of damage (connections from input units to hidden units;
hidden units per se; connections from hidden units to output units) has
relatively little effect on the size of the error scores; but these locations have
differential effects on the variability of error scores, and accordingly on the
main-measure of interest here: the likelihood that the model will ‘prefer’ a
pronunciation other than the correct one for a given word. Damage to hidden
units yields the maximum discrepancy in error rate between regular and
exception words.

As Morton and Patterson (1980) insisted for another variety of acquired
reading disorder, we must emphasize that there is no precise, fixed
characterization of reading performance which qualifies as surface dyslexia.
Certain striking features of a patient’s overall pattern of reading skill prompt
us to use the label ‘surface dyslexia’; but each patient is unique. Attempts to
simulate the abstract entity called surface dyslexia must be tempered by
reminders that real patients are not abstractions. As already noted, some
surface dyslexic patients show marked frequency modulation of their success
in reading irregular words, while others do not; some patients have an
essentially normal ability to read nonsense words, while others do not. Such
specific features are only meaningful in relation to the particular patient’s
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precise processing profile. The same approach must be taken in evaluating the

~model’s performance. It does not greatly matter (though it is of course

interesting to know) whether the model shows significant frcquency effects in
exception word performance after lesioning. What matters is an account of
why and under what circumstances one expects to find frequency effects, and
whether the presence or absence of an effect fits with other things that we know
about the model’s or the patient’s performance. . -

With this caveat in mind, plus a reminder of our initial warning about the
early stage of these explorations of damage to the model, we suggest that this
approach to the study of reading disorders—‘lesioning’a working computa-
tional model—shows considerable promise. Moreover, several aspects of the
initial damage experiments leave us optimistic that the particular model we
have been using, or something very much like it, has considerable potential to
provide a detailed account of acquired reading disorders. The first result from
these experiments is the demonstration that the model can in fact produce the
types of errors characteristic of surface dyslexic readers. This is important
because the model lacks the non-lexical spelling-sound rules previously
thought to be responsible for these errors. The second finding is that both
patient . and .model errors are related to the distance between the correct
pronunciation and the error in terms of number of phonemic features. We
consider- this finding to be important because it shows that the attempt to
simulate impaired performance can deepen our understanding of the
phenomena. In this case, the relevance of phonemic features to patient errors
was not recognized until we attempted to simulate their performance.

A third result of the simulations is that they may offer a different
interpretation for the ‘visual’ errors sometimes noted in surface dyslexic
patients. The model produced errors such as PINT - /pAnt/, which do occur
(though not commonly) in the error corpora of the surface dyslexic patients
H.T.R. and K.T. discussed above, and which occur more frequently in other
reported cases. It was thought that such an error *. . . could not arise simply
through phonological reading’ (Coltheart et al. 1983, p. 480) because the
single vowel letter' I is never pronounced /A/ in an English word. Moreover, if
the naming response is treated as the real word PAINT, then its orthographic
overlap with the stimulus word PINT is considerable. Therefore, such errors -
have been called ‘visual’ or ‘orthographic’ or, even more literally in the case of
PINT—/pAnt/, a letter addition error (Coltheart et al. 1983). Our comment
on this topic is merely speculative, especially as the model produces these
errors with greater frequency than is observed in most patients; but the fact
that the model yielded such errors with a completely intact orthographic
encoding system suggests that ‘visual’ errors need not be ‘visual’ in origin.

We can summarize the relationship between the model’s damaged
performance and that of patients in the literature as follows. The performance
of the patients who have been categorized as surface dyslexic varies in
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systematic ways. As a broad generalization, following the description in
Shallice and McCarthy (1985), the patients can be divided into two types.
Type. 1 patients, including H.T.R. (Shallice, Warrington, and McCarthy
1983), M.P. (Bub et al. 1985) and K.T. (McCarthy and Warrington 1986)
exhibit the following characteristics:

1. Accuracy of regular word naming is at or near normal levels.

2. Naming latencies are within normal limits.

3. Accuracy in non-word naming is normal.

4. Most errors are regularizations of exception words.

5. Language comprehension and semantic knowledge are severely impaired.

Type Il patients, a more heterogeneous lot than Type I, include J.C. and
S.T. (Marshall and Newcombe 1973), P.T. (Kay and Lesser 1985) and E.S.T.
(Kay and Patterson 1985). These cases exhibit the following characteristics:

1. Naming is poorer for exception than for regular words, but performance on
regular words is also impaired.

2. Naming latencies are abnormally slow, and the patient may make a series of
attempts to name a single word.

3. Non-word naming is impaired (where tested).

4. Regularization errors do not necessarily account for the majority of errors.

5. There is no marked impairment of semantic knowledge.

Shallice and McCarthy (1985) argue for a qualitative distinction between
these two patterns, and they term the first pattern ‘semantic dyslexia’,
reserving the label ‘surface dyslexia’ for Type 11.

Although we began these explorations with the goal of simulating Type I
cases, because both they and the model read without semantics, our damage
experiments in fact yielded a profile more reminiscent of Type II patients. Our
account of these patients cannot be considered complete, because it is likely
that they do use partial semantic information derived from the orthographic
input to assist the generation of a pronunciation. A more comprehensive
account would explain this compensatory strategy and the extent to which it
contributes to Type I performance.

The damaged performance of the model clearly does not provide a good ﬁt
to the Type I patients. However, it would be inappropriate to conclude that
these patients’ performance is inconsistent with the model or cannot be
simulated by it. Although the types of damage that we have explored do not
produce error scores in the normal range for regular words and non-words
alongside impaired performance on exception words, this is not to say that
such a pattern is an impossible one for the model. First, there are questions

about the implementation of the model that need to be explored. Second, the -

model suggests several other potentially interesting bases for impaired
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performance that have not been investigated as yet. It is worth considering
briefly these directions for future research.

As Seidenberg and McClelland (1988a,b) note, several properties of the
model seem to be theoretically important. These include the notion that
orthographic and phonological representations are distributed, the intermedi-
ate level of hidden units, the way the learning rule determines the connection
weights, and the idea that naming involves a direct mapping from
orthography to phonology. Seidenberg and McClelland-also discuss several
details of the implemented model that are less theoretically relevant, such as
the specifics of the orthographic and phonological encoding schemes, or the
particular stimulus set used in training. They argue that the model’s ability to
capture detailed aspects of normal performance is unlikely to be contingent on
these aspects of the implementation. However, we cannot as yet determine
exactly how these specifics relate to the effects that we have (and have not!)
obtained in regard to surface dyslexia. ,

For example, there are known limitations to the phonological encoding
schenre used in this model and in Rumelhart and McClelland (1986) (see
Pinker and Prince 1988; Lachter and Bever 1988). Similarly, it is not clear
whether the model’s treatment of lexical frequency is adequate; words were
sampled during the training phase on the basis of a logarithmic transforma-
tion of their Kucera and Francis frequencies. Frequencies in the Kucera and
Francis analysis range from about 67 000 to 1; in our scheme the range is only
about 16 to 1. The results to this point suggest that these and other aspects of
the implementation have little impact on the model’s ability to simulate
normal performance; however, these limitations may be more important when
we turn to making detailed predictions about the exact errors produced by
patients. To take one example, the compression of word frequencies may be
related to the absence of marked frequency effects in the model’s impaired
performance. Before any firm conclusions can be drawn, it will be necessary to
evaluate versions of the model using different phonological encoding schemes,
indices of frequency, amounts of training, etc.

A more severe limitation of the model is that we have not yet implemented
procedures for converting the output that it computes into real pronuncia-
tions. But this is a limitation on what has been done, not on what can be done.
Lacouture (1988), for example, has developed a naming model that computes.
phonological codes much like the present model. It also exhibits the main
types of phenomena concerning, for example, frequency and regularity effects.
In Lacouture’s model, however, the computed phonological code acts as the
input to an autoassociative mechanism, which serves to complete the partially
specified phonological code. This pattern completion process could be seen as
similar to the process of assembling an articulatory motor program.

The observations from these initial explorations with lesioning suggest to us
that it will be important to examine other ways in which the model’s
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performance can degrade. In particular, we need to consider the possibility
that the impaired performance characteristic of Type I patients, such as
H.T.R. and M.P., does not derive from damage to knowledge representations
at all. The computations performed by the model could 'be impaired in a
variety of ways that do not involve damage to representations. For example,
the model computes output by passing activation through the network. We
have damaged the system by eliminating connections or units. Imagine,
instead, that the model is fully intact, but the net activations of units are
incorrectly computed. One characteristic of the implemented model, for
example, is that the activation coming into a unit (which is a weighted sum of
the activations along the lines coming into it) is passed through a logistic
function to yield a net activation between 0 and 1. We could then ask what
would happen to performance if activations of hidden units were pathologi-
cally limited to a level such as 0.8, preventing output units from being fully
activated. What kind of articulatory code would be assembled on the basis of
this damped output?

We suggest that this line of inquiry is worth pursuing because there is
already some evidence that the kinds of errors characteristic of surface dyslexia
can be produced by a system that is wholly undamaged. Consider the
following experiment, which we have recently completed. Normal university-
student subjects are asked to name words such as the ones presented to the
model or to a patient like H.T.R. However, we impose a response deadline,
such that subjects must initiate pronunciation earlier than normal. Under
these conditions, subjects produce naming latencies that are roughly normal
but they make substantially more errors. Moreover, these errors include the
following (taken from the actual corpus of responses):

regularizations: PINT - /pint/; PLAID - /plAd/; STEALTH - /stElth/;
DONE-+/dOn/

‘visual’ errors:  TROUGH —tough; BREAD —beard; WALL - well

other errors:  BUSH — /bish/; BURY —/bErE/; DROUGHT - /drOt/;
BATH - /bEth/

We assume that these errors arise simply because the deadline forces
subjects to begin assembling a pronunciation before the computation of the
phonological code is completed. In our implemented model, the activations of
output units are computed on a single sweep; in a more realistic model, the
activations would. build up over time (cf. McClelland 1979; Cohen, Dunbar,
and McClelland 1988; Seidenberg and McClelland 1988b). The effect of the
deadline would be realized by initiating the assembly process before the
phonological nodes had reached asymptotic levels of activation. A similar
outcome would obtain if nodes were pathologically prevented from reaching
these levels.
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We are not suggesting that performance under deadline conditions fully
mimics the performance of any surface dyslexic. For one thing, the maximum
error rate obtained for a normal subject in the deadline condition was 20 per
cent, much lower than would be seen in a patient. This might be expected
because imposing a deadline that encourages early assembly is not equivalent
to a pathological condition that prevents units from reaching asymptotic
levels of activation. However, the experiment does show that the types of
errors that have been observed in neuropsychological case studies can be
produced by subjects whose knowledge representations are intact; the
relevance of this observation for accounts of surface dyslexia is a matter worth
considering further.

Along the same lines, it is also worth considering whether Type I patients
might begin to assemble pronunciations prematurely because their access to
semantic information is grossly impaired. The naming task requires that the
subject produce the correct pronunciation of a word. The demands of the task
change somewhat when the stimuli include non-words, which lack a certifiably
‘correct’ pronunciation. There may be some trials on which normal subjects
check the phonological code computed on the basis of orthography (as in our
model) against a phonological code computed on the basis of the orthogra-
phy—meaning - phonology ‘route’ implied by Fig. 7.1. Since the meaning-
based routine is not available to Type I surface dyslexics (i.e. semantic
dyslexics), it would never be checked. The absence of any feedback from other
parts of the lexical system might result in relatively rapid use of the pathway
from orthography to phonology; the subject has ‘nothing to lose’ by initiating
pronunciation, so to speak.

Finally, one other possibility should be mentioned. Perhaps the simulation
results are telling us that something very like the model we have proposed is
relevant to normal performance but not to all cases of surface dyslexia.
Perhaps the knowledge representations of patients such as H.T.R. and M.P.
are damaged to the point where they no longer support pronunciation at all.
The patients are none the less asked to pronounce words and non-words.
Under these conditions they may utilize other types of knowledge relevant to
pronunciation. It is possible that readers have formed some explicit
generalizations about the correlations between spelling and pronunciation,
perhaps stored in the form of ‘rules’. These generalizations could arise in
several ways. For example, they could be the detritus of the learning process;
children are often taught to read by introducing explicit pronunciation rules.
The ‘rules’ could also reflect generalizations about the properties of a complex
computational mechanism like the one in our model. We ourselves often
resort to such generalizations in summarizing the behaviour of the model.
These generalizations are not accurate in detail and they do not reflect the
actual underlying computational mechanisms. It is quite possible that our self-
knowledge of complex perceptual and cognitive processes consists of -
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generalizations of this type. When the normal naming mechanism is impaired,
then it is possible that patients rely upon this knowledge which, though of
limited applicability, is sufficient to yield correct pronunciations of common
spelling patterns.

If this conjecture is correct, we are back to a modified ‘dual-route’ model as
the account of naming disorders. There is a normal naming mechanism, like
the one in the implemented model; there is a second type of knowledge,
definitely ‘non-lexical’, which supports the naming behaviour of at least some
surface dyslexics. It remains to be seen how this account, offered here as
speculation, will fare in the light of future evidence. Note, however, that while
this account involves two naming mechanisms, it differs from the ‘dual-route’
model in critical respects. The main assumption of the dual-route model is that
separate mechanisms are necessary in order to pronounce exception words en
the one hand and non-words on the other (Coltheart 1987). Hence, both
routines play a role in normal performance. Our model, in which a single
mechanism supports the pronunciation of all types of letter strings, challenges
this ‘central dogma’ of dual-route theories (Seidenberg 1988b). This second
type of knowledge merely comes into play when the normal system is non-

functional. Thus, even this version of the model cannot be taken as an

implementation of the dual-route account.

Conclusions

As indicated in the introduction to lesioning the model, the possibility of an
account of acquired dyslexia within the model of oral reading that we have
discussed is of some considerable theoretical significance. Surface dyslexia,
especially in conjunction with its contrasting pattern of impaired reading,
phonological dyslexia, has suggested to many that there must be at least two
separable routines for the translation of orthography to phonology. Dual-
routine theories have already been challenged by the demonstration that the
undamaged model can learn to read regular words, exception words and non-
words with a single procedure. Such theories will be in further contention if
patterns of acquired dyslexia are reproducible by means of damage to the
model. Note that the preceding sentence and the first sentence of this
paragraph use the modest words ‘if” and ‘possibility’: we are not claiming that
the model can now offer such an account, only that it looks promising and well
worth further exploration. :

By way of summary, the model in its current state does a good job of
accounting for what we might term the first-order phenomena in naming, the
performance of normal subjects in reading different types of words, and non-
words. The model provides the only quantitative account of normal
performance; moreover the fit between simulation and behavioural data is
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quite close. The model also accounts for the second-order phenomena, such as
the types of errors observed in cases of surface dyslexia. The unresolved
questions concern third-order predictions, regarding the exact proportions of
errors of different types, and the different patterns of performance associated
with surface dyslexia. It is not surprising that it is at this level that questions
arise concerning limitations of the implemented model. Although substantive
questions remain to be addressed, we think that these initial efforts have
opened an interesting line of inquiry that is likely to contribute to a deeper
understanding of reading and its disorders.
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Notes

1. Most recent versions of dual-routine models actually posit three pronunciation
processes, the ‘non-lexical’ or ‘subword-level’ procedure mentioned above, and two
‘lexical’ procedures that involve accessing stored representations of word pronuncia-
tions. These representations, it is argued, can be accessed in two ways: cither directly
(by a procedure that transcodes from orthography to lexical phonology) or indirectly
(from orthography to semantic representations and then to lexical phonology). The
hypothesis of a direct lexical but non-semantic procedure has been based partly on
patterns of acquired reading disorders (see for example Schwartz, Saffran, and Marin
1980; Funnell 1983) but also on results from normal subjects concerning the
interrelationships between naming of words and naming of pictures (se¢ Durso and
Johnson 1979, for relevant data and Warren and Morton 1983, for discussion). The
main point germane to the present discussion is that in all these accounts, at least two
procedures are considered necessary to accomplish successful naming of regular words,
exception words, and non-words. The model described here does not reject the notion
that written words might be pronounced with reference to their meanings; as Fig. 7.1
suggests, a word could be named by a two-stage process in which meaning is computed
from the orthographic input, and the pronunciation from meaning. In contrast to dual-
(or triple-) routine models, however, this ‘lexical’ pathway is not necessary for the
pronunciation of any type of letter string. In sum, the model squeczes three routines
into two, with the added caveat that the primary procedure for translating from
orthography to phonology is sufficient for all types of letter strings.

2. Since this chapter was written, the model has been augmented with a new procedure
for assessing its output. The procedure compares the model’s output not just to the
correct (specified) pronounciation but also to all other pronunciations that can be
created by replacing a single phoneme in that word with some other phoneme; it then
reports the best match. Since this search only covers a subset of the possible
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phonological patterns, we cannot guarantee that the best match among this set. of
comparisons is the best possible match; but the procedure does provide more
comprehensive information regarding the model's ‘preferred pronpnciations’. Using
this procedure, Seidenberg and McClelland (1988b) demonstrated that the trained and
undamaged model makes errors (i.. cases where the best fit to the computed pattern is
a pronunciation other than the correct one) on only 2.7 percent of the 2897 words in its
training vocabulary. The new procedure is of particular value in assessing output from
the lesioned model; for example, one can readily determine whether the incorrect best
match for an exception word is an exact regularization. Recent simulations using the
new procedure suggest that the high levels of damage (60 percent of hidden units) used
in most of our initial experiments may not in fact provide the best approximation to
surface dyslexia. Although the overall error rate is certainly higher when more hidden
units are silenced, the proportion of errors corresponding to exact regularizations
actually decreases. In a test using the exception words from Taraban and McClelland’s
(1987) experiment with 20 percent of hidden units zeroed, nearly half (47 percent) of the
model’s errors were exact regularizations. Although this is still a somewhat lower
regularization rate than that shown by the surface dyslexic patients in Table 7.10, itis a
step in the right direction; future explorations may provide still closer approximations.
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