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Abstract

For decentralized control problems with quadratically in-
variant information constraints, the optimal controller
may be found efficiently. In this paper, we show that
there are systems which are not quadratically invariant
but reduce to systems that are. We call the requisite
property internal quadratic invariance. We present an as-
sociated reduction procedure, and illustrate our method
with examples.

1 Introduction

In decentralized control problems, each controller has ac-
cess to some subset of the measurements and must con-
trol some subset of the actuators. Such situations are of
practical interest because it is often infeasible to have a
single computer process all the information and make all
the decisions. For example, we may be trying to design
an auto-pilot for a swarm of vehicles flying in formation,
where each vehicle only has access to noisy local measure-
ments of the positions of its nearest neighbors. Another
example is packet routing in networks. Each switch must
make decisions based on local information, but the goal
is to optimize the efficiency of the whole network.

Many decentralized control problems are computation-
ally intractable. However, if a problem has a quadrati-
cally invariant (QI) information structure [8, 9], then
optimal controllers may be efficiently computed. In this
paper, we expand the QI class by showing that some non-
QI problems can be reduced to QI problems and thereby
solved. We call such problems internally quadratically in-
variant. We also provide a sufficient condition for when
such a reduction exists, and a partial converse.

The paper is organized as follows. In Section 2, we
review some fundamental concepts including quadratic
invariance, and in Section 3, we define internal quadratic
invariance and equivalence of systems. In Section 4 we
present our main results, and in Section 5 we show two
illustrative examples.
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Prior Work. When the system to be controlled has a
linear plant, quadratic cost, and Gaussian noise (LQG),
the optimal centralized controller is linear, and can be
computed efficiently. However, in 1968, Witsenhausen
[10] provided a now famous counter-example showing
that for decentralized control, the optimal LQG controller
is not linear in general. Subsequently, Blondel and Tsit-
siklis [2] proved that a certain class of decentralized con-
trol problems is NP-hard.

This led to an effort to characterize which decentral-
ized problems have optimal controllers that are linear.
Radner [6] showed that this was true for a special class
called static team decision problems. Ho and Chu [4] gen-
eralized Radner’s result by showing that the larger class
of partially nested systems could be converted into static
team decision problems and hence solved easily.

Optimal decentralized control problems with quadrat-
ically invariant information constraints were shown to
be tractable in [7, 8, 9]. Computational tractability and
linearity of the optimal controller arise because in these
cases the set of achievable closed-loop maps is convex.

The QI class is extremely wide, but does not cover
all tractable decentralized control problems, nor all the
problems for which the optimal controller is linear. For
example, Bansal and Basar [1] showed that by using a
different quadratic cost function in the Witsenhausen
counter-example, the problem is still not QI, but has a
linear optimal solution. In Section 5, we present two ex-
amples of systems that fail to be QI, but are still tractable
and have linear optimal solutions.

2 Preliminaries

We review some properties of matrices of rational func-
tions, see for example [5, §6.3, §6.5], and the notion of
quadratic invariance [8, 9]. We also show an illustrative
example.

Define Rm×n to be the set of m×n matrices in which
each entry is a real-rational function. In addition, let
Rm×n

p denote m × n matrices in which each entry is a
proper real-rational function, and let Rm×n

sp denote m×n
matrices in which each entry is a strictly proper real-
rational function. We omit the superscript when the di-
mensions are to be inferred by context.

We state the following lemma without proof. For an
introduction to normal rank and related concepts, see [5].
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Lemma 1. Suppose A ∈ Rm×n, and B ∈ Rn×k.

i) nrankAB ≤ min{nrankA,nrankB}.

ii) If A is tall and has full normal rank,
nrankAB = nrankB

We say that A is invertible if it is square and its deter-
minant detA(s) is not identically zero. Note that we do
not require A or its inverse to be proper. The following
result states that, regardless of whether A has full nor-
mal rank or not, we can factor it as the product of two
matrices with full normal rank. This is constructed by
writing A in Smith-McMillan form. See [5, §6.5.2].

Lemma 2. Suppose A ∈ Rm×n. There exists a factor-
ization A = U1U2, where U1 ∈ Rm×r is tall and full
normal rank, U2 ∈ Rr×n is wide and full normal rank,
and r = nrankA.

The plant P ∈ Rm×n is partitioned as

[
z
y

]

=

[
P11 P12

P21 P22

] [
w
u

]

,

with m = m1 + m2 and n = n1 + n2, and P11 ∈ Rm1×n1 ,
P12 ∈ Rm1×n2 , P21 ∈ Rm2×n1 , and P22 ∈ Rm2×n2 . The
controller K ∈ Rn2×m2 is connected via u = Ky, and
these equations are illustrated in Figure 1.

z wP11 P12

P21 P22

K

uy

Figure 1: Closed-loop interconnection

When (I−P22K) is invertible, we say the interconnection
is well-posed , and the closed-loop map is

f(P,K) = P11 + P12K (I − P22K)
−1

P21.

In this paper, we will consider sets of interconnections
parametrized by K ∈ S. We call the subspace S ⊂
Rn2×m2 the information constraint . We will often
refer to the pair (P, S) when we want to consider all the
well-posed interconnections between P and a controller
belonging to S. The set of achievable closed-loop maps
is denoted as

f(P, S) =
{
f(P,K)

∣
∣ K ∈ S, (I − P22K) is invertible

}
.

For U ∈ Rm2×p, define SU = {KU | K ∈ S} to be the
transformed information constraint. If V ∈ Rq×n2 , we
similarly define the sets V S and V SU . We now turn to
quadratic invariance of such constraints.

Definition 3. (P, S) is quadratically invariant (QI),
if for all K ∈ S, we have KP22K ∈ S.

Under some additional technical conditions, quadratic in-
variance is necessary and sufficient for the information
constraint S to be preserved under feedback. This al-
lows us to formulate the constrained controller synthesis
problem as a convex optimization problem. The follow-
ing definition and theorem are from [8].

Definition 4. If S ⊂ Rn2×m2

p is a subspace, we say S
is frequency aligned if there exists a subspace S0 ⊂
C

n2×m2 such that

S =
{
K ∈ Rn2×m2

p

∣
∣ K(jω) ∈ S0 for almost all ω ∈ R

}

Theorem 5. Suppose P22 ∈ Rm2×n2

sp , S ⊂ Rn2×m2

p is a
frequency aligned subspace, and (P, S) is QI. Then K is
optimal for the problem

minimize ‖f(P,K)‖

subject to K ∈ S
(1)

if and only if K = −Q(I −P22Q)−1 and Q is optimal for

minimize ‖P11 − P12QP21‖

subject to Q ∈ S
(2)

Equation (2) is a convex optimization problem and can
be easily solved in most cases; see for example [3]. In
the sections that follow, we will show that certain non-
QI problems can be transformed into QI problems and
solved using a result such as Theorem 5. The results in
this paper hold for plants and controllers that are gen-
eral rational functions. We do not enforce stability or
properness constraints.

3 Internal Quadratic Invariance

We say that (P, S) and (P̃ , S̃) are equivalent if they
have the same sets of possible closed-loop maps. That is,
f(P, S) = f(P̃ , S̃). Note that if (P̃ , S̃) is not QI, but is
equivalent to (P, S), which is QI, then we may solve the
corresponding optimization problem using a result such
as Theorem 5. Then, equivalence implies that (P̃ , S̃) has
the same optimal value. This motivates the following
new definition.

Definition 6. (P̃ , S̃) is internally quadratically in-

variant (internally QI) if there exists a quadratically in-
variant system (P, S) that is equivalent to (P̃ , S̃).

We now show an example of an internally QI system.

P̃ =









P11 2B1 3B2 5B2

1

2
C1 G1 0 0

1

3
C1

2

3
G1 0 0

1

5
C2

2

5
G2

3

5
G3 G3









S̃ =












K1 0 0

0 K2 0

0 0 K3






∣
∣
∣
∣
∣
∣
∣

Ki ∈ R






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Here P11, Bi, Ci, Gi, and Ki are matrices of rational
functions of compatible size. The matrix P̃ is partitioned
into its four blocks as shown; this does not denote a state-
space representation. The information constraint S̃ is the
subspace of controllers with a block-diagonal structure.
Note that K̃P̃22K̃ is not block diagonal for all block di-
agonal K̃, so (P̃ , S̃) is not QI. Now consider the system

P =






P11 B1 B2

C1 G1 0

C2 G2 G3




 S =

{[
K1 0
K2 K3

] ∣
∣
∣
∣

Ki ∈ R

}

.

Here, the information constraint S is the subspace of
block lower-triangular controllers. This new pair is QI,
since KP22K is a product of block lower-triangular ma-
trices, and hence is block lower-triangular itself.

One can show that these two systems are equivalent
by computing both closed-loop maps and verifying that
they are the same for all choices of Ki. In other words,
(P̃ , S̃) is internally QI. We will analyze this example in
more detail in Section 5.

4 Reduction

In this section, we show two ways of generating equivalent
systems: output reduction and input reduction. Both
preserve quadratic invariance.

4.1 Output Reduction

We first consider output reduction, illustrated in Fig-
ure 2. We say (P, S) is an output transformation of
(P̃ , S̃) under U ∈ R if

[
P̃11 P̃12

P̃21 P̃22

]

=

[
I 0
0 U

] [
P11 P12

P21 P22

]

and S = S̃U.

z wP11 P12

UP21 UP22

K̃

uy

z wP11 P12

P21 P22

K̃U

uy

Figure 2: Output transformation.

Lemma 7. Systems related by an output transforma-
tion are equivalent. That is, suppose (P, S) is an out-
put transformation of (P̃ , S̃) under U . Then we have
f(P̃ , S̃) = f(P, S).

Proof. It is straightforward to verify that for all K̃ such
that the closed-loop interconnection (P̃ , K̃) is well-posed,
f(P̃ , K̃) = f(P, K̃U) . Equivalence follows directly.

Next, we show that output transformations preserve
quadratic invariance.

Theorem 8. Suppose (P, S) is an output transformation
of (P̃ , S̃) under U .

i) If (P̃ , S̃) is QI, then (P, S) is QI.

ii) If U is wide and has full normal rank, then the con-
verse holds: If (P, S) is QI, then (P̃ , S̃) is QI.

iii) If (P, S) is QI, then (P̃ , S̃) is internally QI.

Proof. Suppose (P̃ , S̃) is QI. By definition,

K̃ ∈ S̃ =⇒ K̃UP22K̃ ∈ S̃. (3)

Choose any K ∈ S. We will show that KP22K ∈ S
and therefore (P, S) is QI. By the definition of the out-
put transformation, there exists some K̃ ∈ S̃ such that
K = K̃U . From (3), K̃UP22K̃ ∈ S̃. It follows that
K̃UP22K̃U ∈ S, and hence KP22K ∈ S. This completes
the proof of Item i.

Suppose conversely that (P, S) is QI. By definition,
for every K ∈ S we have KP22K ∈ S. Choose any
K̃ ∈ S̃. We will show that if U is wide and has full
normal rank, K̃UP22K̃ ∈ S̃. By the definition of the
output transformation, K̃U ∈ S, and so K̃UP22K̃U ∈ S.
Since S = S̃U , there must exist some H̃ ∈ S̃ such that:

H̃U = K̃UP22K̃U (4)

If we further suppose that U is wide and has full normal
rank, U is right-invertible. We conclude from (4) that
H̃ = K̃UP22K̃ ∈ S̃. This completes the proof of Item ii.
The final item follows immediately from the definition of
internal quadratic invariance and Lemma 7.

Theorem 8 implies that if we have a pair (P̃ , S̃), that
is not QI, and we can find U that factors P̃ , then the
equivalent system (P, S) might be QI. Our next step is
to characterize all the output transformations that have
the potential to make the system QI. By Lemma 2, we
may restrict our attention without loss of generality to
output transformations where U is strictly tall and has
full normal rank. Note that all such transformations re-
duce the number of outputs m2 of the system. An out-
put transformation with a tall and full normal rank U is
called an output reduction . If U is strictly tall, we call
it a strict output reduction .

Definition 9. We say (P, S) is output-minimal if the
matrix

[
P21 P22

]
is wide and has full normal rank.

Theorem 10. If (P, S) and (P ′, S′) are output-minimal
output reductions of (P̃ , S̃) under U1 and U2 respectively,
then m2 = m′

2
, and (P, S) is QI if and only if (P ′, S′) is

QI.

Proof. By assumption, there exist tall and full normal
rank U1 and U2 such that:

[

P̃21 P̃22

]
= U1

[
P21 P22

]
= U2

[
P ′

21
P ′

22

]
, (5)

K̃U1 = K and K̃U2 = K ′ for all K̃ ∈ S̃, (6)
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where
[
P21 P22

]
and

[
P ′

21
P ′

22

]
are wide and have full

normal rank. Applying Lemma 1 to (5), we find that
U1 and U2 must have the same normal rank, and hence
the same size. Thus m2 = m′

2
. Tall matrices with full

normal rank are left-invertible, so

[
P21 P22

]
=

(

U†
1
U2

) [
P ′

21
P ′

22

]
, (7)

where A† is Moore-Penrose pseudoinverse for full-rank
matrices: (AT A)−1AT when A is tall and AT (AAT )−1

when A is wide. It is straightforward to verify that

K
(

U†
1
U2

)

= K ′. (8)

Equations (7) and (8) imply that (P ′, S′) is an out-

put transformation of (P, S) under U†
1
U2. Similarly,

one can show that (P, S) is an output transformation

of (P ′, S′) under U†
2
U1. Applying Theorem 8, we con-

clude that (P, S) is QI if and only if (P ′, S′) is QI. Indeed,
these output transformations are inverses of one another:
(U†

1
U2)

−1 = U†
2
U1.

Lemma 11. A strict output reduction is not possible on
an output-minimal system.

Proof. This justifies our use of the term “minimality”. If
we could reduce m̃2 to some m2 < m̃2 by using an output
reduction, there would exist a tall and full normal rank
U such that:

[

P̃21 P̃22

]
= U

[
P21 P22

]

but then m̃2 = nrank
[

P̃21 P̃22

]
≤ nrankU = m2, which

is a contradiction.

Theorem 12. There always exists an output reduction
to an output-minimal system.

Proof. Consider the pair (P̃ , S̃). From Lemma 2, we
can factor:

[

P̃21 P̃22

]
= U

[
P21 P22

]
,

where U is m2 × r and has full normal rank, and
[
P21 P22

]
is r × n and has full normal rank. Ap-

plying Lemma 1, we have r = nrank
[

P̃21 P̃22

]
=

nrank
[
P21 P22

]
and so we conclude that

[
P21 P22

]
has

full normal rank and thus is output-minimal.

Corollary 13. Consider (P̃ , S̃), and consider the set of
all possible (P, S) that can be obtained from it via an
output transformation. This set contains a QI system if
and only if an output-minimal reduction of (P̃ , S̃) is QI.

Proof. This follows from Theorems 8, 10, and 12.

Corollary 13 provides a sufficient condition for internal
quadratic invariance. It also provides a partial converse
in the following sense: if we test the output-minimal sys-
tem constructed using Theorem 12 and the result is not
QI, then no output transformation can yield a QI system.

4.2 Input Reduction

The notion of input reduction is analogous to that of
output reduction, and results can be derived which par-
allel those from Section 4.1. We only include some of
them here and omit the proofs.

We say (P, S) is an input transformation of (P̃ , S̃)
under V if

[
P̃11 P̃12

P̃21 P̃22

]

=

[
P11 P12

P21 P22

] [
I 0
0 V

]

and S = V S̃

If V is wide and full normal rank it is an input reduc-

tion , and if strictly wide, it is a strict input reduction .

Definition 14. We say (P, S) is input-minimal if the

matrix

[
P12

P22

]

is tall and has full normal rank.

Theorem 15. There always exists an input reduction to
an input-minimal system.

Corollary 16. Consider a system (P, S), and consider
the set of all possible systems (P ′, S′) that can be obtained
from it via an input transformation. This set contains a
QI system if and only if an input-minimal transformation
of (P, S) is QI.

As in the case of output reductions, Corollary 16 provides
an additional sufficient condition for internal quadratic
invariance. If we test the input-minimal system provided
by Theorem 15, and the result is not QI, then no input
transformation can yield a QI system.

4.3 Joint Input-Output Reduction

The ideas of output reduction and input reduction are in-
dependent. Specifically, the U and V from Theorems 12
and 15 can be constructed independently, and the reduc-
tion shown in Figure 3 will be both output-minimal and
input-minimal.

z wP11 P12V

UP21 UP22V

K̃

uy

z wP11 P12

P21 P22

V K̃U

uy

Figure 3: Equivalent interconnection obtained by a joint
input-output transformation.

We can compute the reduced system directly from U and
V using

[
P11 P12

P21 P22

]

=

[
I 0
0 U†

] [
P̃11 P̃12

P̃21 P̃22

] [
I 0
0 V †

]

and S = V S̃U

Definition 17. (P, S) is minimal if it is both output-
minimal and input-minimal.
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We can summarize the main result of this paper in the
following sufficient condition for the internal quadratic
invariance of a system. In order to check it, we only need
to examine the minimal form obtained from Theorems 12
and 15.

Theorem 18. Consider (P̃ , S̃), and consider the set of
all (P, S) that can be obtained from it via a combination
of input and output transformations. This set contains
a QI system if and only if a minimal transformation of
(P̃ , S̃) is QI.

5 Example Revisited

An Example of Reduction. Consider once again the
example from Section 3. We notice that it is not output-
minimal because

[

P̃21 P̃22

]
doesn’t have full normal

rank, and so an output reduction is possible:

[

P̃21 P̃22

]
=






1

2
C1 G1 0 0

1

3
C1

2

3
G1 0 0

1

5
C2

2

5
G2

3

5
G3 G3






=






1

2
I 0

1

3
I 0

0 1

5
I






︸ ︷︷ ︸

U

[
C1 2G1 0 0
C2 2G2 3G3 5G3

]

.

Similarly,

[
P̃12

P̃22

]

is not input-minimal, so an input reduc-

tion is possible as well:

[

P̃12

P̃22

]

=









2B1 3B2 5B2

G1 0 0
2

3
G1 0 0

2

5
G2

3

5
G3 G3









=









B1 B2

1

2
G1 0

1

3
G1 0

1

5
G2

1

5
G3









[
2I 0 0
0 3I 5I

]

︸ ︷︷ ︸

V

.

We can compute the reduced system using U and V :
[
P11 P12

P21 P22

]

=

[
I 0
0 U†

] [
P̃11 P̃12

P̃21 P̃22

] [
I 0
0 V †

]

=





P11 B1 B2

C1 G1 0
C2 G2 G3





S = V S̃U =






V





K1 0 0
0 K2 0
0 0 K3



 U

∣
∣
∣
∣
∣
∣

Ki ∈ R







=

{[
K1 0
K2 K3

] ∣
∣
∣
∣

Ki ∈ R

}

.

This resulting system is QI, as shown in Section 3.

Networked System Example. In this section, we
will show a more complicated example of an internally
quadratically invariant system. Suppose we have two
discrete-time systems G1 and G2, controlled by K1 and
K2 respectively. Controller K1 receives a measurement
from G1, and a one-timestep-delayed measurement from
G2. Similarly, K2 receives a measurement from G2, and
a one-timestep-delayed measurement from G1. Now fur-
ther suppose that G1 and G2 are coupled, so that G1 has
an additional input that depends on the state of G2, and
vice-versa. The coupling has a delay of one timestep. See
Figure 4.

G1 G2

K1 K2

z−1

z−1

z−1

z−1

w1

r1

r2

w2

u1 y1 u2y2

Figure 4: Two coupled systems with controllers that re-
ceive delayed measurements

Let G1 be the stable second-order plant with discrete-
time state-space equations:

x1(t + 1) =

[
0.9 0.3
−0.6 0.8

]

x1(t) +

[
0
1

]

u1(t) +

[
0
1

]

v2(t − 1)

r1(t) =

[
1 0
0 0

]

x1(t) +

[
0
µ

]

u1(t)

[
y1(t)
v1(t)

]

=

[
1 0

0.1 0.2

]

x1(t) +

[
1
0

]

w1(t),

where ri are the regulated outputs we wish to keep small,
ui are the inputs provided by the controllers, and vi is
the coupling between the two systems. The equations
are the same for G2, except the subscripts 1 and 2 are
interchanged. Taking z-transforms and eliminating the
state x, we obtain the plant

[
r
y

]

=

[
P11 P12

P21 P22

] [
w
u

]

,

where the various transfer functions are:

P11 = 0, P21 = I, P12 =

[
P22

µI

]

,

P22 =
6z

∆

[
2z(10z2 − 17z + 9) 4z − 3

4z − 3 2z(10z2 − 17z + 9)

]

,

and ∆ = (20z3−34z2+14z+3)(20z3−34z2+22z−3). The
controller has a special structure, because of the delays
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associated with the measurements:

S =

{[
K11 z−1K12

z−1K21 K22

] ∣
∣
∣
∣

Kij ∈ Rp

}

.

It is straightforward to verify that KP22K ∈ S for all
K ∈ S. So we conclude that (P, S) is QI. A more general
version of this problem is analyzed in [9].

G1 G2

K1 K2

z−1

z−1

z−1

z−1

w1

r1

r2

w2

u1 y1 u2y2

Figure 5: Alternate diagram for the system of Figure 4

Note that there are multiple ways of generating a pair
(P, S) that represents the system in Figure 4. For exam-
ple, we could absorb the measurement delays into P , as
shown in Figure 5, so that P̃11 = P11, P12 = P12,

P̃21 =







1 0
z−1 0
0 1
0 z−1







, and

P̃22 =
6z

∆







2z(10z2 − 17z + 9) 4z − 3
2(10z2 − 17z + 9) (4z − 3)/z

4z − 3 2z(10z2 − 17z + 9)
(4z − 3)/z 2(10z2 − 17z + 9)







.

The new information constraint is sparse

S̃ =

{[
K1 0 0 K2

0 K3 K4 0

] ∣
∣
∣
∣

Ki ∈ Rp

}

.

It is straightforward to verify that K̃P̃22K̃ does not have
the same sparsity pattern as S̃; it is a full matrix in
general. Therefore, (P̃ , S̃) is not QI. Had we used this
representation for our problem, we would still be able to
transform it into a QI representation. Check for mini-
mality; nrank

[

P̃21 P̃22

]
= 2, which is not full normal

rank, so our system is not output-minimal. Then use
Theorem 12, to factor

[

P̃21 P̃22

]
=







1 0
z−1 0
0 1
0 z−1







[
P21 P22

]
.

We can also verify that S = S̃U , which shows that this
output transformation actually recovers (P, S), our first
representation of the system. Therefore, (P̃ , S̃) is inter-
nally QI.

6 Conclusion

Quadratic invariance is a property of the actuator-
measurement transfer function P22 and the information
constraint set S. We showed in this paper that by includ-
ing conditions on P12 and P21 as well, we can characterize
a class of problems that can be reduced to QI problems,
even though they are not QI themselves.

This work broadens the QI class of decentralized con-
trol problems, and is a step towards a more complete
characterization of tractable problems in decentralized
control.
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