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Abstract

We consider the problem of Partially Observed Markov Decision Processes with a
non-classical information structure. Under a particular constraint on the informa-
tion structure, optimal decision policies can be found via a dynamic programming
approach. We also consider state space systems with linear dynamics and quadratic
cost objectives, and provide sufficient conditions on the information structure under
which optimal control policies can be found analytically.

1 Introduction

In the study of decentralized stochastic control, the search for analytical, optimal
control policies is, more often than not, an intractable problem. Within the group of
feasible problems, only a handful of solutions have yet been found. However, the goal
for most control engineers is to find linear control policies which are either optimal or
suboptimal. The Partially Observed Markov Decision Process (POMDP), and more
specifically, the classical LQG case (Linear dynamics, Quadratic cost, Gaussian
noise) with full information are perhaps the most universally known systems which
have been shown to be tractable.

It has been shown that the ability to find optimal analytical solutions is signif-
icantly affected by the information structure of the system [8]. Much research has
been done to classify certain non-classical information structures for which optimal
feedback controllers can be efficiently solved [4, 6]. In this paper, we attempt to
augment this set of tractable information structures to include those information
structures satisfying a particular constraint.

In this paper, we first consider a specific information structure, shown to
produce linear optimal solutions in the LQ case [7, 9], and extend the dynamic
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programming approach to find optimal solutions of the POMDP formulation of the
problem. We go on to provide sufficient conditions on an information structure
under which any LQ system can be analytically solved via dynamic programming.
Lastly, while [7] and [9] showed the existence of optimal controllers in the LQ
case, it wasn’t until [3] that the computational complexity of such controllers was
considered. We finish our analysis by showing that an assumption made on the
maximal delay of information propagation allows us to bound the storage required
for performing estimation.

2 Notation and System Model

We will employ, where possible, the notation used in [2, 1] as follows. In the re-
mainder of this paper, we use subscripts to denote the time index. Thus, xt denotes
the state of the system at time t. We denote the sequence of variables x0, x1, . . . , xt

by x0:t. We also define A0···t as the product of the variables corresponding to times
0, . . . , t; that is A0···t = A0A1 . . . At. For a set X , we interpret Xn as the n-fold
Cartesian product of the set, so that Xn = X × . . . × X n-times, where X 0 = ∅.
Also, for any finite set Y , we denote 2Y as the set of all subsets of Y . Lastly, we
denote Z

+ as the set of non-negative integers.
A Markov decision process provides a model for sequential decision making

in a stochastic environment. The decisions, or control actions, made at each time
step affect the future evolution of the system. The goal of the decision maker is to
choose actions such that the system trajectory optimizes some objective function
over a finite horizon N .

For the purposes of this paper, we consider decisions made at discrete times
t ∈ {0, . . . , N}. At each time t, the system occupies a state, and we denote the set
of all states by X . Similarly, at each time step, the decision maker chooses an action
from the set of all possible actions, denoted U . In the partially observed Markov
decision process (POMDP), these decisions are based on an imperfect knowledge of
the system state, and the set of all possible observations as seen by the observer is
denoted Y.

First, for a finite set X let MX be the set of distributions on X ; that is, the
set of functions f : X → [0, 1] such that

∑

x∈X f(x) = 1. Our formal definition of a
POMDP is as follows.

Definition 1. A partially observed Markov decision process (POMDP) is a tuple
(A,C, g) where

1. A is a sequence A0, A1, . . . , AN , with A0 ∈ MX , and for t ≥ 1, we have
At : X × X × U → [0, 1], such that At(·, z, a) ∈ MX for all z ∈ X , a ∈ U .

2. C is a sequence C0, C1, . . . , CN−1, with C0 : Y × X → [0, 1], such that
C0(·, z) ∈ MY for all z ∈ X and for t ≥ 1, we have Ct : Y×X t+1×U → [0, 1],
such that Ct(·, z, a) ∈ MY for all z ∈ X t+1, a ∈ U .

3. g is a sequence g0, g1, . . . , gN , with gt : X × U → R.
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For the purposes of this paper, we are interested in controllers which make
decisions based on some subset of the current and previous observation and decision
variables. To this end, we define the information structure of a POMDP.

Definition 2. For each t ∈ Z
+, define the set of integers Zt = {0, 1, . . . , t}. The

information structure of a POMDP is defined by (Y,U), where

1. Y is a sequence Y0, Y1, . . ., such that Yt ∈ 2Zt .

2. U is a sequence U0, U1, . . ., such that Ut ∈ 2Zt−1 .

We can use this definition of the information structure to denote the informa-
tion available to the controller at time t by

ηt = {yi, uj | i ∈ Yt, j ∈ Ut} (1)

where yi ∈ Y and uj ∈ U for all i, j ∈ Z
+. We also define it to be a realization of

ηt by it = {wi, aj | i ∈ Yt, j ∈ Ut}.
The above information structure determines what observations and previous

decisions are available to the decision maker at time t. Note that in the classical,
full information case, we have Yt = Zt and Ut = Zt−1 for all t ∈ Z

+. We can now
define the POMDP policy which determines the actions to be taken at each time
step.

Definition 3. A POMDP policy is a sequence K = (K0,K1, . . . ,KN−1), where
Kt : U × Y |Yt| × U |Ut| → [0, 1] for all t ∈ Z

+ such that Kt(·, z, a) ∈ MU for all
z ∈ Y |Yt|, a ∈ U |Ut|.

Now, for any POMDP (A,C, g) and policy K, we define the state stochastic
process x0:N , the observation process y0:N−1, and the action process u0:N−1 by

Prob(x0:t = z0:t, y0:t = w0:t, u0:t = a0:t) = A0(z0)C0(w0, z0)

×
t

∏

k=1

Ak(zk, zk−1, ak−1)

t
∏

k=1

Ck(wk, z0:k, ak−1)

t
∏

k=0

Kk(ak, {wi, aj | i ∈ Yk, j ∈ Uk})

(2)

Lastly, for a given POMDP, the goal of our decision makers is to choose the
policy K which minimizes the cost function over the finite horizon N , given by

J(K0:N−1) = E

(

N−1
∑

t=0

gt(xt, ut) + gN (xN )

)

(3)

2.1 Temporal Skyline Information

We can now define our information structure of interest in this paper.
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Definition 4. We call the information structure in (1) a temporal skyline infor-
mation structure (TS) if

Yt−1 ⊆ Yt (4)

Ut = Zt−1 (5)

is satisfied for all t ∈ Z
+.

We also define, for each Yt, the complementary set Y ⊥
t = Zt \ Yt. In other

words, the TS structure can be viewed as a partially nested structure [4], where the
decision maker at time t knows at least all of the information that the decision maker
at time t − 1 knew. We note the distinction, though, between TS structures and
information structures which are simple delays. In particular, there is no queuing
of information in a TS structure which is typical of most delay systems.

3 POMDP Optimization

We are interested in finding a control policy K which minimizes the cost in (3) for
a given POMDP with a TS information structure. To lighten notation we define,
for each t = 0, 1, . . . , N − 1, the function Pt = A0···tC0···t, with PN = ANPN−1.
Then, the joint probability Prob(z0:t, w0:t, a0:t) from (2) can be written succinctly
as PtK0···t. Also, for a POMDP with a TS information structure, we define the
function Dt by

Dt(it) =
∑

z0:t

Y ⊥

t

Pt

where the summation over Y ⊥
t means that we sum over the variables {wi | i ∈ Y ⊥

t }.
We now define the following functions in a recursive manner.

Definition 5. Given a POMDP (A,C, g) with a TS information structure (Y,U),
we define the value function Vt recursively as follows. Let

VN (aN−1, iN−1) =
1

DN−1(iN−1)

∑

z0:N

Y ⊥

N−1

gN (zN )PN (6)

and for 0 ≤ t ≤ N − 1, we define

Vt(it) = min
at

1

Dt(it)

∑

z0:t+1

Y ⊥

t

(gt + Vt+1)Pt+1 (7)

Definition 6. Given a POMDP (A,C, g) with a TS information structure (Y,U),
we define the cost-to-go Qt for all 0 ≤ t ≤ N − 1 to be

Qt(at, it) =
1

Dt(it)

∑

z0:t+1

Y ⊥

t

(gt + Vt+1)Pt+1 (8)
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Hence, we see that Qt is the expected future cost from time t onwards, con-
ditioned on the information it available to the decision maker at time t and the
decision at.

Having established the structure of this system in the previous section, we can
now state the first result of this paper.

Theorem 7. Given a POMDP (A,C, g), with a TS information structure (Y,U),
let the functions Q0, . . . , QN−1 be defined as in (8). Then the policy K is optimal
if for each t, Kt is a minimizer for

min
Kt

∑

at

Kt(at, it)Qt(at, it)

Moreover, there exists a deterministic optimal Kt given by

Kt(at, it) =

{

1 at = µt(it)

0 otherwise
(9)

where Qt(µt(it), it) ≤ Qt(at, it) for all it.

Proof. We give an outline of the proof of Theorem 7 by explicit computation of
the dynamic programming algorithm. To begin, we can express the optimal total
cost as

Jopt(K0:N−1) = min
K0:N−1

∑

z0:N
a0:N−1
w0:N−1

(g0(z0, a0) + . . . + gN (zN ))PNK0···N−1

Using the TS structure of the Yt and (6), we decompose the cost as

Jopt(K) = min
K0:N−1

∑

a0:N−2

YN−2

K0···N−2

∑

aN−1

YN−1\YN−2

KN−1

∑

z0:N

Y ⊥

N−1

(

N−1
∑

t=0

gt + VN

)

PN (10)

where again we abbreviate summations over observation variables {wi | i ∈ Yt} by
summation over Yt. This decomposition in (10) is the property which allows us to
proceed in the standard POMDP dynamic programming approach. Noting that the
denominator of Qt is independent of at in (8), our cost becomes

Jopt(K) = min
K0:N−1

∑

a0:N−2

YN−2

K0:N−2

∑

z0:N−1

Y ⊥

N−2

PN−1





N−2
∑

t=0

gt +
∑

aN−1

KN−1QN−1





Making use of a standard result from dynamic programming, this expression is
equivalent to

Jopt(K) = min
K0:N−2

∑

a0:N−2

YN−2

K0:N−2

∑

z0:N−1

Y ⊥

N−2

PN−1





N−2
∑

t=0

gt + min
KN−1

∑

aN−1

KN−1QN−1




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As a result, an optimal, deterministic policy for KN−1 is obtained by minimizing
∑

aN−1
KN−1QN−1 as in (9). Using (7), our optimal cost can now be expressed in

a form similar to its initial form.

Jopt(K) = min
K0:N−2

∑

a0:N−2

YN−2

K0:N−2

∑

z0,...,zN−1

Y ⊥

N−2

(g0 + . . . + gN−2 + VN−1)PN−1

Using induction, and applying the above argument at each iteration, we arrive
at the value function iteration in (7), where at each step in the iteration an optimal,
deterministic Kt is found by minimizing

∑

at
KtQt.

4 LQG Optimization

The LQG formulation is a special case of the POMDP. However, as it is a very
common formulation for problems, either by design or by linearization of complex
dynamical systems, we shall analyze the specific approach taken in this case.

Let A ∈ R
n×n, B ∈ R

n×m, and C ∈ R
p×n. The setup is the standard LQG

formulation:

xt+1 = Axt + But + wt

yt = Cxt + vt

x0 ∼ N(x̃0,Σ0) wt ∼ N(0,Σw) vt ∼ N(0,Σv)

where x0, wt, vt are IID Gaussian random variables. This of course is a POMDP on
the infinite state space R

n. Our goal is to choose control policies γt : ηt → R
m for

t = 0, . . . , N − 1 to minimize the following standard finite-horizon, quadratic cost
function.

J(γ0:N−1) =

∫

(

N−1
∑

i=0

xT
i Qxi + uT

i Rui + xT
NQfxN

)

Prob(µ) dµ. (11)

where Q,Qf ∈ R
n×n are symmetric, positive semidefinite and R ∈ R

m×m is sym-
metric, positive definite, and µ = (x0:t, y0:t−1, u0:t−1).

When optimizing the control policy for the cost in (11), we must deal with the
probability distribution of the state xt conditioned on the information ηt available
to the decision maker at each time step t. In a manner equivalent to our work in
section 2, we can break up the joint pdf of all states, observations, and decisions
using conditional probabilities and the IID nature of the noise. Hence, we rewrite
the large joint pdf as a series of smaller conditional probability distributions, as
follows.

Prob (x0:t, y0:t−1, u0:t−1) = A0···tC0···t−1K0···t−1

where we have the conditional probability distributions defined in section 2.

Ai (xi, xi−1, ui−1) = Prob (xi|xi−1, ui−1) = fN (xi − Axi−1 − Bui−1,Σw)

Ci (yi, xi) = Prob (yi|xi) = fN (yi − Cxi,Σv)

Ki (ui, ηi−1) = Prob (ui|ηi−1)
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Both Ai and Ci simply represent the Gaussian pdfs for wi and vi, respectively, where
fN (µ,Σ) denotes the normal distribution function for N(µ,Σ). Ki now represents
the decision policies, expressed as a conditional pdf, though we restrict our policies
to be deterministic.

Having previously shown in section 3 that a dynamic programming approach
can be applied to POMDPs with a TS structure, it comes as no surprise that we can
construct a dynamic programming algorithm for the LQG system with TS structure.
However, in doing so, we arrive at one of the main results of this paper.

We first define the familiar Riccati recursion for discrete time systems.

Definition 8. We define the matrices P0, . . . , PN in the following recursive fashion.
Let PN = Qf , and for all 1 ≤ t ≤ N , let

Pt−1 = Q + AT PtA − AT PtB
(

R + BT PtB
)−1

BT PtA (12)

Further define the real numbers s0, . . . , sN as follows. Let sN = 0, and for all
1 ≤ t ≤ N , let st−1 = st + trace(PtΣw) + trace((Q + AT PtA − Pt−1)Σt−1).

Using these definitions, the following result provides a sufficient condition on
the information structure of a LQG problem which allows us to find an optimal
control policy.

Theorem 9. Given a LQG system with any information structure (Y,U), suppose
there exists matrices Σ0, . . . ,ΣN−1 such that, for all t ∈ {0, 1, . . . , N − 1}, and for
all η0, . . . , ηN−1,

cov (xt|ηt) = Σt. (13)

Then, the policy γ = (γ0, . . . , γN−1) defined by

γt(ηt) = −
(

R + BT Pt+1B
)−1

BT Pt+1Ax̂t(ηt)

is optimal, where x̂t(ηt) = E (xt|ηt), and Pt is given by (12).

Proof. We can show that the conditions of Theorem 9 are sufficient to find an
optimal policy by explicit computation of the dynamic programming algorithm.

Firstly we use the probability distribution of the state transition to write xN

in terms of xN−1 and uN−1, as follows:

J(γ0:N−1) =

∫ (

MN−2 +

[

xN−1

uN−1

]T [

Q + AT QfA AT QfB

BT QfA R + BT QfB

] [

xN−1

uN−1

]

)

× Prob(µ) dµ + trace(QfΣw)

where we’ve defined, for convenience

Mt =

t
∑

i=0

xT
i Qxi + uT

i Rui

7



for each 0 ≤ t ≤ N − 1. Like before, Prob(µ) is simply a placeholder for the joint
probability distribution of all states, observations, and actions. Next, we substitute
in the decision policy for γN−1 and use a perturbation hΓ(ηN−1) on the policy, with
h sufficiently small, to optimize the cost over that decision.

J(γ0:N−2, γN−1 + hΓ) =

∫ (

MN−2 +

[

xN−1

γN−1 + hΓ

]T [

S11 S12

ST
12 S22

] [

xN−1

γN−1 + hΓ

])

× Prob(µ) dµ + trace(QfΣw)

= J(γ)+2h

∫

ΓT
(

ST
12xN−1 + S22γN−1

)

Prob(xN−1, ηN−1) dxN−1dηN−1+O(h2)

(14)

where
[

S11 S12

ST
12 S22

]

=

[

Q + AT QfA AT QfB

BT QfA R + BT QfB

]

Since γN−1(ηN−1) and Γ(ηN−1) are not functions of xN−1, we can perform the
integration over xN−1 in the first order perturbation term of (14) to show

J(γ0:N−2, γN−1 + hΓ(ηN−1))

= J(γ) + 2h

∫

ΓT

(∫

(

ST
12xN−1 + S22γN−1

)

Prob(xN−1|ηN−1) dxN−1

)

× Prob(ηN−1) dηN−1 + O(h2)

= J(γ)+2h

∫

ΓT
(

ST
12E (xN−1|ηN−1) + S22γN−1

)

Prob(ηN−1) dηN−1 +O(h2)

(15)

Setting the first order perturbation of the cost in (15) to zero, we see that an optimal
policy for γN−1 is given by

γN−1 = −S−1

22 ST
12E (xN−1|ηN−1)

= −
(

R + BT QfB
)−1

BT QfAE (xN−1|ηN−1)

= FN−1x̂N−1

where x̂N−1 is the belief state of the system. Note, we haven’t made any assumptions
on the structure of YN−1 or UN−1 up to this point. This result for γN−1 is a product
of the LQ formulation of the basic problem and holds for any information structure.

Now, substitute γN−1 back into the cost function.

J =

∫

MN−2 Prob(µ) dµ + trace(QfΣw)

+

∫ ([

xN−1

FN−1x̂N−1

]T [

S11 S12

ST
12 S22

] [

xN−1

FN−1x̂N−1

]

Prob(xN−1, ηN−1)

)

dxN−1dηN−1
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Take the expectation of xN−1 conditioned on ηN−1 in the last term.

J =

∫

MN−2 Prob(µ) dµ + trace(QfΣw)

+

∫

(

x̂T
N−1PN−1x̂N−1 + trace(S11ΣN−1)

)

Prob(ηN−1) dηN−1

where

PN−1 = S11 + S12FN−1 + FT
N−1S

T
12 + FT

N−1S22FN−1

= Q + AT QfA − AT QfB
(

R + BT QfB
)−1

BT QfA

satisfies the Riccati recursion in (12). We then make use of the identity E
(

xT Dx
)

=
x̂T Dx̂ + trace(D cov(x)) to give

J =

∫

MN−2 Prob(µ) dµ + trace(QfΣw)

+

∫

(

xT
N−1PN−1xN−1+trace ((S11 − PN−1)ΣN−1)

)

Prob(xN−1, ηN−1) dxN−1dηN−1

Now, we must make our first restriction on the information structure. By
assumption, the covariance matrix, ΣN−1, is independent of ηN−1. Hence, it can
be taken out of the integration as we proceed to the next iteration. As a result, we
have returned to the same form in which we started this iteration.

J =

∫

(

N−2
∑

i=0

xT
i QxT

i + uT
i Rui + xT

N−1PN−1xN−1

)

Prob(µ) dµ + sN−1

where sN−1 is as specified in Definition 8.
Thus, by induction, by applying the above arguments at each iteration, we

see that the controller gains can be determined by the following dynamic program:

Ft = −
(

R + BT Pt+1B
)−1

BT Pt+1A

γt(ηt) = Ftx̂t(ηt)

with Pt defined in (12). Moreover, the optimal cost is J = s0.

Interestingly, this is the same dynamic program as the classical full informa-
tion case. The difference in the resulting controllers is purely a result of the state
estimation x̂t being conditioned on less information than the classical case. Also, it
is important to note that the control system has separated into a simple controller
gain and an estimator, and that the policy is linear in the state estimate.

Using the conditional probability notation defined above, the state conditional
probability distributions can be expressed by the following fractional series of pdfs.

Prob(xt|ηt) =
Prob(xt, ηt)

Prob(ηt)
=

∑

x0:t−1

Y ⊥

t

A0···tC0···tK0···t−1

∑

x0:t

Y ⊥

t

A0···tC0···tK0···t−1

(16)
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When the system has a TS information structure, we can simplify (16), using
the following lemma.

Lemma 10. Given a LQG system with a TS information structure, there exists ma-
trices Σ0, . . . ,ΣN−1 such that, for all t ∈ {0, 1, . . . , N − 1}, and for all η0, . . . , ηN−1

we have cov (xt|ηt) = Σt.

Proof. An immediate consequence of (4) is that Y ⊥
t ∩ Yi = ∅ for all i ≤ t. As a

result, since the policies K0, · · · ,Kt−1 are independent of Y ⊥
t , they can be pulled

out of the summations in (16) and canceled, leaving the following expression for the
conditional probability distribution.

Prob (xt|ηt) =
1

Dt(ηt)

∑

x0:t−1

Y ⊥

t

Pt (17)

Hence, we have eliminated the Ki from the conditional probability distribution. It
is clear from the definitions of Pt and Dt that (17) is a convolution of the Gaus-
sian distributions A0, . . . , At and C0, . . . , Ct, normalized by the denominator Dt.
Since each Ai and Ci are normal distributions with fixed covariances, the resulting
convolution in (17) is a Gaussian distribution, whose covariance Σt is also fixed.

Corollary 11. Given a LQG system with a TS information structure, an optimal
policy can be found by the algorithm of Theorem 9.

It is important to note that Corollary 11 guarantees that the TS structure
considered previously, and as a result any delayed system with perfect memory, can
be solved via the dynamic programming approach constructed in Theorem 9.

5 Estimator

As noted above, the control process is separable in the TS case, and linear in the
state estimate. In the full information POMDP problem, we have the well-known
Kalman filter estimator with the following recursive form.

Definition 12. Given a POMDP (A,C, g) with a full information structure, define
the following probability distribution functions.

p0|0 =
P0

∑

x0

P0

pt|t =

∑

xt

At+1Ct+1pt−1|t−1

∑

xt,xt+1

At+1Ct+1pt−1|t−1

for t ≥ 1 (18)

In the framework of our above discussion, this nice form for the full information
Kalman filter is a consequence of the fact that Y ⊥

t = ∅ at every time step t. This
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can be easily seen when we take a closer look at the state conditional probability
distribution used in (17). In our more general case however, it’s possible that we
are not updating our estimate with recent observations, but with old observations
that were not previously available. In such a case, we cannot achieve the nice
relationship between pt|t and pt−1|t−1. Instead, we make another restriction, that
all observations become available after some specified time. In order to formalize
this, we specify the following assumption.

Assumption 13. There exists an interval k, such that for all t ∈ Z
+, we have

i ∈ Yt for all i ≤ t − k.

Theorem 14. Given a POMDP (A,C, g) with a TS information structure (Y,U)
which satisfies Assumption 13, the probability distribution of the belief state qt|t =
Prob(xt|ηt) can be computed, for all t ≥ k by

qt|t =

∑

xt−k:t−1

Y ⊥

t

At−k+1···tCt−k+1···tpt−k|t−k

∑

xt−k:t

Y ⊥

t

At−k+1···tCt−k+1···tpt−k|t−k

using the recursion on pt|t defined in (18).

Proof. This result follows directly from the definitions of qt|t in (17) and pt−k|t−k

in (18).

In the LQG framework, pt−k|t−k is a Gaussian pdf, which can be completely
specified by its mean and covariance. As a result, we can bound the storage size
required to compute qt|t. Whereas remembering every yi would require unlimited
memory in the steady state, we have reduced the memory required to simply being,
at worst, the size of k observations and decisions plus the mean and covariance of
pt−k|t−k.

6 Conclusions

We showed that for a partially observed Markov decision process with a non-classical
temporal skyline information structure that optimal decision policies could be found
via a dynamic programming approach. The key here was the subset constraint for
observations available to the controller at successive time steps. In the LQ frame-
work we provided sufficient conditions for an information structure under which a
dynamic programming solution could be constructed to analytically find optimal
decision policies. It is worth noting here that we have demonstrated only one possi-
ble method for finding these optimal policies. As with the classical full information
structure, there exist other approaches for finding optimal policies, such as spectral
factorization or augmentation of the state space. Lastly, we also showed that a
simple maximal delay constraint on the information structure allowed us to bound
the computation required to perform the state estimation at each time step.
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