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Summary

Computational models offer tools for exploring the nature of human cognitive processes. In this
article we focus on connectionist models, since these models are suggesting new ways of thinking
about the basic nature of cognition and its implementation in the brain. The models support novel
explanations of important aspects of perception, memory, language, thought, and cognitive devel-
opment. They also provide tools for linking cognitive processes with the underlying physiological
mechanisms, and for understanding how disorders of brain function lead to disorders of cognition.

Introduction

Since the pioneering work of Newell and Simon in the late 1950’s, researchers interested in human
cognitive processes have used computer simulations to try to identify the principles of cognition.
The strategy has been to build computational models that embody putative principles and then to
examine how well such models capture human performance in cognitive tasks. Until the 1980’s, this
effort was undertaken within the context of the ‘computer metaphor’ of mind. Researchers thought
of the human mind as though it were a conventional digital computer and built computational
models based on this conceptualization. However, in the late 70’s and early 80’s this began to
change [1,2,3]. By the mid-1980’s research exploring principles that appear to be consistent with
the style of computation employed by the brain was in full swing [4,5]. Recent developments in
this new style of computational modeling, often called connectionist or neural network modeling,
or the parallel distributed processing approach, will be the focus of this article.

In connectionist models, processing is generally assumed to emerge from the interactions of large
numbers of simple neuron-like computational elements generally called units, and communication
among the units is assumed to be based on plastic excitatory and inhibitory connections among the
units. While each unit exhibits non-linear spatial and temporal summation, units and connections
should not generally be taken as standing in one-to-one correspondence to actual neurons and
synapses. Rather, the approach attempts to capture the essential computational properties of the
vast ensembles of real neuronal elements found in the brain through simulations of smaller networks
of units.

An issue of central relevance is the nature of the representations used in cognitive processes.
Some connectionist models use localist representations, in which individual units stand for familiar
entities such as letters, words, concepts, and propositions. Others use distributed representations
in which, in general, such entities are represented by a pattern of activity rather than by the



activity of a single unit. The key to the use of distributed representations is the use of patterns
whose similarity relations capture similarities in the roles the patterns play in cognition, since, in
connectionist models, similar patterns have similar consequences (see [6] for a full discussion).

The research within the connectionist framework may be considered ‘top-down’ since it tends to
focus on overall system function or behavior, and asks: What principles of brain-style computation
give rise to the behavioral phenomena that we observe in human cognition. Because the approach
exploits principles thought to be consistent with the style of information processing in the brain,
it has also proven useful for developing ideas about the neural implementation of human cognition
and for interpreting data arising from biological disorders of cognition. The approach might best
be called interactive, rather than top-down, however, in that it often uses both behavioral and
physiological data to guide the search for underlying principles. The approach has also been called
an abstract or abstractive approach [7], since it seeks to identify the crucial principles of processing
and does this by examining how far one may go in accounting for phenomena of interest while still
abstracting from some neurophysiological details.

Computational Advances

In attempting to elucidate some of the general computational principles that characterize human
cognitive function, various investigators have focused on the adaptive character both of cognition
and of the underlying biological substrate (primarily synaptic plasticity). Previous developments
[8,9] centered on the discovery of powerful training procedures that enable connectionist networks
to develop useful internal representations via some form of error-correcting learning. An important
recent development in this arena has been the discovery of how to do error- correcting learning
when the error information is given in terms of distal stimulus coordinates [10ee]. This is a major
advance, since it takes away the need for the ‘teacher’ to guide the actual output variables directly.
Instead it may simply provide information about how well the output served to produce an intended
effect, such as how well the motor commands for a particular jump- shot succeeded in putting a
basketball through a hoop.

There has also been a focus on using criteria other than error as a basis for connection adjust-
ment. For example, Linsker [11] has proposed that the goal of connection adjustment may be to
maximize the information that one population of units retains about the pattern of activation on
another population. Others have proposed minimizing not only error but also some measure of the
complexity of the network, such as the magnitude and/or number of connection weights [12e] or
the number of long-range connections [13]. This work is of considerable interest because the use of
these kinds of minimization functions gives rise to superior generalization performance after learn-
ing and promotes the development of patterns of connectivity characteristic of neural developmental
processes [14,15e]. Jacobs and colleagues [16e,17e] have also demonstrated improved learning and
generalization within a modular network architecture in which separate expert networks become
specialized for particular subtasks.

Other work has attempted to characterize the general principles of information processing be-
yond its adaptive character. The approach one of us has taken has been to try to enumerate the
principles that apply broadly across domains of cognitive function—principles that must be embod-
ied in any specific computational model that attempts to account for performance in a particular
domain. At present some of the candidate principles under active exploration are the principles
of cascaded, stochastic and interactive propagation of information [18]. Of these, the principle
of interactive processing (bi-directional propagation of information) has been the subject of the
most intense scrutiny. Some researchers have argued that interactivity is inconsistent with robust
characteristics of human performance in the very tasks that in the past were taken to implicate



interactive processing [19]. However, [20e] has established that in fact stochastic interactive pro-
cessing is fully consistent with the problematic data. The problem with the old models was that
they were deterministic, not that they were interactive.

The following sections consider applications of connectionist models to specific content areas
in human cognition. In many areas, we will see that connectionist models suggest alternatives
to conventional conceptions of the nature of the underlying cognitive processes and their neural
implementation.

Language

Human language processing and acquisition has been a focus of connectionist research for many
years. Controversy continues to swirl around the claims that have arisen from earlier connectionist
models. A central claim arising from a relatively early distributed connectionist model [21] has
been that language processing can dispense with explicit rules and lists of exceptions and special
cases, and rely instead on gradual adaptation of connection weights to capture both the general
regularities and the idiosyncratic properties of particular items. Many connectionist models have
demonstrated considerable success in capturing aspects of morphology [22,23,24,25], and one recent
paper has shown how one case of a gradual process of language change can be accounted for by the
successive regularizing effects of several generations of neural networks [26e]. Furthermore, Elman
[27e0] has extended the approach to the syntactic level by showing how a simple recurrent network
can learn the structure of an English-like grammar involving number agreement and verb argument
structure, across multiple levels of embedding. Some researchers still maintain there are reasons to
adhere to the classical rules-plus-exceptions story [28]. Others have attempted to integrate aspects
of both connectionist and symbolic approaches in efforts to construct fast and efficient systems for
acquiring and using lexical representations for language processing [29,30].

Some of the issues about the basic nature of information processing that were discussed above
have arisen in specific areas in psycholinguistics. In particular, there has been active exploration of
whether processing occurs in discrete, feedforward stages, or whether it is cascaded and interactive
(cf. [18]). Levelt and colleagues [31] have argued strongly against the latter view on the basis of the
lack of mediated semantic-to-phonological priming in picture naming (e.g., CAT primes DOG but
not a phonological neighbor of DOG, LOG). Dell and O’Seaghdha [32e] have recently shown that
the lack of mediated priming, along with significant mixed semantic-phonological priming (e.g.,
CAT primes RAT more than DOG), can be accommodated within an interactive connectionist
system so long as words activate semantic and phonological neighbors only to a relatively small
degree. However, Levelt and colleagues also found no evidence of feedback from phonology to
semantics at later stages of processing, leading Dell and O’Seaghdha to suggest that the language
production system is globally modular but locally interactive.

The model on which Dell and O’Seaghdha’s work is based [33] follows traditional accounts
of speech production in that phonological structure is explicitly reflected in the structure of the
model (e.g., units for syllables and rimes). Dell, Juliano, and Govindjee [34e] demonstrate that
distributed networks that develop internal representations can learn the same phonological structure
— as evidenced by patterns of speech errors — based only on exposure to the statistical properties
of pronunciations.

Cognitive Development

A central issue in cognitive development is the relative contribution of innate structure, matu-
rational change, and learning to the pattern of development of cognitive processes. Several in-



vestigators have recently begun to explore the extent to which the outcome and the time course
of development may be accounted for in terms of experience-based connection adaptation pro-
cesses, shaped either by initial network architecture and parameters or by gradual maturational
or learning-based changes (see [35e] for a review; other general discussions of the implications of
connectionist models for issues in development may be found in [36,37,38]). Here we focus on two
specific modeling studies that suggest how the effects of maturation and learning in networks may
account for data that might otherwise seem to implicate highly-specific innate structure.

Elman tested the hypothesis that immaturity in the learning mechanism, in the form of reduced
short-term memory, might actually help rather than hinder language acquisition (also see [39]). As
previously mentioned, Elman [27ee] trained a simple recurrent network to predict the syntactic
structure of English-like sentences. In further studies [40ee,4106], he found that the network suc-
ceeded at learning the task if its short-term memory was initially limited but gradually improved,
whereas it failed if given fully mature short-term memory at the outset. Elman argued that matu-
rational change compensates for inherent limitations in the learning ability of networks. In essence,
the immature system is sensitive to only the most salient sources of variation in the task, allowing
it to ignore more subtle distinctions until after it has mastered the basics.

However, work by Marchman [42ee] suggests that some ‘critical period’ effects can arise solely
from the nature of learning in networks without specific maturational change. She studied the
effects of lesioning a network at various points during the acquisition of the English past tense.
When learning only regular forms (e.g., TALK = TALKED), long-term performance was relatively
unaffected by lesions, although recovery took longer after lesions that were more severe or occurred
later in training. As the network gains experience with the task, its knowledge becomes more
‘entrenched,’” making it less able to adapt to the effects of damage. In studies involving training a
network on both regular and irregular forms (e.g., GO = WENT), the regular forms were slower
to learn and more disrupted by lesions, whereas the irregular forms, owing to their generally higher
frequency, were learned quickly and were relatively insensitive to damage. Thus, a dissociation of
performance on regular vs. irregular forms can arise from a generalized impairment, and so does
not provide evidence for separate ‘rule-based’ and ‘associative’ mechanisms in language processing
(cf. [28]).

Considerable research has identified constraints on how children form concepts and associate
them with names (see, e.g., [43]). Schyns [44e] has shown how many of these constraints are satisfied
naturally within a modular connectionist architecture in which bottom-up, unsupervised learning
of concepts interacts with top- down, supervised association of these concepts with arbitrary labels.
Of particular interest is the demonstration that top-down influences can elaborate those lower-level
distinctions that are required for naming.

Learning and Memory

There have been a number of applications of connectionist models to topics in human memory.
Ironically, though, connectionist models that are excellent for capturing cognitive development by
gradually discovering the structure implicit in ensembles of events and experiences (e.g., [2700,45])
are not so good at learning the specific contents of events and experiences that must be learned
in succession [46]. Networks that gradually discover structure do so by utilizing overlapping pat-
terns of activation for concepts that the cognitive system has discovered have similar meanings or
implications. Such networks discover these representations gradually by making only tiny adaptive
changes in response to individual events and experiences. Attempts to teach such networks the spe-
cific idiosyncratic properties of specific events one after the other do not succeed, since the changes
made in learning each new case produce catastrophic interference with what was previously stored



in the connection weights. For this reason, successful models of human learning and memory tend
to use a coding that to maximizes the differentiation of similar events. For example, one version
of Kruschke’s ALCOVE [47] essentially assigns a single connectionist unit to represent each entire
event or memory. This minimizes interference since the connection weights involved in storing
different memories are completely non-overlapping.

One might seek a single model that combines the ability to gradually discover how to represent
events and experiences using distributed representations with the ability to capture the idiosyn-
cratic properties of specific events and experiences. However, the literature on human amnesia
suggests that this may be the wrong approach. Research over the last 30 years has demonstrated
that bilateral removal of or damage to the hippocampus and related structures in the temporal
lobes produces a profound deficit in the ability to learn new episodic information and to recall in-
formation recently acquired, but appears to leave intact the ability to learn skills or to exhibit subtle
priming effects of specific events and experiences. Taken together with the successes and failures of
distributed connectionist models reviewed above, this dissociation leads to the suggestion that per-
haps the hippocampus contains a memory system similar to ALCOVE for episodic learning, leaving
the cortex free for the gradual discovery of useful distributed representations through interleaved
learning [48e]. This approach has the virtue of explaining the curious phenomenon of temporally
graded retrograde amnesia—the fact that hippocampal amnesics exhibit a selective deficit for re-
cent, but not remote, episodic information. On the two-system view, temporally graded retrograde
amnesia reflects the gradual incorporation of material initially learned by the hippocampus into the
cortical memory system. For alternative computational models of hippocampal function, including
detailed application to the animal classical conditioning literature, see [49¢,50].

Visual Cognition

People can easily recognize objects despite changes in viewpoint, and yet understanding the mech-
anism by which this is done remains a challenging research problem. Olshausen, Anderson, and
Van Essen [51e]| address this problem in the context of developing a model of visual attention that
makes specific contact with neuroanatomical and neurophysiological data. In their model, atten-
tion implements a ‘window’ on the visual field, selecting a particular region of lower-level cortical
activity to be routed onto the same higher cortical area, retaining the relative spatial arrangement
of image features. Olshausen and colleagues show how control signals can dynamically adjust the
position and size of the window so that an object anywhere in the visual field activates the same
higher-level units, allowing it to be recognized by a form of template matching.

Hummel and Biederman [52ee] take a somewhat different approach to the problem of viewpoint-
invariant object recognition. Rather than retain precise relative spatial information, their network
derives only categorical relationships (e.g., ABOVE, BESIDE) among volumetric primitives called
‘geons’ [53] (see [64] for simulations supporting a distinction between categorical and coordinate
spatial representations). Specialized connections in the lower levels of the network parse the image
into geons by synchronizing the oscillatory outputs of units representing local image features. At
intermediate levels, the same phase locking mechanism binds units representing relationships among
geons to the attributes of the geons themselves. The bound attributes and relationships constitute
a viewpoint-invariant structural description that is recognized by one of a set of object-specific
units at the highest level of the network.

The extent that these oscillations are available, and the extent that they are relied upon in
perception and cognition remains to be established. The use of temporal synchrony for dynamic
feature binding is based on recent controversial findings of stimulus- specific synchronized oscilla-
tions of cortical activity [55]. Mozer, Zemel, Behrmann, and Williams [56] present a proposal for



how such synchronization could be learned.

Higher Cognition

People bring a vast amount of knowledge to bear in making implicit inferences during language
understanding and commonsense reasoning. Two connectionist approaches to explaining this ability
have recently been elaborated in considerable detail: the first within a localist framework; the second
within a more distributed framework.

Efficient implicit reasoning requires representing and manipulating dynamic bindings between
concepts and their roles in particular contexts. For example, the meaning of the sentence ‘JOHN
GAVE MARY THE BOOK’ can be broken down into the bindings JOHN/ giver, MARY /recipient,
and BOOK/object. Shastri and Ajjanagadde [57e] represent concepts and roles as individual units
and—Ilike Hummel and Biederman [52ee]—use synchronous firing to reflect temporary bindings
among them. Long-term knowledge (e.g., the act of giving involves a change of ownership) is
represented and applied by subnetworks that detect synchrony among some units and cause it
among others (e.g., MARY /owner/BOOK). In this way, reasoning involves the transient, systematic
propagation of synchronized activity among concepts and roles.

In contrast, Smolensky, Legendre, and Miyata [58e] represent concepts and roles as distributed
patterns of activity over large groups of units, and use a tensor product formalism—a generalization
of the outer product of matrix algebra—to represent concept/role bindings. At the lower level,
mental processes consist of massively parallel spreading activation; at a higher level, the same
processes constitute a form of symbol manipulation in which entire structures are manipulated in
parallel. The tensor product formalism enables a unified characterization of these different levels
of analysis in terms of the optimization of well-formedness, or ‘Harmony’. The approach is useful
in accounting for some complex interactions among semantic and syntactic factors in language
understanding, as well as in providing a novel account of the systematicity and productivity of
language and thought (contra [59]). However, more adaptive representational schemes than those
envisioned either in [58e] or [57e] may be necessary to capture human representational capacities
in a way that is both efficient and sensitive to domain-relevant structure.

Cognitive Neuropsychology

Connectionist models are leading to new ways of understanding the possible implications of cogni-
tive disorders for our understanding of normal cognitive function. In the past, investigators have
often proceeded by stipulating the existence of a specialized module in the cognitive system when-
ever a brain-damaged patient exhibits a selective deficit in some specific aspect of cognitive function.
For example, patients with ‘hemispatial neglect’ are abnormally slow to shift their attention from
a pre-cued ipsilesional location to a contralesional stimulus. This has been interpreted in terms of
damage to a specific ‘disengage’ module [60]. Connectionist models are leading to re-evaluations of
many such inferences. In this case, for example, Cohen, Romero, Servan-Schreiber, and Farah [61e]
reproduced the deficit in shifting attention by unilaterally damaging a network in which attention
is allocated based on competitive interactions among units representing different spatial locations,
demonstrating that no special disengage module in needed.

In a similar way, connectionist models are contributing to the question of whether knowledge
is organized in the cognitive system by modality or by category. Apparent evidence for category
specificity comes from the fact that some brain-injured patients are selectively impaired in recog-
nizing and recalling information about living vs. nonliving things. Warrington and Shallice [62]
suggested that these deficits could be accounted for if semantics were instead organized by modal-



ity, under the assumption that visual semantics is impaired and living things rely more heavily
on visual than on functional semantics. In the absence of a computational model, this account
was rejected in favor of the idea that knowledge is organized by category when it was noted that
patients had difficulty both with functional as well as visual aspects of living things. But Farah
and McClelland [63e] revived the original Warrington and Shallice hypothesis by showing that they
could account for the entire pattern of deficits in an interactive and distributed model in which
visual and functional semantics interact with each other as well as with visual and verbal input.
The simulation accounted for the patients’ paradoxical impairment in recalling functional informa-
tion about living things because functional semantics relies on interactions with visual semantics
to settle to the correct pattern.

As another example of the influence of connectionist models on interpretation of neuropsycho-
logical deficits, patients with ‘prosopagnosia’ fail to name familiar faces and have no conscious
recollection of them, and yet often show evidence of recognition on more covert tasks, such as prim-
ing or name relearning, suggesting to some separate mechanisms of overt and covert recognition.
But simulations by Burton, Young, Bruce, Johnston, and Ellis [64e] within a localist framework,
and by Farah, O’Reilly, and Vecera [65e] within a distributed framework, demonstrate that this
dissociation between overt and covert face recognition can arise in a single system from resid-
ual information after partial damage, eliminating any need to postulate separate mechanisms for
recognition and for conscious awareness.

Principles of connectionist representations and processes can provide insight, not only into the
overall organization of the cognitive system, but also into the specific patterns of errors that can
arise from brain damage. In one important example of this approach, it has been established
that robust characteristics of attractor networks (that is, interactive networks that use distributed
representations and settle to sable attractors) provide parsimonious accounts of the complex pattern
of neuropsychological deficits found in deep dyslexia. Hinton and Shallice [66ee] trained an attractor
network to settle into the appropriate distributed semantic representation of each of a set of words
when presented with its written form. They found that lesions to the network (i.e., removing
units or connections) resulted in both semantic errors (e.g., CAT = ‘dog’) and visual errors (e.g.,
CAT = ‘cot’) similar to that found in brain-injured patients with ‘deep dyslexia,” obviating the
need to posit separate lesions to account for each error type (cf. [67]). More recently, Plaut
and Shallice [68¢,69¢] have extended the approach into a comprehensive account of the complex
but repeatable combination of symptoms exhibited by these patients, and have demonstrated its
generality over changes in network architecture, learning procedure, task definition, and output
procedure. The same general approach has also been used to account for the perseverative and
semantic effects on the object naming errors of optic aphasic patients [70e], and the degree of
recovery and generalization in cognitive rehabilitation studies with acquired dyslexic patients [71s].
Some of the same findings can be accounted for in interactive localist models. Thus, Martin, Saffran,
Dell, and Schwartz [72e] reproduced the semantic and phonological errors in naming and repetition
of a deep dysphasic patient [73,74] by abnormally increasing the activity decay within Dell’s [33]
localist model of speech production. Furthermore, gradually reducing the decay parameter back
towards its normal value mimics the patient’s pattern of recovery.

Finally, we consider the application of connectionist models to the task of accounting for thought
disorder in schizophrenia, in terms of an underlying disturbance in the regulation of the neuromod-
ulator dopamine. Schizophrenics exhibit an abnormal (insufficient) use of context information in
a variety of cognitive tasks, resulting from a disturbance in a mesocortical system that regulates
dopamine levels in prefrontal cortex. Cohen and Servan-Schreiber [75ee] showed that the neuro-
modulatory effects of dopamine on individual neurons can be well-approximated as a change in the
input ‘gain’ of connectionist units, and that, over a number of tasks, reduction of gain in a pool of



units corresponding to prefrontal cortex produces the same behavioral deficits as exhibited by the
patients. Thus, the modeling provides a clear computational link (gain) between the biological dis-
turbance (abnormal dopamine levels) and the behavioral deficits (abnormal use of context) found
in schizophrenia.

Conclusion

The connectionist framework for modeling human cognition has led to the development of explicit
computational models of a wide range of cognitive functions. In many cases, these models introduce
new ways of thinking about the nature of the computations that are performed and of the kind
of learning that gives rise to the ability to carry out these computations. These models also give
us new ways of thinking about the possible interpretations of psychological evidence, such as, for
example, various psychological and neuropsychological dissociations. Based on this, it is becoming
increasingly clear that connectionist models will play an important role in the further development
of cognitive theory and in the further elaboration of the implications of phenomena observed in
cognitive tasks.
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