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Abstract: The search for a polynomial Lyapunov function proving delay-
independent stability of multivariate nonlinear polynomial delay differential equa-
tions is approached using semidefinite programming. The functional non-negativity
constraints are tightened to be sum of squares constraints, a condition which is
computationally feasible to check. The algorithm uses recent advances in compu-
tational semi-algebraic geometry.
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1. INTRODUCTION

The purpose of this paper is develop a compu-
tational procedure using optimization tools to
determine stability of nonlinear delay differential
equations, of the form

ẋ(t) = f(x(t), x(t − τ))

In this paper, we consider the case of delay-
independent stability. We would like to determine
whether stability holds for arbitrary values of
τ > 0. Here f is a possibly nonlinear polynomial
and x ∈ R

n. The case where f is linear has
been thoroughly researched using both time and
frequency domain techniques. See, for example,
the survey paper Kharitonov (1999) or the com-
prehensive works by Niculescu (2001) and Kol-
manovskii and Myshkis (1999) for an overview of
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the subject. It is interesting to note, however, that
if one adds multiple non-commensurate delays, a
tractable nonconservative algorithm is unlikely to
exist since this more general problem has been
shown to be NP-hard in Toker and Ozbay (1996).

In the case where f is nonlinear with no spe-
cial structure, there are effectively no reasonably
nonconservative, computationally tractable pro-
cedures for determining stability. However, vari-
ous computational tests do exist for cases when
f has special structure. These results are mostly
based on Razumikin theory, Lyapunov function-
als or modeling the nonlinearity as uncertainty.
See, e.g. Bliman (2002) and Verriest and Aggoune
(1998) as well as the references cited above. In this
paper, we require only that the delay system be
described by a polynomial functional.

The approach of using Lyapunov functionals
for infinite dimensional systems was pioneered
by Krasovskii (1963). This report details a new
algorithm for constructing such functionals to



prove delay-independent stability when f is an
arbitrary polynomial. The algorithm searches for
a valid polynomial Lyapunov functional by tight-
ening polynomial non-negativity constraints to be
sum of squares constraints. We use recent work
by Parrilo (2000) to show that a search for a stan-
dard form of polynomial Lyapunov functional of
bounded order that proves delay-independent sta-
bility of a delay-differential equation is equivalent
to testing feasibility of a semidefinite program.

In Section 2.2, we present some background on
delay-differential equations. In Section 2.3 we
show how Lyapunov theory is extended via Lya-
punov functionals to delay-differential equations.
In Section 2.4 we discuss sum-of-squares program-
ming. In Section 3 we present our algorithm. In
Section 4 we compute a simple numerical exam-
ple. Finally, in Section 5 we talk about possible
generalizations and extensions of this result not
explicitly presented in this paper.

2. BACKGROUND

2.1 Notation

Let R+ = {x ∈ R | x ≥ 0 }, and define the set of
continuous functions

D =
{

u : R+ → R
n | u is continuous

}

We also define the norm

‖u‖ = sup
t∈R+

‖u(t)‖2

and the associated Banach space C

C =
{

u ∈ D | ‖u‖ is finite
}

We also use Cτ to denote the Banach space of
continuous functions u : [−τ, 0] → R

n with the
same norm. We will also make use of the Banach
space

D0 =
{

u ∈ C | lim
t→∞

u(t) = 0
}

For a polynomial f , the degree of f is denoted by
deg(f).

2.2 Delay-Differential Equations

We consider delay-differential equations of the
following form

ẋ(t) = f
(

x(t), x(t − τ)
)

(1)

where f(0, 0) = 0. We assume that for each
y ∈ Cτ there exists a unique x ∈ D such that
x satisfies (1) and

x(t) = y(t− τ) for all t ∈ [0, τ ] (2)

That is, the system (1) has a unique solution
x ∈ D for all initial conditions y ∈ Cτ . In this
case the system defines a map

Φ : Cτ → D

where x = Φy if and only if x and y satisfy (1)
and (2). The function x ∈ C is called a solution

of (1) with initial condition y ∈ Cτ .

One can associate with solution x and time t an
element xt ∈ Cτ , where xt(θ) = x(t + θ) for all
θ ∈ [−τ, 0]. This element is called the state of the
system at time t. Furthermore, define the flow

map Γ : Cτ × R+ → Cτ by x = Γ(y, t) if

x(s) = (Φy)(s + t + τ) for all s ∈ [−τ, 0]

which maps the state at time t0 to the state at
time t0 + t for any t0 ≥ τ .

The system of differential equations in (1) is in-
finite dimensional, and hence the flow map op-
erates on the infinite-dimensional state-space Cτ ,
as illustrated in Figure 1. In this paper, we as-
sume f is a polynomial. This does not guaran-
tee global existence of solutions, however exis-
tence and uniqueness are guaranteed over some
interval since f is locally Lipschitz continuous;
see Hale and Lunel (1993); Krasovskii (1963);
Kolmanovskii and Nosov (1986).
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Fig. 1. The state xt of the system at time t

Definition 1. The system (1) defined by f is glob-

ally stable if

(i) The map Φ : Cτ → C
(ii) Φ is continuous at 0 with respect to the

norms on C and Cτ .

This is the usual notion of Lyapunov stability,
which states that for all ε > 0 there exists δ > 0
such that ‖y‖ < δ implies ‖Φy‖ < ε.

Definition 2. The system (1) defined by f is glob-

ally asymptotically stable if it is globally stable
and Φ : Cτ → D0.



2.3 Lyapunov Functionals

Since the state of system (1) is infinite dimen-
sional, finite-dimensional Lyapunov functions V :
R

n → R can only account for a small amount of
the energy in the system. Functions which only
consider x(t) fail to account for energy that may
remain in the system but has been temporarily
hidden by the delay. An infinite dimensional ap-
proach to Lyapunov stability is as follows.

Suppose V : Cτ → R. Define the right upper Lie

derivative D+V : Cτ → R by

D+V (φ) = lim sup
h→0+

1

h

(

V (Γ(φ, h)) − V (φ)
)

The following theorem is from Hale and Lunel
(1993).

Theorem 3. Suppose f is continuous. Let a :
R+ → R+ be a continuous non-decreasing func-
tion such that a(0) = 0, a(t) > 0 for t > 0, and
a(t) → ∞ as t → ∞. Also let b : R+ → R+ be
a continuous non-decreasing function such that
b(0) = 0 and b(t) > 0 for t > 0. Similarly let
c : R+ → R+ be a continuous non-decreasing
function.

If V : Cτ → R+ is continuous, and satisfies

(i) a
(

‖φ(0)‖
)

≤ V (φ) ≤ b
(

‖φ‖
)

for all φ ∈ Cτ ;

(iii) D+V (φ) ≤ −c
(

‖φ(0)‖
)

for all φ ∈ Cτ ;

then the system (1) is globally stable. Further, if
c(t) > 0 for t > 0 then the system is globally
asymptotically stable.

2.4 Sum of Squares Programming

A polynomial, f(x) can be expressed as the linear
combination of monomials

f(x) =

m
∑

i=1

cix
γi,1

1 · · ·xγi,n

n γi,j ∈ Z
+ (3)

The question of whether a polynomial is globally
non-negative, that is, f(x) ≥ 0 for all x ∈ R

n,
is generally hard to answer. However, a sufficient
condition for global non-negativity of f is the ex-
istence of a sum of squares (SOS) representation.
The polynomial f is globally non-negative if, for
some polynomials gi, f can be written as

f(x) =
∑

i

gi(x)2

Clearly, if f is SOS that f is globally non-negative.
In the case of 1 or 2 variables, quartic forms in
three variables and all quadratic forms, global
non-negativity is actually equivalent to existence
of a SOS representation. In Parrilo (2000), it
has been shown that the existence of a bounded
degree SOS representation of a polynomial is

equivalent to a semidefinite program with equality
constraints expressed in terms of the monomial
coefficients in (3).

More specifically, if deg(f) is even, let z1 be the
vector of n1 monomials of degree less than or equal
to deg(f) and z2 be the vector of n2 monomials
of degree less than or equal to deg(f)/2. Define c
to be the vector such that cT z1 = f(x). Then f is
SOS if and only if there exists a Q ≥ 0 such that
f(x) = cT z1 = zT

2 Qz2. Equating coefficients gives
a set of affine constraints on Q. Thus f is SOS if
and only if there exists a Q ≥ 0 satisfying these
affine constraints.

In this manner, polynomial non-negativity con-
straints can be tightened to SOS constraints,
which can be tested using semidefinite program-
ming. Furthermore, because the equality con-
straints are linear in the coefficients of f and Q,
one can optimize over all polynomials of bounded
degree with the constraint that the polynomial be
globally non-negative.

Parrilo (2000) shows that if f is a polynomial,
there is a simple, computationally tractable suffi-
cient condition for the existence of a polynomial
Lyapunov function to prove stability of solutions
of

ẋ(t) = f(x(t))

The condition is the existence of polynomials
p(x), q(x) and constant β1 > 0 such that p(0) = 0,
p(x)− β1x

T x is SOS and

q(x) = −∇p(x)T f(x) is SOS

If such polynomials exist, then p(x) is a Lyapunov
function proving stability of the system. If q(x)−
β2x

T x is SOS for some β2 > 0, then we have
asymptotic stability.

3. ALGORITHM

For polynomials p1, p2, consider the following
candidate Lyapunov-Krasovskii functional

V (φ) = p1(φ(0)) +

∫ 0

−τ

p2(φ(θ)) dθ

Using Leibniz’s rule, we obtain the derivative

V̇ (φ) = q
(

φ(0), φ(−τ)
)

where q is given by

q(a, b) = ∇p1(a)T f(a, b) + p2(a)− p2(b)

This particular form of functional is a general-
ization of a standard functional used to prove
delay-independent stability for linear delay sys-
tems. This functional is useful for proving delay-
independent stability because q does not depend
on τ . To arrive at a computationally feasible con-
dition, we simply tighten the constraint that the
derivative is negative for all φ(t) and φ(t−τ) such



that φ is a solution of (1) to be that the q is
negative for all a, b ∈ R

n.

Lemma 4. Suppose there exist α1 > 0 and poly-
nomials p1, p2, and q such that p1(0) = p2(0) = 0.
Furthermore, suppose p1(x)− α1x

T x is SOS and

q(x, y) = −(∇p1(x)T f(x, y) + p2(x) − p2(y))

is SOS. Then equation (1) is stable. Furthermore,
if in addition q(x, y) − α2x

T x is SOS for some
α2 > 0, then the system is asymptotically stable.

Proof: Since p1 and p2 are SOS, they are globally
non-negative with p1(0) = p2(0) = 0. Further-
more p1(x) ≥ α1x

T x for some α1 > 0. Now since
for the given polynomial f(x, y),

q(x, y) = −(∇p1(x)T f(x, y) + p2(x) − p2(y))

Then q(φ(0), φ(−τ)) = −V̇ (φ). By Theorem 3,
if q is globally non-negative, as implied by the
SOS condition, then the system (1) is stable.
Furthermore, if q(x, y) − α2x

T x is globally non-
negative for some α2 > 0, then the system is
asymptotically stable. �

Because the coefficients of the polynomials p1, p2

enter linearly into the expression for q, we can
express the above stability condition as a set of
semidefinite constraints. Therefore, this stability
condition is readily implementable as a semidef-
inite program either directly using interior point
solvers such as Sedumi as documented in Sturm
(1999) or using SOS optimization toolboxes such
as SOStools as described by Parrilo (2004).

4. NUMERICAL EXAMPLE

This paper shows that Lyapunov functionals prov-
ing delay-independent stability of a system of
equations may be computed algorithmically. In
the numerical example presented here, we con-
sider a simple model for disease pathology devel-
oped by Mackey and Glass (1977) and presented
by Kuang (1993). Here, β, γ, θ and n are posi-
tive constants and p(t) is positive and represents
the number of mature blood cells in circulation,
while τ represents the delay between between cell
production and cell maturation.

ṗ(t) =
βθnp(t− τ)

θn + pn(t− τ)
− γp(t)

For simplicity, we consider the case θ = 1. Using
the Positivstellensatz, given an n, we construct for
a parameter varying Lyapunov functional which
proves stability for positive initial conditions and
for all positive β, γ, τ such that γ > β + .01. We
find that the corresponding SDP is feasible for
at least n ≤ 6. This proves global stability for
all such γ. The resulting Lyapunov functional is

omitted due to space constraints. In the specific
case when β = .5 and γ = .6, this functional is

V (φ) = 14.6φ(0)2 + 3.68φ(0)3 + 5.66φ(0)4

+ 1.42φ(0)5 + 1.95φ(0)6

+

∫ 0

−τ

8.32φ(θ)2 + 2.57φ(θ)3 + 1.26φ(θ)4 dθ

This functional is plotted in the following figures
along a trajectory of the system for a delay of 1
second.
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Fig. 2. Trajectory of x(t)
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5. CONCLUSION

This paper provides a polynomial-time algorithm
for constructing Lyapunov functionals of bounded
degree that prove delay-independent stability of
time-delay systems whose dynamics are given by
polynomials. As illustrated in the example, this
method is easily extended to parameter varying
Lyapunov functionals and the case when dynamics
are given by rational functions. Also illustrated in
the example is the restriction of domain of attrac-
tive to an invariant region, namely p(t) ≥ 0. As
an extension, one may also use more complicated
candidate functionals to derive delay-dependent
stability conditions. Another extension is to com-
pute Lyapunov functionals for more general forms



of functional differential equations, such as the
case of continuous dependence and neutral de-
lay differential equations. One may also use the
Positivstellensatz as discussed in Parrilo and Lall
(2003) to reduce conservatism of the SOS approx-
imation to non-negativity, and to include non-
polynomial terms which can be parameterized us-
ing polynomials.
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