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Abstract— We consider the problem of multiple subsystems,
each with its own controller, such that the dynamics of each
subsystem may affect those of other subsystems with some
propagation delays, and the controllers may communicate with
each other with some transmission delays. We wish to synthesize
controllers to minimize a closed-loop norm for the entire system.
We show that if the transmission delays satisfy the triangle
inequality, then the simple condition that the transmission
delay between any two subsystems is less than the propagation
delay between those subsystems allows for the optimal control
problem to be recast as a convex optimization problem.

I. INTRODUCTION

We consider the problem of multiple subsystems, each

with its own controller, such that the dynamics of each

subsystem may effect those of other subsystems with some

propagation delay, and the controllers may communicate

with each other with some transmission delays. We seek to

synthesize linear controllers to minimize a closed-loop norm

for the entire interconnected system. This is an optimal de-

centralized control problem which is difficult in general, and

there is no known tractable solution for arbitrary propagation

and transmission delays. This paper states simple conditions

on the delays such that this optimal control problem may be

cast as a convex optimization problem.

It has been shown for general decentralized control that

a property called quadratic invariance allows the optimal

control problem to be recast as a convex optimization

problem [1]. We thus achieve our characterization of delays

which allow for convex synthesis by testing for quadratic

invariance.

We find that if the transmission delays satisfy the triangle

inequality, and if the propagation delay between any pair

of subsystems is at least as large as the transmission delay

between those subsystems, then the problem is quadratically

invariant. In other words, if data can be transmitted faster

than dynamics propagate along any link, then optimal con-

troller synthesis may be formulated as a convex optimization

problem.

It is important to note the extreme generality of this frame-

work and of this result. It holds for discrete-time systems
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and continuous-time systems. It holds for any norm that we

wish to minimize. It does not assume that the dynamics

of any subsystem are the same as those of any other, and

they may all be completely different types of objects. Most

importantly, the delay between any two subsystems is not

assumed to have any relationship whatsoever to other delays

in the system. They may be assigned independently for each

link. Only in the examples do we assume otherwise.

a) Prior Work: A vast amount of prior work on optimal

control over networks assumes that the actions of any sub-

system have no effect on the dynamics of other subsystems.

For a few other specific structures, tractable methods have

been found. One of the first problems of this nature to

be studied was the one-step delayed information sharing

problem. This problem assumes that each subsystem has

a controller that can see its own output immediately, and

can see outputs from all other subsystems after a delay

of one time step. This problem has long been known to

admit tractable solutions [2], and has also been studied

more recently in an LFT framework [3]. An interesting

class of spatio-temporal systems which allow for convex

synthesis of optimal controllers was identified in [4], and

named funnel causal systems. One of the tractable structures

discussed in [5] involved evenly spaced subsystems which

can pass measurements on at the same speed that the dy-

namics propagate, and [1] included a similar class of evenly

spaced systems where the bound was found such that if the

communication speed exceeded that bound the problem was

amenable to convex synthesis.

These results are all unified and generalized by the simple

conditions found in this paper.

b) Outline: In Section II, we state some preliminaries

and notation, define the propagation and transmission delays,

explain why we may assume that the transmission delays

satisfy the triangle inequality, formulate the problem we

wish to solve, and give an overview of results on quadratic

invariance, in particular, that it allows convex synthesis of

optimal linear decentralized controllers.

Section III contains the main result of the paper, where we

prove that if this triangle inequality is satisfied, and if the

propagation delay associated with any pair of subsystems

is at least as large as the associated transmission delay,

then the information constraint is quadratically invariant, and
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thus, optimal control may be cast as a convex optimization

problem.

In Section III-A we break these total transmission delays

out into a pure transmission delay, representing the time it

takes to communicate the information from one subsystem

to another, and a computational delay, representing the time

it takes to process the information before it is used by the

controller. We find, somewhat surprisingly, that transmitting

faster than the propagation of dynamics still guarantees

convexity, and in fact, that the computational delay causes

the condition to be relaxed.

In Section III-B, we discuss how sparsity constraints may

be considered a special case of the framework analyzed in

this paper, namely, by viewing them as very large delays.

We then show how sparsity and delay constraints can be

combined to handle the very general, realistic case of a

network where some nodes are connected with delays and

others are not connected at all.

We then consider a few examples in Section IV. First is an

example corresponding to a very general problem of the con-

trol of vehicles in formation. The vehicles may have arbitrary

positions, their dynamics propagate at a constant speed, and

they communicate their measurements at a constant speed.

The optimal control problem is amenable to convex synthesis

as long as the communication speed exceeds the propagation

speed. Even though this itself is a broad generalization

of previously identified tractable classes, it follows almost

immediately from the results of this paper. Conditions are

then derived for convexity of optimal control over a lattice,

for two different types of assumptions on the propagation of

dynamics.

We make some concluding remarks in Section V.

II. PRELIMINARIES

We define Delay(·) to give the delay associated with a

time-invariant causal operator

Delay(W ) = inf{τ ≥ 0 | w(τ) �= 0}
where w is the impulse response of W

Note that we then have the following inequalities for the

delays of a composition or an addition of operators:

Delay(AB) ≥ Delay(A) + Delay(B)

Delay(A + B) ≥ min{Delay(A),Delay(B)}
We suppose that we have a generalized plant P partitioned

as

P =
[
P11 P12

P21 P22

]
We define the closed-loop map by

f(P,K) = P11 + P12K(I − P22K)−1P21

The map f(P,K) is also called the (lower) linear fractional
transformation (LFT) of P and K. In the remainder of the

paper, we abbreviate our notation and define G = P22, since

we will refer to that block frequently. This interconnection

is shown in Figure 1.

P11 P12

P21 G

K

w

uy

z

Fig. 1. Linear fractional interconnection of P and K

We suppose that there are n subsystems, each with its

own controller, and thus partition the sensor measurements

and control actions as

y =
[
yT
1 . . . yT

n

]T
u =

[
uT

1 . . . uT
n

]T

and then further partition G and K as

G =

⎡
⎣G11 . . . G1n

...
...

Gn1 . . . Gnn

⎤
⎦ K =

⎡
⎣K11 . . . K1n

...
...

Kn1 . . . Knn

⎤
⎦

A. Propagation Delays

For any pair of subsystems i and j we define the propa-

gation delay pij as the amount of time before a controller

action at subsystem j can affect an output at subsystem i as

such

pij = Delay(Gij) for all i, j ∈ 1, . . . , n

B. Transmission Delays

For any pair of subsystems k and l we define the (total)

transmission delay tkl as the minimum amount of time

before the controller of subsystem k may use outputs from

subsystem l. Given these constraints, we can define the

overall subspace of admissible controllers S such that K ∈ S
if and only if

Delay(Kkl) ≥ tkl for all k, l ∈ 1, . . . , n

In Section III-A we will break these total transmission de-

lays out into a pure transmission delay, representing the time

it takes to communicate the information from one subsystem

to another, and a computational delay, representing the time

it takes to process the information before it is used by the

controller.

c) Triangle inequality: For the main result of this paper,

we will assume that the triangle inequality holds amongst the

transmission delays, that is,

tki + tij ≥ tkj for all k, i, j

This is typically a very reasonable assumption for the follow-

ing reasons. tkj is defined as the minimum amount of time

before controller k can use outputs from subsystem j. So if

there existed an i such that the inequality above failed, that

would mean that controller k could receive that information

more quickly if it came indirectly via controller i. We would

thus reroute this information to go through i, tkj would be

reset to tki + tij , and the inequality would hold.

To put it another way, we could think of each subsystem

as a node on a directed graph, with the initial distance from

any node j to any node k as tkj , the time it takes before
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controller k can directly use outputs from subsystem j. We

then want to find the shortest overall time for any controller

k to use outputs from any subsystem j, that is, the shortest

path from node j to node k. So to find our final tkj’s, we

run Bellman-Ford or another shortest path algorithm on our

initial graph [6], and the resulting delays are thus guaranteed

to satisfy the triangle inequality.

C. Problem Formulation

Given a generalized plant P and transmission delays tkl

for each pair of subsystems, we define S as above, and we

would then like to solve the following problem:

minimize ‖f(P,K)‖
subject to K stabilizes P

K ∈ S

(1)

Here ‖·‖ is any norm on the closed-loop map chosen to

encapsulate the control performance objectives. The delays

associated with dynamics propagating from one subsystem

to another are embedded in P . The subspace of admissible

controllers, S, has been defined to encapsulate the constraints

on how quickly information may be passed from one sub-

system to another. We call the subspace S the information
constraint.

Many decentralized control problems may be expressed in

the form of problem (1). In this paper, we focus on the case

where S is defined by delay constraints as discussed above.

This problem is made substantially more difficult in gen-

eral by the constraint that K lie in the subspace S. Without

this constraint, the problem may be solved with many stan-

dard techniques. Note that the cost function ‖f(P,K)‖ is in

general a non-convex function of K. No computationally

tractable approach is known for solving this problem for

arbitrary P and S.

D. Quadratic Invariance

In this subsection we define quadratic invariance, and

give a brief overview of results regarding this condition, in

particular, that it allows convex synthesis of optimal linear

decentralized controllers.

Definition 1: The set S is called quadratically invariant
under G if

KGK ∈ S for all K ∈ S
Note that, given G, we can define a quadratic map by

Ψ(K) = KGK. Then a set S is quadratically invariant if

and only if S is an invariant set of Ψ; that is Ψ(S) ⊆ S.

It was shown in [1] that if S is a closed subspace and

S is quadratically invariant under G, then with a change

of variables, problem (1) is equivalent to the following

optimization problem

minimize ‖T1 − T2QT3‖
subject to Q ∈ RH∞

Q ∈ S

(2)

where T1, T2, T3 ∈ RH∞.

This is a convex optimization problem. We may solve it

to find the optimal Q, and then recover the optimal K for

our original problem.

If the norm of interest is the H2-norm, it was shown in [1]

that the problem can be further reduced to an unconstrained

optimal control problem and then solved with standard

software.

We have assumed for this overview that these operators are

all real-rational proper and thus acting on L2e or �e. Similar

results have been achieved [7] for other function spaces as

well, also showing that quadratic invariance allows optimal

linear decentralized control problems to be recast as convex

optimization problems.

The main focus of this paper is thus characterizing de-

lays for which the information constraint S is quadratically

invariant under the plant G.

III. CONDITIONS FOR CONVEXITY

We first provide a necessary and sufficient condition for

quadratic invariance in terms of these delays, which is

derived fairly directly from our definitions.

Theorem 2: Suppose that G and S are defined as above.

S is quadratically invariant under G if and only if

tki + pij + tjl ≥ tkl for all i, j, k, l (3)

Proof: Given K ∈ S,

KGK ∈ S ⇐⇒ Delay
(
(KGK)kl

) ≥ tkl for all k, l

We now seek conditions which cause this to hold.

(KGK)kl =
∑

i

∑
j

KkiGijKjl

and so for any k and l,

Delay
(
(KGK)kl

)
≥ min

i,j
{Delay(KkiGijKjl)}

≥ min
i,j

{Delay(Kki) + Delay(Gij) + Delay(Kjl)}
≥ min

i,j
{tki + pij + tjl}

Thus S is quadratically invariant under G if

min
i,j

{tki + pij + tjl} ≥ tkl for all k, l

which is equivalent to

tki + pij + tjl ≥ tkl for all i, j, k, l

Now suppose that Condition (3) fails. Then there exists

i, j, k, l such that

tki + pij + tjl < tkl

Consider K such that

Kab = 0 if (a, b) /∈ {(k, i), (j, l)}
Then

(KGK)kl =
∑

r

∑
s

KkrGrsKsl = KkiGijKjl
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Since Delay(Gij) = pij , we can easily choose Kki and Kjl

such that Delay(Kki) = tki, Delay(Kjl) = tjl, and

Delay
(
(KGK)kl

)
= tki + pij + tjl

So K ∈ S but KGK /∈ S and thus S is not quadratically

invariant under G.

Main Result. The following is the main result of this

paper. It states that if the transmission delays satisfy the

triangle inequality, and if the propagation delay between any

pair of subsystems is at least as large as the transmission

delay between those subsystems, then the information con-

straint is quadratically invariant. In other words, if along any

link, data can be transmitted faster than dynamics propagate,

then optimal controller synthesis may be cast as a convex

optimization problem.

Theorem 3: Suppose that G and S are defined as above,

and that the transmission delays satisfy the triangle inequal-

ity. If

pij ≥ tij for all i, j (4)

then S is quadratically invariant under G.

Proof: Suppose Condition (4) holds. Then for all

i, j, k, l we have

tki + pij + tjl ≥ tki + tij + tjl

≥ tkl by the triangle inequality

and thus by Theorem 2, S is quadratically invariant under G.

Thus we have shown that the triangle inequality and

Condition (4) are sufficient for quadratic invariance. The

following remarks discuss assumptions under which they are

necessary as well.

Remark 4: If we assume that tii = 0 for all i, that is,

that there is no delay before a subsystem’s controller may

use its own outputs, then we consider Condition (3) with

k = i, l = j and see that Condition (4) is necessary for

quadratic invariance.

Remark 5: If we assume that pii = 0 for all i, that is,

that there is no delay associated with propagating from a

subsystem to itself, then we consider Condition (3) with

i = j and see that the triangle inequality is necessary for

quadratic invariance.

A. Computational Delays

In this section, we consider what happens when the

controller of each subsystem has a computational delay ci

associated with it. The delay for controller i to use outputs

from subsystem j, the total transmission delay, is then broken

up into a pure transmission delay and this computational

delay, as follows

tij = ci + t̃ij

If we were to assume that the triangle inequality held for

the total transmission delays tij as before, then we would

simply get the same results as in the previous section with the

substitution above. In particular, we would find pij ≥ ci+ t̃ij
to be the condition for quadratic invariance. However, there

are many cases where it makes sense to instead assume that

the triangle inequality holds for the pure transmission delays

t̃ij , which is a stronger assumption. An example where such

is clearly the case is provided in Section IV-A.

In this section we derive conditions for quadratic invari-

ance when we can assume that the triangle inequality holds

for the pure transmission delays t̃ij , and get a surprising

result.

As before, the propagation delays are defined as

pij = Delay(Gij) for all i, j

and S is now defined such that K ∈ S if and only if

Delay(Kkl) ≥ ck + t̃kl for all k, l

Thus the necessary and sufficient condition for quadratic

invariance from Theorem 2 becomes

ck + t̃ki + pij + cj + t̃jl ≥ ck + t̃kl for all i, j, k, l

which reduces to

t̃ki + pij + cj + t̃jl ≥ t̃kl for all i, j, k, l (5)

The following theorem gives conditions under which the

information constraint is quadratically invariant. It states that

if the triangle inequality holds amongst the pure transmission

delays, and if Condition (6) holds, then the information

constraint is quadratically invariant. Surprisingly, we see that

the computational delay now appears on the left side of

the inequality. In other words, not only does transmitting

data faster than dynamics propagate still allow for convex

synthesis when we account for computational delay, but the

condition is actually relaxed.

Theorem 6: Suppose that G and S are defined as above,

and that the pure transmission delays satisfy the triangle

inequality. If

pij + cj ≥ t̃ij for all i, j (6)

then S is quadratically invariant under G.

Proof: Suppose Condition (6) holds. Then for all

i, j, k, l we have

t̃ki + pij + cj + t̃jl ≥ t̃ki + t̃ij + t̃jl

≥ t̃kl by the triangle inequality

and thus Condition (5) holds and S is quadratically invariant

under G.

Thus we have shown that the triangle inequality and

Condition (6) are sufficient for quadratic invariance. The

following remark discusses an assumption under which the

condition is necessary as well.

Remark 7: If we assume that t̃ii = 0 for all i, that is, that

there is no additional delay before a subsystem’s controller

may use its own outputs, other than the computational delay,

then we consider Condition (5) with k = i, l = j and see that

Condition (6) is necessary for quadratic invariance. Since the

computational delay has been extracted, this is now a very

reasonable assumption which is essentially true by definition.
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B. Combining Sparsity and Delay Constraints

In this section, we discuss how sparsity constraints may be

considered a special case of the framework analyzed in this

paper. We then show how the two can be combined to handle

the very general, realistic case of a network where some

nodes are connected with delays as above and others are not

connected at all. An explicit test for quadratic invariance in

this case is provided.

The key observation is that a sparsity constraint may be

considered an infinite delay. We thus define an extended

notion of propagation and transmission delays, where they

are assigned to be sufficiently large when they do not

exist,and then the results from the rest of this paper may

be applied to test for quadratic invariance and convexity.

1) Propagation Delays: We now consider a plant for

which the controllers of certain subsystems may or may not

have any effect on other subsystems, and when they do, there

may be a propagation delay associated with that effect. First,

define a binary matrix Gbin such that

Gbin
ij =

{
0 if Gij = 0
1 otherwise

In other words, Gbin defines the sparsity structure or inter-

connection structure of the plant, as Gbin
ij = 0 if subsystem i

is not affected by inputs to subsystem j. We would then like

to define the propagation delay pij to be extremely large if

this is the case, as such

pij =

{
H if Gbin

ij = 0
Delay(Gij) if Gbin

ij = 1

for some large H .

2) Transmission Delays: We similarly assign a binary

matrix Kbin such that Kbin
kl = 0 if controller k may never use

outputs from subsystem l. For any other pair of subsystems

k and l we define the (total) transmission delay tkl as in

the rest of this paper; that is, as the minimum amount of

time before the controller of subsystem k may use outputs

from subsystem l. Given these constraints, we can define the

overall subspace of admissible controllers S such that K ∈ S
if and only if

Kkl = 0 for all k, l such that Kbin
kl = 0

Delay(Kkl) ≥ tkl for all k, l such that Kbin
kl = 1

We wish to assign a very large transmission delay to the

former case, and so define

tkl = H for all k, l such that Kbin
kl = 0

for the same large H as above.

3) Condition for Convexity: Given these extended defi-

nitions of propagation delays and transmission delays for a

combination of sparsity and delay constraints, we can now

test for quadratic invariance using Theorem 2.

These definitions of extended delays along with our defini-

tion of the constraint set S allow us to use this and the rest of

the results of this paper as long as H has been chosen large

enough. Condition (3) is indeed necessary and sufficient for

quadratic invariance as long as

H > 2 max{tkl} + max{pij}
where of course the first maximum is taken over all k, l such

that Kbin
kl = 1 and the second is taken over all i, j such that

Gbin
ij = 1. The bound on H arises because Condition (3)

must fail if Kbin
kl = 0, but Kbin

ki = Gbin
ij = Kbin

jl = 1.

IV. EXAMPLES

We consider here some special cases of interest.

A. Vehicle Formation Example

We now consider an important special case, which corre-

sponds to the problem of controlling multiple vehicles in a

formation.

Suppose there are n subsystems (vehicles), with positions

x1, . . . , xn ∈ R
d. Typically, we’ll have d = 3, but these

results hold for arbitrary d ∈ Z+.

K31

G1

K31

G2

K31

G3

K31

G4 K31

G5

Fig. 2. Communication and propagation in all directions

Let R represent the maximum distance between any two

subsystems

R = max
i,j

‖xi − xj‖

For most applications of interest the appropriate norm

throughout this section would be the Euclidean norm, but

these results hold for arbitrary norm on R
d.

We suppose that dynamics of all vehicles propagate at a

constant speed, determined by the medium, such that the

propagation delays are proportional to the distance between

vehicles, as illustrated in Figure 2.

Let γp be the amount of time it takes dynamics to

propagate one unit of distance, i.e., the inverse of the speed

of propagation. For example, when considering formations

of aerial vehicles, γp would equal the inverse of the speed

of sound.

The system G is then such that

Delay(Gij) = γp‖xi − xj‖ for all i, j

We similarly suppose that data can be transmitted at a

constant speed, such that the transmission delays are pro-

portional to the distances between vehicles, such as if each

vehicle could broadcast its information to the others. This is

also illustrated in Figure 2. We assume that the perturbations

from our desired formation are small enough that, for the

purposes of controller synthesis, we may consider these

delays to be fixed.

Let γt be the amount of time it takes to transmit one unit

of distance, i.e., the inverse of the speed of transmission.
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Let C be the computational delay at each vehicle. The set

of admissible controllers is then defined such that K ∈ S if

and only if

Delay(Kkl) ≥ C + γt‖xk − xl‖ for all k, l

We can now apply Theorem 6 with

pij = γp‖xi − xj‖, t̃ij = γt‖xi − xj‖,
and ci = C for all i, j

Clearly, t̃ii = 0 for all i as in Remark 7, so the conditions

of Theorem 6 are both necessary and sufficient for quadratic

invariance.

Theorem 8: Suppose that G and S are defined as above.

S is quadratically invariant under G if and only if

γp + (C/R) ≥ γt

Proof: Since any norm satisfies the triangle inequality,

the pure transmission delays clearly satisfy the triangle in-

equality, so applying Theorem 6, S is quadratically invariant

under G if and only if

γp‖xi − xj‖ + C ≥ γt‖xi − xj‖ for all i, j

which is equivalent to

γp + (C/R) ≥ γt

Thus we see that, in the absence of computational delay,

finding the minimum-norm controller may be reduced to a

convex optimization problem when the speed of transmission

is faster than the speed of propagation; that is, when γp ≥ γt.

We also see that this not only remains true in the presence

of computational delay, but that we get a buffer relaxing the

condition.

A similar result was previously achieved for a very specific

case of vehicles equally spaced along a line [1]. This

shows how the results of this paper allow us to effortlessly

generalize to the case considered in this subsection, where

the vehicles have arbitrary positions in arbitrary dimensions.

This is a crucial generalization for applications to realistic

formation flight problems.

B. Two-Dimensional Lattice Example

In this subsection we will consider subsystems distributed

in a lattice, and use these results to derive the conditions

for convexity of the associated optimal decentralized control

problem.

We first consider the case where the controllers can

communicate along the edges of the lattice with a delay of t,
and the dynamics similarly propagate along the edges with

a delay of p, as illustrated in the left half of Figure 3.

It is a straightforward consequence of this paper that

the optimal controllers may be synthesized with convex

programming if

p ≥ t

We now consider a more interesting variant, where the

controllers again communicate only along the edges of the

Dt Dt Dt

Dt

Dt Dt

Dt

Dt

Dt

Dt

Dt

DtK11 K12 K13

K23K22K21

K31 K32 K33

G11 G12 G13

G23G22G21

G31 G32 G33

Dp

Dp

Dp

Dp

Dp

Dp

Dp

Dp Dp

Dp Dp

Dp

Dt Dt Dt

Dt

Dt Dt

Dt

Dt

Dt

Dt

Dt

DtK11 K12 K13

K23K22K21

K31 K32 K33

G12 G13

G23G22

G32 G33

G11

G21

G31

Fig. 3. Two-dimensional lattice with dynamics propagating along edges
or in all directions

lattice, but now the dynamics propagate in all directions, as

illustrated in the right half of Figure 3.

Let γp be the amount of time it takes for the dynamics

to propagate one unit of distance. Along a diagonal, for

instance, between G11 and G22, the propagation delay is

γp

√
2 and the transmission delay is 2t. The condition for

convexity therefore becomes

γp ≥ t
√

2

V. CONCLUSIONS

We have studied the problem of finding optimal con-

trollers for multiple subsystems subject to constraints on how

quickly they can share information. In Theorem 3 we showed

that, presuming the transmission delays satisfy the triangle

inequality, if the transmission delay between any pair of

subsystems is less than the corresponding propagation delay,

then the information constraint is quadratically invariant.

This allows for convex synthesis of the optimal decentralized

controllers.

We further showed that if we separately account for

computational delays, we still find that communicating faster

than dynamics propagate along any link allows for convex

synthesis of optimal controllers, and in fact, the condition

becomes relaxed. We considered an example corresponding

to control of vehicles in formation, and showed that optimal

controllers may be computed in this manner if the commu-

nication speed exceeded the propagation speed, for arbitrary

vehicle positions.
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