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Convexification of Optimal Decentralized Control

Without a Stabilizing Controller

Michael Rotkowitz1 Sanjay Lall2

Abstract

The problem of finding an optimal decentralized con-
troller is considered, where both the plant and the
controllers under consideration are rational. It has
been shown that a condition called quadratic invari-
ance, which relates the plant and the constraints im-
posed on the desired controller, allows the optimal
decentralized control problem to be cast as a convex
optimization problem, provided that a controller is
given which is both stable and stabilizing. This pa-
per shows how, even when such a controller is not
provided, the optimal decentralized control problem
may still be cast as a convex optimization problem,
albeit a more complicated one. The solution of the
resulting convex problem is then discussed.

The result that quadratic invariance gives convex-
ity is thus extended to all finite-dimensional linear
problems. In particular, this result may now be used
for plants which are not strongly stabilizable, or for
which a stabilizing controller is simply difficult to
find. The results hold in continuous-time or discrete-
time.

1 Introduction

The problem of finding an optimal decentralized con-
troller is considered, where both the plant and the
controllers under consideration are rational. It has
been shown that a condition called quadratic invari-
ance [4], which relates the plant and the constraints
imposed on the desired controller, allows the optimal
decentralized control problem to be cast as a convex
optimization problem.

When the plant is unstable, these results rely upon
the existence of a nominal controller which is both
stable and stabilizing. However, finding such a con-
troller may be a difficult task, or in some cases, one
may not exist at all. This paper shows how, even
when such a controller is not provided, the optimal
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decentralized control problem may still be cast as a
convex optimization problem, albeit a more compli-
cated one. The solution of the resulting convex prob-
lem is then discussed.

The result that quadratic invariance gives convex-
ity is thus extended to all finite-dimensional linear
problems. We further see that the techniques in
this paper result in a standard unconstrained control
problem whose solution yields stabilizing decentral-
ized controllers for this large class of problems.

2 Preliminaries

We consider a generalized plant P ∈

R
(nz+ny)×(nw+nu)
p , partitioned as in Figure 1.

Note that we refer to the 2-2 block simply as G.

For all K ∈ Rp, we define the closed-loop map

f(P,K) ∈ Rnz×nw

p as

f(P,K) = P11 + P12K(I − GK)−1P21

and this is also called the (lower) linear fractional

transformation (LFT) of P and K.

P11 P12
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Figure 1: Linear fractional interconnection of
P and K

2.1 Stabilization

We say that K stabilizes P if in Figure 1 the
nine transfer matrices from (w, v1, v2) to (z, u, y) be-
long to RH∞. We say that K stabilizes G if in
the figure the four transfer matrices from (v1, v2) to
(u, y) belong to RH∞. P is called stabilizable if

there exists K ∈ R
nu×ny

p such that K stabilizes P ,
and it is called strongly stabilizable if there exists
K ∈ RH

nu×ny

∞ such that K stabilizes P . We denote
by Cstab ⊆ R

nu×ny

p the set of controllers K ∈ R
nu×ny

p
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June 8, 2006 editedwhich stabilize P . The following standard result re-
lates stabilization of P with stabilization of G.

Theorem 1. Suppose G ∈ R
ny×nu

sp and P ∈

R
(nz+ny)×(nw+nu)
p , and suppose P is stabilizable.

Then K stabilizes P if and only if K stabilizes G.

Proof. See, for example, Chapter 4 of [1].

2.2 Kronecker products

Given A ∈ C
m×n and B ∈ C

s×q let the Kronecker

product of A and B be denoted by A ⊗ B and given
by

A ⊗ B =







A11B · · · A1nB
...

...
Am1B · · · AmnB






∈ C

ms×nq

Given A ∈ C
m×n, we may write A in term of its

columns as

A =
[

a1 . . . an

]

and then associate a vector vec(A) ∈ C
mn defined by

vec(A) =







a1

...
an







Lemma 2. Let A ∈ C
m×n, B ∈ C

s×q, X ∈ C
n×s.

Then

vec(AXB) = (BT ⊗ A)vec(X)

Proof. See, for example, [2].

2.3 Problem Formulation

The optimization problem we address is as follows.

Given P ∈ R
(nz+ny)×(nw+nu)
p , and a subspace of ad-

missible controllers S ⊆ R
nu×ny

p , we would like to
solve:

minimize ‖f(P,K)‖

subject to K stabilizes P

K ∈ S

(1)

Here ‖·‖ is any norm on Rnz×nw

p , chosen to en-
capsulate the control performance objectives, and S

is a subspace of admissible controllers which encap-
sulates the decentralized nature of the system. All
of the results regarding convexification in this paper
apply for arbitrary norm, but we will limit ourselves
to the H2-norm when we discuss further reduction of
the problem to unconstrained problems.

Most decentralized control problems may be formu-
lated in this manner, with the subspace S typically

being defined by sparsity constraints or delay con-
straints. We often refer to S as the information

constraint .

The cost function ‖f(P,K)‖ is in general a non-
convex function of K, and no computationally
tractable approach is known for solving this problem
for arbitrary P and S.

2.4 Feedback Map

We define the map h : Rsp ×Rp → Rp by

h(G,K) = −K(I − GK)−1

We will also make use of the notation hG(K) =
h(G,K). Given G ∈ Rsp, we note that hG is an invo-
lution on Rp, as a straightforward calculation shows
that hG(hG(K)) = K.

2.5 Quadratic Invariance

In this subsection we define quadratic invariance, and
give a brief overview of results regarding this condi-
tion, in particular, that it renders the information
constraint invariant under a feedback map, and that
it allows for convex synthesis of optimal decentralized
controllers when a stable and stabilizing controller is
provided.

Definition 3. The set S is called quadratically in-

variant under G if

KGK ∈ S for all K ∈ S

The following is a special case of the main theorem
of [4] and was first proved with this level of general-
ity in [3]. It states that quadratic invariance of the
constraint set is necessary and sufficient for the set to
be invariant under the LFT defined by hG.

Theorem 4. Suppose G ∈ R
ny×nu

sp and S ⊆ R
nu×ny

p

is a closed subspace. Then

S is quadratically invariant under G

⇐⇒ hG(S) = S

Proof. See [3, 4].

From this, and from a specific Youla parameter-
ization, it ultimately follows that if S is a closed
subspace, S is quadratically invariant under G, and
Knom ∈ RH∞ ∩ S is a stabilizing controller, then
K is optimal for problem (1) if and only if K =
Knom − h

(

h(Knom, G), Q
)

and Q is optimal for fol-
lowing optimization problem

minimize ‖T1 − T2QT3‖

subject to Q ∈ RH∞

Q ∈ S

(2)
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June 8, 2006 editedwhere T1, T2, T3 ∈ RH∞.

This is a convex optimization problem. We may
solve it to find the optimal Q, and then recover the
optimal K for our original problem.

If the norm of interest is the H2-norm, it was shown
in [4] that vectorization can be used to further re-
duce the problem to an unconstrained optimal con-
trol problem which may then be solved with standard
software, as follows.

Theorem 5. Suppose x is an optimal solution to

minimize ‖b + Ax‖2

subject to x ∈ RH∞

(3)

where D ∈ R
nuny×a is a matrix whose columns form

an orthonormal basis for vec(S), and

b = vec(T1), A = −(TT

3 ⊗ T2)D.

Then Q = vec−1(Dx) is optimal for (2) and the op-

timal values are equivalent.

Proof. See [4].

3 Convexity without a Stabilizing

Controller

Suppose that one cannot find a Knom ∈ Cstab ∩
RH∞ ∩ S; that is, a controller with the admissible
structure which is both stable and stabilizing. This
may occur either because the plant is not strongly
stabilizable, or simply because it is difficult to find.
In this section we will show that problem (1) can still
be reduced to a convex optimization problem, albeit
one which is less straightforward to solve.

We will achieve this by bypassing the Youla param-
eterization, and using the change of variables typi-
cally associated with stable or bounded plants

R = hG(K) = − K(I − GK)−1

where R will be used instead of Q to elucidate that
this is not a Youla parameter. The key observation
is that internal stabilization is equivalent to an affine
constraint in this parameter.

The constraint that K stabilize G, which is equiv-
alent to the constraint that K stabilize P when the
standard conditions of Theorem 1 hold, is defined as
requiring that the maps from (v1, v2) to (u, y) in Fig-
ure 1 belong to RH∞. This can be stated explicitly
as

[

(I − KG)−1 (I − KG)−1K

G(I − KG)−1 G(I − KG)−1K

]

∈ RH∞

Making use of the relations

(I − GK)−1G = G(I − KG)−1

(I − KG)−1 = I + K(I − GK)−1G

we find that K stabilizes G if and only if
[

RG R

G − GRG GR

]

∈ RH∞ (4)

Suppose G ∈ R
ny×nu

sp and S ⊆ R
nu×ny

p is a
quadratically invariant closed subspace. We may then
use this result to transform the stabilization con-
straint of problem (1) and use Theorem 4 to trans-
form the information constraint to obtain the follow-
ing equivalent problem. K is optimal for problem (1)
if and only if K = hG(R) and R is optimal for

minimize ‖P11 − P12RP21‖

subject to

[

RG R

G − GRG GR

]

∈ RH∞

R ∈ S

(5)

This is a convex optimization problem.

4 Solution without a Stabilizing Con-

troller

We show in this section that vectorization can simi-
larly be used to eliminate the information constraint
when a nominal stable and stabilizing controller can
not be found. The resulting problem is not immedi-
ately amenable to standard software, as is problem 3,
but methods for obtaining its solution are discussed.

Let D ∈ R
nuny×a be a matrix whose columns form

an orthonormal basis for vec(S), and now let

f = vec(P11), E = −(PT
21 ⊗ P12)D,

d =





0
vec(G)

0



 , C =





(GT ⊗ I)D
−(GT ⊗ G)D

(I ⊗ G)D





We then may solve the following equivalent prob-
lem. Suppose x is an optimal solution to

minimize ‖f + Ex‖2

subject to d + Cx ∈ RH∞

x ∈ RH∞

(6)

Then R = vec−1(Dx) is optimal for (5) and the
optimal values are equivalent. The optimal K for
problem (1) could then be recovered as K = hG(R).

Remark 6. While A, b of problem (3) are stable,

C, d,E, f of problem (6) may very well be unstable.

Notice also that G ∈ Rsp implies C, d ∈ Rsp.

Remark 7. The last constraint comes from the up-

per right-hand block of Condition (4), and the others

come from the rest of that condition.
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June 8, 2006 editedRemark 8. The relaxed problem

minimize ‖f + Ex‖2

subject to x ∈ RH∞

(7)

can be solved with standard software in the same man-

ner as problem (3), and gives a lower bound on the

solution. If the result is such that the entire constraint

of problem (6) is satisfied, then the optimal value has

been achieved.

Remark 9. For any µ > 0 the following problem

may be solved in the same standard manner

minimize

∥

∥

∥

∥

[

f

µd

]

+

[

E

µC

]

x

∥

∥

∥

∥

2

subject to x ∈ RH∞

(8)

and then the optimal value of x as well as the optimal

value of the objective function will approach those of

problem (6) as µ approaches 0 from above.

A reasonable solution procedure for problem (6)
would then be to first solve the relaxed problem of
Remark 8, and test whether d + Cx ∈ RH∞ for the
optimal value. If so, we are done and can recover the
optimal K. If not, then solve problem (8) for values
of µ which decrease and approach 0. This procedure
in no way requires a controller that is both stable
and stabilizing, so it is most useful when the plant is
actually not strongly stabilizable, and thus no such
controller exists.

Alternatively, as long as P is stabilizable by some
K ∈ S, the solution to problem (8) for any µ > 0 re-
sults in an x such that ‖d + Cx‖2 is finite. Thus R =
vec−1(Dx) satisfies Condition (4), and K = hG(R)
is both stabilizing and lies in S. If it is also stable,
we have then found a Knom ∈ Cstab ∩RH∞ ∩ S, and
the procedures from [4] may be used to find the opti-
mal decentralized controller. This is ideal for the case
where the plant is strongly stabilizable, but a stabiliz-
ing controller is difficult to find with other methods.

The techniques discussed here involve not only find-
ing optimal decentralized controllers, but also develop
explicit procedures for first finding a stabilizing de-
centralized controller when one is not available oth-
erwise. As there are no known systematic methods of
finding stabilizing controllers for most quadratically
invariant problems, this is an extremely important
development, and an exciting avenue for future re-
search.

5 Conclusions

We showed that an optimal decentralized control
problem can be reduced to a convex optimization
problem if the information constraint is quadrati-
cally invariant, even if a stabilizing controller is not
provided. The key was using a change of variables
in which stabilization is an affine constraint, and in
which the parameter takes on the same constraints
as the controller. We discussed further reduction of
this problem to centralized control problems so that
standard techniques could be used for computation.
In our final remark, we showed how regularization
can then be used to formulate a centralized problem
which yields a stabilizing controller for the original
problem.
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