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Abstract

In this paper we consider the problem of how to com-
putationally test whether a matrix inequality is posi-
tive semidefinite on a semi-algebraic set. We propose a
family of sufficient conditions using the theory of matrix
Positivstellensatz refutations. When the semi-algebraic
set is a hypercube, we give bounds on the degree of the
required certificate polynomials.

1 Introduction

In this paper we consider the following problem.

Problem 1. Suppose H0, . . . , Hm ∈ R
n×n are sym-

metric matrices, and ∆ ⊂ R
m. Define the affine map

G : R
m → R

n×n by

G(δ) = H0 +
m∑

i=1

δiHi

for all δ ∈ R
m. We would like to know if

G(δ) ≥ 0 for all δ ∈ ∆.

This problem is a robust semidefinite program, and
it has many important applications in control and
optimization. One motivating application is testing
quadratic stability, as follows. Consider the parame-
terized family of linear time-invariant systems

ẋ =
(
A0 +

m∑
i=1

δiAi

)
x

Here δ ∈ R
m is a vector of uncertain parameters. We

would like to check whether the above system is sta-
ble for all δ ∈ ∆. This problem has been addressed
in [16, 23, 19]. A well-known approach is to seek a
quadratic Lyapunov function which proves stability for
all parameters within the uncertainty set ∆. That is, we
would like to find a positive definite matrix P ∈ R

n×n

such that(
A0 +

m∑
i=1

δiAi

)T

P + P
(
A0 +

m∑
i=1

δiAi

)
< 0
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for all δ ∈ ∆. Testing whether P satisfies this inequality
is equivalent to Problem 1, via the identification Hi =
−AT

i P − PAi for i = 0, . . . , m.
More generally, we can convert a wider class of robust

optimization problems to the form of Problem 1. We
would like to solve

min cT x

subject to A0 +
m∑

i=1

xiAi ≥ 0

for all (A0, . . . ,An) ∈ U
where the set of matrix tuples U is given by

U =

⎧⎪⎨
⎪⎩

(A1, . . . , An) =

(A0
0, . . . , A

0
n) +

m∑
k=1

δi(Ak
0 , . . . , Am

n )
δ ∈ ∆

⎫⎪⎬
⎪⎭

To find the optimal solution to this robust semidefinite
problem, we need to be able to efficiently verify that a
given x satisfies the constraints, and this is equivalent
to Problem 1.

Problem 1 has been addressed in the literature. Al-
though Problem 1 has many important applications,
the verification is hard for most uncertainty sets. When
the uncertainty set is an ellipsoid, the problem may be
converted to a binary optimization problem [3]. When
the uncertainty set is a hypercube, Problem 1 is called
the matrix cube problem, and it was shown to be NP
hard in [14]. In the case when the uncertainty set is
a bounded polytope, it is sufficient to check the ma-
trix inequality at the vertices. Notice that in the case
when ∆ is a cube there are 2m vertices, and so this ap-
proach scales very poorly as m grows. Similar results
are shown for the quadratic stability problem [2, 6].

To reduce computational complexity , several suffi-
cient conditions have been proposed, such as the use
of the S-procedure to construct a set of scalar cer-
tificates [7]. Ben-Tal and Nemirovski also proposed a
stronger condition which does not exhibit the above
poor scaling [4]. In this paper we will generalize this
condition, so we state it here. Here S

n denotes the set
of real n × n symmetric matrices.

Theorem 2. Suppose ∆ is the cube

∆ =
{

δ ∈ R
m | |δi| ≤ 1 for all i

}

Proceedings of the 45th IEEE Conference on Decision & Control
Manchester Grand Hyatt Hotel
San Diego, CA, USA, December 13-15, 2006

ThIP11.10

1-4244-0171-2/06/$20.00 ©2006 IEEE. 4405



2006.09.05.03

Define the set XT ⊂ S
n×· · ·×S

n, where (X1, . . . , Xm) ∈
XT if and only if

H0 −
m∑

i=1

Xi ≥ 0,

Xi + Hi ≥ 0, for all i = 1, . . . ,m

Xi − Hi ≥ 0, for all i = 1, . . . ,m.

Then G(δ) is positive semidefinite for all δ ∈ ∆ if XT

is not empty.

This condition may be tested via semidefinite pro-
gramming. The paper [4] also shows that if the above
SDP condition is infeasible then there exists a δ within
a larger cube such that G(δ) is not positive semidefi-
nite. This gives an estimate of the conservativeness of
this test.

The matrix cube problem (and also therefore Prob-
lem 1) is closely related to binary quadratic program-
ming. Here, we would like to find

min xT Ax

subject to x ∈ {−1, 1}n

Without loss of generality we may assume A is posi-
tive definite, and it is then straightforward to see that
the problem is equivalent to the following matrix cube
problem.

max t

subject to
[
t xT

x A−1

]
≥ 0 for all x ∈ {−1, 1}n

In general such quadratic programs are hard, and
much research has been done to address this, for ex-
ample, using the Lagrangian relaxation to compute a
lower bound on the optimal value [21], or using semidef-
inite programming via a lifting approach [13], or us-
ing semidefinite program to find the lower bound of
the MAXCUT problem [8]. The gap between the re-
laxed problem and the actual problem may be reduced
by introducing additional variables and redundant con-
straints [1]. Lasserre used an approach based on mo-
ments and showed that one needs at most 2m − 1 ad-
ditional variables [11, 12] for an exact solution. This
approach is also related to the dual of the refutation
approach adopted in this paper.

In this paper, instead of searching a set of scalar
certificates using the S-procedure, we will construct a
sufficient condition via a search for a polynomial cer-
tificates. If such a certificate exists, then there is no
δ ∈ ∆ such that the affine function G is not posi-
tive semidefinite. Our approach is applicable to general
semi-algebraic uncertainty sets, including ellipsoids and
hypercubes. In this formulation, we construct a family
of refutation sets which have a hierarchical structure. If
the current refutation set does not yield a feasible cer-
tificate, we may seek for higher degree certificates. Sim-
ilar approaches have been used to analyze and synthe-
size output feedback controllers for LPV systems [22].

For some uncertainty sets we will also show that if
there is no δ ∈ ∆ for which G is not positive semidef-
inite, then there will exists a certificate of specific de-
gree. When the uncertainty set is a hypercube, we show
that the highest degree needed is at most 2m. We also
study the case when the certificates are restricted to
be quadratic and we show the resulting condition is
tighter than the best existing result of Theorem 2. In
addition, we give several cases when our conditions us-
ing quadratic certificates are necessary and sufficient.
Finally, we give some numerical examples to compare
our results with others.

2 Preliminaries

We use the following standard notation. The matrix
In is the n × n identity. For X ∈ S

n, the notation
X ≥ 0 means that X is positive semidefinite. The
vector ei ∈ R

n has the ith entry equal to 1 and all
other entries equal to zero. The vector 1 ∈ R

n has all
entries equal to 1.

The set R[x1, . . . , xn] is the ring of polynomials in
n variables with real coefficients. We often abbreviate
R[x1, . . . , xn] to simply R[x]. Every polynomial f ∈
R[x] can be written as

f =
∑

α∈W

cαxα

where W ⊂ N
n, and the notation xα is defined by

xα = xα1
1 xα2

2 . . . xαn
n

A polynomial g ∈ R[x] is a sum of squares (SOS) if it
can be expressed as

g(x) =
n∑

i=1

fi(x)2

for some polynomials fi ∈ R[x]. We use Σ[x] to repre-
sent the set of sum-of-squares polynomials in R[x], and
abbreviate it to Σ when the dimension is clear from the
context. We also extend this definition matrix polyno-
mials as follows.. Let R[x]m×n denote the set of m× n
polynomial matrices and S[x]n denote the set of n × n
symmetric polynomial matrices. We define the notion
of sum-of-squares for matrix polynomials as follows

Definition 3. A matrix polynomial S ∈ S[x]m is
called a sum-of-squares if there exist polynomial vectors
T1, . . . , Tr ∈ R[x]m such that

S(x) =
r∑

i=1

Ti(x)Ti(x)T .

This is a generalization of SOS representation used
for scalars. We will use Σ[x]n to represent the set of n×
n SOS polynomial matrices. We also define two specific
sets Q1, Q2 which will be useful in later sections.
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Definition 4. Let W1 = {α ∈ N
m |αi ≤ 2 for all i =

1, . . . , m} and W2 = {α ∈ N
m | ∑m

i=1 αi ≤ 2}. The sets
Q1, Q2 are defined as

Q1 =
{ ∑

α∈W1

Cαδα |Cα ∈ S
n for all α ∈ W1

}

Q2 =
{ ∑

α∈W2

Cαδα |Cα ∈ S
n for all α ∈ W2

}

Note that polynomials in Q1 have degree less than
or equal to 2m and polynomials in Q2 have degree less
than or equal to 2.

When F ∈ Σ[x]n, it is clear that F (x) is positive
semidefinite for all x ∈ R

n. One may address posi-
tive semidefiniteness of a matrix polynomial over a re-
stricted domain using the following lemma, which gives
a sufficient condition.

Lemma 5. Suppose f1, . . . , fn ∈ R[x] and Q ∈ R[x]m

is a symmetric matrix polynomial. Define the set

D =
{

x ∈ R
n | fi(x) ≥ 0 for all i = 1, . . . , m

}
Then, Q(x) ≥ 0 for all x ∈ D if there exist SOS poly-
nomial matrices S0, S1, . . . , Sn ∈ Σ[x]m such that

Q(x) = S0(x) +
n∑

i=1

Si(x)fi(x)

It is also known that if D is compact, and with addi-
tional technical restrictions, then the above condition is
also necessary [20]; this is an extension of a well-known
result by Putinar [17].

3 Positivstellensatz refutations

In this section, we will study Problem 1 when the set
∆ is semi-algebraic, that is

∆ =
{

δ ∈ R
m | fi(δ) ≥ 0, for i = 1, . . . , m

}
where f1, . . . , fm ∈ R[δ]. It is clear that a cube and an
ellipsoid can be expressed as semi-algebraic sets. The
following condition provides a simple condition under
which G(δ) is positive semidefinite for all δ ∈ ∆.

Theorem 6. The matrix polynomial G(δ) is positive
semidefinite for all δ ∈ ∆ if there exist SOS polynomial
matrices S0, S1, . . . , Sm satisfying

G(δ) = S0 +
m∑

i=1

Sifi(δ) (1)

This is a simple consequence of Lemma 5 and we may
view it as provided a certificate refuting the existence of
δ ∈ ∆ such that G(δ) is not within the positive semidef-
inite cone. The certificate is the sequence of polynomi-
als S0, . . . , Sm. As discussed in the previous section,
this condition is also necessary if additional technical

conditions on ∆ are satisfied [20] (both polytopes and
ellipsoids satisfy these conditions.)

One thing we have not yet specified is the degree
of the certificates required. Although we may pursue
high degree certificates, the computational complexity
of finding S0, . . . , Sm grows rapidly as we search over
sets containing high-degree polynomials. In many ap-
plications of this refutation approach, a bound on the
degree of the required certificates is not known. How-
ever, in some cases, we can show a degree bound. In
this paper, we focus on the matrix cube problem, i.e.,
hypercube uncertainty set, and we will show the degree
is bounded. As mentioned earlier, the hypercube un-
certainty set satisfies the technical condition, also the
vertices of the cube. This implies the refutation pro-
vides a necessary and sufficient condition to verify the
matrix cube problem.

Theorem 7. Define the set X1 ⊂ Σ[δ]n × S[δ]n × · · · ×
S[δ]n such that (S0, S1, . . . , Sm) ∈ X1 if and only if

G(δ) = S0 +
m∑

i=1

(1 − δ2
i )Si. (2)

Then, G(δ) ≥ 0 for all δ within the unit cube if and
only if X1 is not empty.

The above theorem shows that S1, . . . , Sm only need
to be symmetric matrix polynomials instead of SOS ma-
trix polynomials. We further show the highest degree
of certificate required is 2m.

Theorem 8. Define the set X2 ⊂ X1 such that
(S0, . . . , Sm) ∈ X2 if and only if (S0, . . . , Sm) ∈ X1 and
S1, . . . , Sm ∈ Q1. Then, G(δ) ≥ 0 for all δ within the
unit cube if and only if X2 is non-empty.

Before proving the theorem, we show two lemmas.

Lemma 9. Suppose there are two symmetric matrices
A,B ∈ S

n satisfying −A ≤ B and B ≤ A. Then[
A B
B A

]
≥ 0.

This lemma convert two linear matrix inequalities
into one bigger LMI. We may use the above lemma to
eliminate δ into a semidefinite program with one large
linear matrix inequality. The following lemma states
this result and shows the structure of this LMI.

Lemma 10. Suppose H0, . . . , Hm ∈ S
n. Define the

block diagonal matrices

Gk =

⎡
⎢⎣

Hk

. . .
Hk

⎤
⎥⎦ ∈ S

2k−1n, for k = 1, . . . , m.

and recursively define the sequence N0, N1, . . . , Nm by

Nk =
[
Nk−1 Gk

Gk Nk−1

]
N0 = H0
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Then Nm ≥ 0 if and only if

H0 +
m∑

i=1

δiHi ≥ 0, for all δ ∈ {−1, 1}m. (3)

This result gives an equivalent condition to test the
matrix cube problem. We now prove Theorem 8 using
the above lemmas.

Proof of Theorem 8. Sufficiency is implied by The-
orem 6 and we will now prove necessity. Suppose
G(δ) ≥ 0 for all δ within the unit cube. Lemma 10
shows that Nm ≥ 0. Let z0 = 1 and recursively de-
fine a sequence of vectors of monomials z0, z1, . . . , zm

as follows

zi =
[

zi−1

δizi−1

]
for i = 1, . . . , m.

We choose S0 = 2−m(zm ⊗ I)T Nm(zm ⊗ I) and it is
clear that S0 ∈ Σ[x, δ] ∩ Q1. As for S1, . . . , Sm, we let
D = {1, . . . , m} and define the sets Ek,l,Fj,k,l as follows,

Ek,l =
{

A ⊂ D | |A| = l and k �∈ A
}

,

Fj,k,l =
{

A ⊂ D | |A| = l, and j, k �∈ A
}

.

We also define the polynomials

pk,l =
∑

A∈Ek,l

∏
j∈A

δ2
j , qj,k,l =

∑
A∈Fj,k,l

∏
p∈A

δ2
p

Let S1, . . . , Sm as follows

Sk = H0

(
c1 +

m−1∑
i=1

ci+1pk,i

)

+
m∑

i=1
i �=k

δiHi

⎛
⎝d1 +

m−2∑
j=1

dj+1qi,k,j

⎞
⎠

for k = 1, . . . , m

where c ∈ R
m and d ∈ R

m−1 satisfy

M(m)c = e1 − 2−m1, M(m − 1)d = e1 − 2−m+11

and M : R 	→ R
m×m are

M(m) =

⎡
⎢⎢⎢⎢⎣

m 0 · · · 0

−1 m − 1
. . .

...
. . . . . . 0

0 · · · −m + 1 1

⎤
⎥⎥⎥⎥⎦ .

The highest degree of S1, . . . , Sm in each δi is at most
2 which implies that S1 . . . , Sm ∈ Q1. Expanding S0 +∑m

i=1(1− δ2
i )Si shows that S0, . . . , Sm satisfy (2).

The reason that degree bounded S0, S1, . . . , Sm exist
is because of the persymmetric structure of Nm. We
now have a family of refutations for the matrix cube
problem and we may check if G(δ) ≥ 0 for all δ ∈ ∆ by
searching a certificate of degree at most 2m.

This condition may also be directly expressed as a
semidefinite program. Although the degree bound on
the certificates grows linearly with m, the number of
monomials required to express the certificates (i.e., the
dimension of Q1) grows exponentially in m. Of course,
since we have exactly solved the problem this is ex-
pected; the original problem is NP-hard.

When the cube is high-dimensional, the computa-
tional complexity of searching X2 also scales poorly. To
reduce computational effort, we may limit the search
to low degree certificates and we turn our focus to the
search of the quadratic set X3 as follows.

Definition 11. Define the set X3 ⊂ X2 such that
(S0, . . . , Sm) ∈ X3 if and only if (S0, . . . , Sm) ∈ X2 and
S0 ∈ Q2, S1, . . . , Sm ∈ S

n.

The computational complexity of searching X3 is
lower. The equivalent semidefinite program for testing
the nonemptiness X3 as follows

find X1, . . . , Xm ∈ S
n, L ∈ S

n(m+1)

s.t. L =

⎡
⎢⎣

L00 · · · L0m

...
. . .

...
LT

0m · · · Lmm

⎤
⎥⎦ ≥ 0

0 =
m∑

i=0

Lii − H0

0 = Lii − Xi for i = 1, . . . ,m

0 = L0i + LT
0i − Hi for i = 1, . . . , m

0 = Lij + LT
ij for i, j = 1, . . . , m, i �= j

(4)

If the above semidefinite program is feasible, we may
construct the certificate by choosing Si = Xi for i =

1, . . . , m respectively and S0 = zT Lz where z =
[
1
δ

]
⊗I.

The gap between verifying the matrix cube problem
and checking the non-emptiness of X3 can be inter-
preted as the degree difference between certificates in
X2 and X3. The degree of certificates in X3 is at most
2, instead of growing linearly with respect to m. Al-
though this means that the condition is conservative,
we now show that it is still tighter than the previously
well-known condition in Theorem 2.

Theorem 12. If XT is not empty, then X3 is not
empty.

Proof. Suppose (X1, . . . , Xm) ∈ XT . It is clear that Xi

is positive definite for i = 1, . . . , m. From Lemma 9,
X1, . . . , Xm also satisfy[

Xi Hi

Hi Xi

]
≥ 0, for i = 1, . . . ,m

which by the Schur complement implies

Xi ≥ HiX
−1
i Hi, for i = 1, . . . , m.

45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006 ThIP11.10

4408



2006.09.05.03

Thus,

H0 − 1
2

m∑
i=1

Xi − 1
2

m∑
i=1

HiX
−1Hi ≥ H0 −

m∑
i=1

Xi

≥ 0.

Applying the Schur complement again gives

J =

⎡
⎢⎢⎢⎢⎣

H0 − 1
2

∑m
i=1 Xi

1
2H1 · · · 1

2Hm

1
2H1

1
2X1 0

...
. . .

1
2Hm 0 1

2Xm

⎤
⎥⎥⎥⎥⎦

≥ 0

(5)

By letting

S0 =
[

I
δ ⊗ I

]T

J

[
I

δ ⊗ I

]
,

Si =
1
2
Xi, for i = 1, . . . ,m.

we show (S1, . . . , Sm) satisfies (2) and this completes
the proof.

The above theorem shows that every certificate in
XT has a corresponding instance in XT . We show that
our condition is strictly tighter than the previous condi-
tion via a counterexample in Section 4. Comparing the
two semidefinite programs, we recognize that (5) im-
poses constraints on the off-diagonal entries such that
Lij = 0 for i, j = 1, . . . ,m, i �= j. The entries are re-
laxed to be skew symmetric in (4) and this condition
is still sufficient.. This skew symmetric structure arises
naturally in the Positivstellensatz refutation.

To see the relationship of the conditions so far, we
show the relationship between the refutation sets in
Figure 1. The set X1 and X2 are the two largest refuta-
tion sets and the computational complexity of searching
these sets grows exponentially with respect to the di-
mension of the cube. If we limit the search in the set
X3, then computational complexity is reduced and the
result is still tighter than the existing conditions XT .

Positivstellensatz
refutations

MC problem X1 �= ∅

X2 �= ∅

X3 �= ∅

XT �= ∅

Figure 1: Set hierarchy

Note that although searching for quadratic certifi-
cates is only a sufficient condition for the matrix cube
problem, the condition sometimes is also necessary, for
example, when the the number of uncertainty parame-
ters m is less than or equal to 2.

Theorem 13. Suppose m ≤ 2. Then G(δ) ≥ 0 for
all δ within the unit cube if and only if there exists
(S0, S1, S2) ∈ X3.

For the case when m > 2, it is unknown whether
a similar equivalence holds. However, if H1, . . . , Hm

are either positive or negative semidefinite, quadratic
certificates again provide necessary conditions.

Theorem 14. Suppose the matrices H1, . . . , Hm are ei-
ther positive semidefinite or negative semidefinite, then
G(δ) ≥ 0 for all δ within the unit cube if and only if
there exist (S0, S1, . . . , Sm) ∈ X3.

The proofs are omitted due to space constraints. The
above theorems allow us to limit the search to quadratic
certificates in many cases. We now give an example to
show the tightness of the refutation condition.

4 Examples : Quadratic stability

In this section, we check quadratic stability of a linear
time-invariant system to provide a specific numerical
example. Consider the uncertain system

ẋ = (A0 +
m∑

i=1

δiAi)x

where ‖δ‖∞ ≤ R. We would like to compute the largest
R such that the system is quadratically stable for all δ
within the cube.

First, we study the case when there are only two
uncertainty variables as follows.

ẋ(t) =

⎡
⎣ −0.4 0 −0.3δ1 + 1

0 −3.2 0.3δ1 − 0.5
0.4δ2 − 0.8 0.3δ2 − 2.2 δ1 − 1.7

⎤
⎦ x(t).

We compute the largest such R for which all δ within
the corresponding cube lead to stability. We sim-
ilarly compute the largest cube admitting quadratic
stability, and the bounds on this cube obtained us-
ing quadratic certificates and Theorem 2 from Ben-Tal
and Nemirovski. These are shown in Figure 2. As dis-
cussed in the previous section, the bound obtained us-
ing quadratic certificates is exact, and we do not need
to pursue higher degree certificates.

5 Conclusions

The question of degree bounds for positivstellensatz
refutations is one of significant importance for prac-
tical use of semidefinite programming for matrix poly-
nomial optimization. In this paper, we showed that
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Stability region

stability
quadratic stability
quadratic certificate
Theorem 2

Figure 2: stability bound from various conditions

meaningful bounds can be obtained. We used matrix
Positivstellensatz refutations to test positive semidefi-
niteness of an affine function over a given uncertainty
set. When the uncertainty set is a hypercube, we show
that the highest degree certificate needed is 2m. Al-
though the certificates are degree bounded, computa-
tional complexity is still high in general. To reduce the
complexity, we study the case of quadratic certificates
and show that the bounds obtained are still tighter than
those obtained from existing conditions. We also show
several cases when refutation using quadratic certifi-
cates is exact. This result may be useful in analyzing
and synthesizing a robust controller for systems with
uncertainties and robust quadratic optimization.
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