
Suboptimality Bounds in Stochastic Control:

A Queueing Example

Randy Cogill1 Sanjay Lall2

Abstract

In this paper we consider Markov decision processes with
average cost criteria, and discuss an approach for char-
acterizing the performance loss associated with using a
suboptimal control policy.

Because there are often difficulties associated with
computing and implementing optimal control policies,
heuristic control policies are often used in practice. For
such a policy, we would like to be able to compute guar-
anteed bounds on its performance, specifically its perfor-
mance relative to an optimal policy. In other words, our
goal is to produce a systematic approach for evaluating
how far a specific policy is from optimality.

This approach is demonstrated on a simple queuing
system with a single server and multiple job classes. We
use the general methods developed in the first part of
the paper to show that for any non-idling policy, subop-
timality of the resulting average queue length is bounded
by a factor which only involves service rates.

1 Introduction

Computation of optimal control policies for Markov de-
cision processes is often intractable, particularly for sys-
tems with infinite or very large state spaces. If the
general form of the optimal control policy is known, it
still may not be implementable due to certain difficul-
ties. These include high computational costs required to
evaluate the control action at each time step, require-
ments that complete state information is known at each
time step, or the fact that control decisions are based
on a complete statistical description of the system. As
a result, suboptimal heuristic control policies are often
used in practice. In this paper, we consider Markov de-
cision processes with general state spaces and an average
per-period cost objective. The main contribution of this
paper is an approach for characterizing the performance

1Department of Electrical Engineering, Stanford University,

Stanford, CA 94305, U.S.A. Email: rcogill@stanford.edu
2Department of Aeronautics and Astronautics, Stanford Univer-

sity, Stanford CA 94305-4035, U.S.A. Email lall@stanford.edu
1The first author was partially supported by a Stanford Graduate

Fellowship.
1,2Partially supported by the Stanford URI Architectures for

Secure and Robust Distributed Infrastructures, AFOSR DoD

award number 49620-01-1-0365.

loss associated with using a suboptimal control policy.
Our goal is to produce a systematic approach for eval-
uating how far from optimality are the costs incurred
using a specific policy. The methods described in this
paper are used to provide a worst-case ratio between the
cost incurred by a specific suboptimal policy and the cost
incurred by an optimal policy.

The general methods are then demonstrated on a sim-
ple queuing model. We consider the problem of control-
ling a queue with a single server and multiple job classes.
For this problem, the optimal policy is well known, but
its implementation requires knowledge of the exact ser-
vice rates for each job class. On the other hand, per-
formance analysis of some easily implementable policies,
such as FIFO, is generally recognized to be quite diffi-
cult. We apply the general methodology discussed in the
first part of the paper to show that for any non-idling
policy, suboptimality of the resulting queue occupancy
is bounded by a factor which only involves service rates.
This bound supports the intuition that, if service rates
for different classes are reasonably close, then service dis-
cipline shouldn’t have much effect on queue length, re-
gardless of arrival rates.

1.1 Prior Work

The main contributions of this paper are bounds on av-
erage per-period cost for general state space Markov de-
cision processes, and the application of these bounds to
the example problem of controlling a multiclass queue.
Extensive work has been done previously both on bound-
ing costs in Markov chains, and in control and analysis
of multiclass queues.

For finite state Markov chains, bounds similar to those
in Section 2 of this paper originally appeared in [9], where
they were used for the purpose of proving convergence
of a value iteration algorithm for average cost Markov
decision processes. Similar bounds appeared later in
[10], again for the finite state case. For general state
spaces, the bounds in Section 2 are closely related to
Lyapunov theorems for Markov chains. For example, a
similar upper bound can be found in Theorem 14.2.2 of
[8]. One drawback of the standard Lyapunov theorems is
that, for systems with positive unbounded costs, they are
typically only useful for producing upper bounds. The
bounds presented in this paper can be thought of a gen-

Proceedings of the 2006 American Control Conference
Minneapolis, Minnesota, USA, June 14-16, 2006

WeC07.4

1-4244-0210-7/06/$20.00 ©2006 IEEE 1642

eralization of both the finite state bounds and the Lya-
punov bounds, with the particularly attractive feature
that they can produce useful upper and lower bounds
for systems with unbounded costs.

The type of queueing system that we consider as an
example has been extensively studied, primarily in the
continuous-time case. The optimal control policy for
this system is well known, and is a special case of the
cμ rule [5]. In the discrete-time case, optimality of the
cμ rule was established in [2] and [4]. In [1], the dis-
crete time model is considered and it is shown that the
region of achievable average queue lengths for all policies
is a polyhedron. It is worth noting that it is possible
to obtain the bounds of Theorem 4 from this polyhedral
characterization, however, we believe that the approach
taken in this paper results in a much simpler proof.

1.2 Preliminaries

In this paper we consider discrete-time Markov decision
processes. The systems considered have a general state
space X which is measurable with respect to some given
σ-field B(X), and a finite set of actions U available at
each time step. Taking action u ∈ U when in state x ∈ X
incurs a cost r(x, u). After taking action u in state x, the
system state evolves according to the probability

p(S|x, u) = Pr{X(t + 1) ∈ S|X(t) = x,U(t) = u},

where S ∈ B(X).

We consider the performance of such systems under
static state-feedback policies. A static state-feedback
policy μ : X → U is a rule which chooses the ac-
tion in each time step based on the current system
state. Under a static state-feedback policy μ, the
random process describing state evolution is a time-
homogeneous Markov chain Xμ with transition proba-
bility p(S|x, μ(x)). Throughout this paper, we will occa-
sionally simply use the word policy when referring to a
static state-feedback policy.

In this paper, we evaluate performance of a system
under a particular policy μ in terms of the average per-

period cost

Jμ = lim
t→∞

1

t + 1

t∑
k=0

E
[
r
(
Xμ(k), Uμ(k)

)
|Xμ(0)

]
,

where Uμ(t) = μ(Xμ(t)). An optimal static state-
feedback policy is one which achieves the minimum av-
erage per-period cost of all such policies.

Throughout this paper, we assume all functions from
X to R are measurable with respect to B(X) and the
Borel σ-field B(R). Also, to simplify notation, we will
occasionally write conditional expectations as

E[h(X(t + 1)) | x, u],

where it understood that we mean

E[h(X(t + 1))|X(t) = x,U(t) = u].

2 Bounds on Average Per-Period Cost

In this section we give a method for determining bounds
on the average per-period cost incurred by a Markov de-
cision process. We will first show how bounds can be
computed for Markov chains without control (or with a
given state-feedback control). This approach will then be
extended to provide a lower bound on the average per-
period cost incurred by any static state-feedback policy.
By determining an upper bound on the cost incurred by
a given policy and a lower bound on the cost incurred
by any policy, we can quantify how far from optimal the
given policy is.

2.1 Markov Chains Without Control

Theorem 1, which is the main result of this paper, is
used to establish upper and lower bounds on the average
cost incurred by Markov chains with general measurable
state spaces.

Theorem 1. For any h : X → R, let

βu = sup
x∈X

{r(x) + E[h(X(t + 1))|X(t) = x] − h(x)}

and

βl = inf
x∈X

{r(x) + E[h(X(t + 1))|X(t) = x] − h(x)} .

If

sup
x∈X

{
E[h(X(t + 1))2|X(t) = x] − h(x)2

}
< ∞,

then

βl ≤ lim
t→∞

1

t + 1

t∑
k=0

E[r(X(k))|X(0)] ≤ βu

for all X(0) ∈ X .

Proof. Let

Δ1(x) = E[h(X(t + 1))|X(t) = x] − h(x).

The definition of βu implies

(t + 1)βu ≥ E

[
t∑

k=0

(
r(X(k)) + Δ1(X(k))

)∣∣∣∣∣ X(0)

]

=

t∑
k=0

E[r(X(k))|X(0)] +

E[h(X(t + 1))|X(0)] − h(X(0)).

1643

Therefore,

1

t + 1

t∑
k=0

E[r(X(k))|X(0)] ≤

βu +
1

t + 1

(
h(X(0)) − E[h(X(t + 1))|X(0)]

)
.

Similarly, we can establish the inequality

1

t + 1

t∑
k=0

E[r(X(k))|X(0)] ≥

βl +
1

t + 1

(
h(X(0)) − E[h(X(t + 1))|X(0)]

)
.

To complete the theorem, we must show that

lim
t→∞

1

t + 1
E[h(X(t + 1))|X(0)] = 0

for all X(0) ∈ X . Let

Δ2(x) = E[h(X(t + 1))2|X(t) = x] − h(x)2.

If
sup
x∈X

{Δ2(x)} = M < ∞,

then

(t + 1)M ≥ E

[
t∑

k=0

Δ2(X(k))

∣∣∣∣∣ X(0)

]

= E[h(X(t + 1))2|X(0)] − h(X(0))2.

Therefore,

|h(X(0))| +
√

(t + 1)M ≥
√

h(X(0))2 + (t + 1)M

≥
√

E[h(X(t + 1))2|X(0)]

≥ E
[
|h(X(t + 1))|

∣∣ X(0)
]
,

where the last inequality follows from the concavity of
the square root and Jensen’s inequality. Finally,

lim
t→∞

1

t + 1
E

[
|h(X(t + 1))|

∣∣ X(0)
]
≤

lim
t→∞

1

t + 1

(
|h(X(0))| +

√
(t + 1)M

)
= 0,

implying that limt→∞
1

t+1E[h(X(t+1))|X(0)] = 0 for all
X(0) ∈ X . �

2.2 Markov Chains With Control

Theorem 1 is used to establish upper and lower bounds
on the average per-period cost incurred by an irreducible,
positive recurrent Markov chain. Since our ultimate goal

is to bound the performance gap between a given policy
and a policy which achieves minimum cost, this result
is now extended to provide a lower bound on the aver-
age per-period cost incurred by any static state-feedback
policy.

Theorem 2. For any h : X → R, let

βl = inf
x∈X ,u∈U

{r(x, u) + E[h(X(t + 1))|x, u] − h(x)}.

Any static state-feedback control policy μ : X → U such

that

sup
x∈X

{
E[h(X(t + 1))2|x, μ(x)] − h(x)2

}
< ∞

has average per-period cost satisfying

βl ≤ lim
t→∞

1

t + 1

t∑
k=0

E[r
(
X(k), μ(X(k))

)
|X(0)]

for all X(0).

Proof.

βl = inf
x∈X ,u∈U

{r(x, u) + E[h(X(t + 1))|x, u] − h(x)}

≤ inf
x∈X

{r(x, μ(x))+E[h(X(t + 1))|x, μ(x)]−h(x)}

The remainder of the proof simply requires application
of Theorem 1. �

Note that in order to use Theorem 2 to prove a lower
bound on the performance of an optimal policy, we must
show that the expected drift in h2 is bounded under an
optimal policy. This is often accomplished, as in the ex-
ample of the next section, by showing that the expected
drift in h2 is bounded for all stable policies.

Summary: We will end this section with a summary
of how each of these theorems are used:

1. For a given policy μ̂, Theorem 1 is used to determine
an upper bound βu on the average per-period cost
incurred by this policy.

2. Theorem 2 is used to determine a lower bound βl on
the average per-period cost incurred by an optimal
state-feedback policy.

3. We can then use βu/βl as a bound on the worst-case
cost ratio between μ̂ and an optimal policy.

3 Example: Control of a Multiclass

Queue

Here we will apply the methods of the previous section
to the problem of controlling a multiclass queue. Our

1644

goal is to show that for any reasonable control policy,
the average queue length is within a fixed bound of the
optimal average queue length.

A multiclass queue is simply a queue where each job
may be a member of one of N distinct job classes. What
differentiates job classes is that jobs of certain classes
may arrive more frequently than jobs of other classes,
and jobs of certain classes may require longer service
times than jobs of other classes. For queues with jobs of
a single class, the order in which arriving jobs are served
has no effect on certain quantities, such as the average
queue length. Therefore, a simple control policy such as
first in-first out (FIFO) results in the same average queue
lengths as a more complex control policy. However, for
systems with job dependent service times, the order in
which arriving jobs are serviced does have an effect on
average queue length. For a system with a finite number
of job classes and memoryless arrival and service time
distributions, the policy which minimizes average queue
length is well known [2, 4]. In the optimal policy, job
classes are prioritized according to average service time,
and jobs with shorter average service times are served
before jobs with longer average service times. Also, if a
low priority job is in service, it is temporarily put aside if
a job of higher priority arrives. In other words, this pol-
icy assumes that it possible to distinguish between job
classes, requires knowledge of service statistics for each
job class, and allows to possibility of preempting jobs
in service. When it is impractical to implement such a
control policy, we need to resort to a simpler subopti-
mal control policy. This raises the question, “If I use
a suboptimal control policy, how much longer than op-
timal may the average queue length be?” We consider
the set of all non-idling policies, which are policies that
always serve jobs as long as there are jobs in the queue.
We will show that the queue lengths resulting from any
non-idling policy are bounded by a factor involving only
the service rates. The bound we obtain gives a way of
quantifying the intuitive notion that the control policy
has little effect on average queue length if service rates
for all job classes are close.

We consider a discrete time model of this queueing sys-
tem. In time slot t, Ai(t) ∈ {0, 1} jobs of class i arrive
in the queue. We assume that at most one job arrives
in the queue in each time slot; that is

∑
i Ai(t) ≤ 1 for

all t. We also assume that for all t′ �= t, the arrival
vectors A(t) and A(t′) are independent and identically
distributed. We denote λi = E[Ai(t)], where this ex-
pectation is independent of t. We let Xi(t) denote the
number of class i jobs in the queue at time t, and let
X(t) = (X1(t), . . . , XN (t)). We define the control se-
quence Ui such that Ui(t) = 1 if a class i job is be-
ing serviced in time slot t, and Ui(t) = 0 otherwise.
If we are servicing a job of class i in a time slot, then
service is completed with probability σi. This proba-
bility is independent of service history, resulting in ge-

ometrically distributed service times. Finally, we let
Di(t) = Ui(t)I(Xi(t))Bi, where Bi is a Bernoulli ran-
dom variable with E[Bi] = σi and I denotes the indicator
function defined as

I(x) =

{
0 if x = 0
1 otherwise

.

The random variable Di(t) indicates the number of jobs
of class i successfully served in time slot t. The queue
length dynamics evolve according to

Xi(t + 1) = Xi(t) + Ai(t) − Di(t)

for each i ∈ {1, . . . , N}.

It is clear that the problem of choosing how to serve
job classes in order to minimize average queue length is
a Markov decision process with average per-period cost
criteria. For the model we consider, the state space is
X = Z

N
+ , the set of possible queue occupancies for each

job class. The action space is

U =

{
u ∈ {0, 1}N

∣∣∣∣∣
N∑

i=1

ui = 1

}
.

Here the cost incurred in time slot t is r(X(t)) =∑N

i=1 Xi(t), the total number of jobs in the queue. Let
μ : X → U be a state-feedback control policy, and let Xμ

be the queue length process under this policy. Then

Jμ = lim
t→∞

1

t + 1

t∑
k=0

E[r(Xμ(k))|Xμ(0)]

is the average queue length under policy μ. As mentioned
before, we will consider the class of non-idling policies.
A policy μ is said to be non-idling if, for any x �= 0,
μ(x) = ui implies xi > 0.

We would now like to consider the effect of control pol-
icy on average queue length. Under certain conditions,
bounded queue lengths may not exist for any non-idling
policy (i.e., the system is not stabilizable). Therefore,
we must identify and restrict our attention to the cases
where the system is stabilizable. The following lemma
identifies the cases in which the system cannot be sta-
bilized by a non-idling policy. This result is standard
(see, for example, [6]), so the proof is omitted due to
space constraints. However, we would like to point out
that the methods of the previous section could be used
to establish this result.

Lemma 3. If
∑N

i=1
λi

σi

> 1, then there is no non-idling

policy with bounded average queue length.

It turns out that, when
∑N

i=1
λi

σi

< 1, any non-idling
policy achieves bounded average queue lengths. The fol-
lowing result relates the average queue length of an ar-
bitrary non-idling policy to the average queue length of
an optimal policy.

1645

Theorem 4. Let μNI be an arbitrary non-idling pol-

icy, and let μOPT be an optimal non-idling policy. If∑N

i=1
λi

σi

< 1, then JμNI
and JμOPT

are finite and satisfy

JμNI

JμOPT

≤
maxi{σi}

mini{σi}
.

Proof. To prove an upper bound on JμNI
, we use

hu(x) = K1

⎛⎝(
N∑

i=1

xi

σi

)2

+ K2

N∑
i=1

xi

σi

⎞⎠ ,

where

K1 =
maxi{σi}

2
(
1 −

∑N

i=1
λi

σi

)
K2 =

(
1 − 2

N∑
i=1

λi

σi

)
.

Let

Δu(x) = E[hu(X(t + 1)) | X(t) = x] − hu(x).

Using Xi(t+1) = Xi(t)+Ai(t)−Di(t), after some algebra
one can obtain

r(x) + Δu(x) =
N∑

i=1

(
1 −

maxj{σj}

σi

)
xi + β max

j
{σj},

where

β =

∑N

i=1

(
1 + 1

σi

)
λi

σi

− 2
(∑N

i=1
λi

σi

)2

2
(
1 −

∑N

i=1
λi

σi

) .

To prove a lower bound on JμOPT
, we use

hl(x) = K3

⎛⎝(
N∑

i=1

xi

σi

)2

+ K2

N∑
i=1

xi

σi

⎞⎠
where

K3 =
mini{σi}

2
(
1 −

∑N

i=1
λi

σi

)
and K2 is defined as before. Let

Δl(x, u) = E[hl(X(t + 1)) | X(t) = x,U(t) = u] − hl(x).

The choice of u which minimizes r(x) + Δl(x, u) has

E
[∑N

i=1
Di(t)

σi

∣∣∣ X(t) = x,U(t) = u
]

= 1 whenever x �= 0.

Therefore,

min
u∈U

{r(x) + Δl(x, u)} =

N∑
i=1

(
1 −

minj{σj}

σi

)
xi + β min

j
{σj}.

To complete this proof, we need to show that

sup
x∈X

{
E[hu(X(t + 1))2 | x, μ(x)] − hu(x)2

}
< ∞

and

sup
x∈X

{
E[hl(X(t + 1))2 | x, μ(x)] − hl(x)2

}
< ∞

for all non-idling policies μ. Both hu and hl are of the
form

h(y) = K(y2 + K2y),

where y =
∑N

i=1
xi

σi

. Squaring h obtains

h(y)2 = K2(y4 + 2K2y
3 + K2

2y2).

For any non-idling policy, the expected drift

E[h(X(t + 1))2 | x, μ(x)] − h(x)2

is a third order polynomial with the third order term
equal to

4K2

(
N∑

i=1

λi

σi

− 1

)(
N∑

i=1

xi

σi

)3

.

Whenever the system is stabilizable, this is negative for
all x �= 0. Hence, the expected drift in h2 is bounded
above for all non-idling policies. This implies that the
bounds βu and βl are valid and

JμNI

JμOPT

≤
βu

βl

=
maxi{σi}

mini{σi}
.

�

We would like to point out that this bound is not ob-
tained by simply upper and lower bounding the average
queue length of the multiclass queue by the queue lengths
of queues which serve all job classes at the minimum and
maximum service rates, respectively. While such an ap-
proach would provide upper and lower bounds, the gap
between these bounds can be made arbitrarily large for
given service rates. In fact, we can show that the bound
produced in Theorem 4 is tight.

The proof of tightness of the bound is left out due
to space constraints. Essentially, this proof considers a
system with two job classes and compares the perfor-
mance of the two policies which give strict priority to
one class. By computing the average queue lengths un-
der these policies, it is shown that arrival statistics can
be chosen so that the the bound in Theorem 4 can be
approached arbitrarily closely.

It is also worth noting that the proof of Theorem 4
does not require any knowledge of the optimal policy.
The lower bound on optimal performance is determined
via a much simpler argument than would be required
to derive and evaluate the optimal policy. Also, it may

1646

appear at first sight that the upper bound in the proof
of Theorem 4 may not apply to FIFO, since FIFO is
not a state-feedback policy under the current definition
of the system state. However, it is possible to create
a countable state space under which FIFO is a state-
feedback policy. Moreover, r and hu can be interpreted
in this new state space and an identical upper bound
can be derived. A similar procedure could be carried
out to verify that the upper bound is also valid for non-
preemptive policies.

4 Conclusion

In this paper, we presented a method which can be ap-
plied to obtain bounds on costs in Markov decision pro-
cesses with general state spaces and average per-period
cost criteria. This method was applied to the problem of
control of a multiclass queue to establish a bound on the
ratio between the average queue length achieved by any
practical policy and the average queue length achieved
by an optimal policy.

References

[1] E. Altman and A. Schwartz. Optimal priority assign-
ment: a time sharing approach. IEEE Trans. Automatic

Control, 34:1089–1102, 1989.

[2] J.S. Baras, A.J. Dorsey, and A.M. Makowski. K com-
peting queues with geometric service requirements and
linear costs: the μc rule is always optimal. Systems and

Control Letters, 6:173–180, 1985.

[3] D. Bertsimas, D. Gamarnik, and J.N. Tsitsiklis. Perfor-
mance of multiclass Markovian queueing networks via
piecewise linear lyapunov functions. Ann. Applied Prob-

ability, 11(4):1384–1428, 2001.

[4] C. Buyukkoc, P. Varaiya, and J. Walrand. The cμ rule
revisited. Advances in Applied Probability, 17:237–238,
1985.

[5] D.R. Cox and W.L. Smith. Queues. John Wiley, New
York, 1961.

[6] L. Kleinrock. Queueing Systems. Volume II: Computer

Applications. John Wiley, New York, 1976.

[7] S. Kumar and P.R. Kumar. Performance bounds for
queueing networks and scheduling policies. IEEE Trans.

Automatic Control, 39(8):1600–1611, 1994.

[8] S. Meyn and R. Tweedie. Markov Chains and Stochastic

Stability. Springer-Verlag, 1993.

[9] A.R. Odoni. On finding the maximal gain for Markov de-
cision processes. Operations Research, 17:857–860, 1969.

[10] P.J. Schweitzer and A. Seidmann. Generalized polyno-
mial approximations in Markovian decision processes. J.

Mathematical Analysis and Applications, 110:568–582,
1985.

1647

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for export to IEEE PDF eXpress. May 2005. PaperCept.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

