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Abstract— We consider a control system in which sensor data
is transmitted from the plant to a receiver over a communica-
tion channel, and the receiver uses the data to estimate the state
of the plant. Using a feedback policy to choose when to transmit
data, the goal is to schedule transmissions to balance a trade-off
between communication rate and estimation error. Computing
an optimal policy for this problem is generally computationally
intensive. Here we provide a simple algorithm for computing
a suboptimal policy for scheduling state transmissions which
incurs a cost within a factor of six of the optimal achievable
cost.

I. INTRODUCTION
We consider a control system in which sensor data is

transmitted from the plant to a receiver over a communication
channel, and the receiver uses the data to estimate the state
of the plant. Sending data more frequently leads to increased
use of limited communication resources, but also allows the
average estimation error to be reduced. Conversely of course
we may reduce the use of the channel if we are willing to
allow larger estimation errors.

We consider feedback policies for choosing when to trans-
mit data. That is, instead of simply choosing a transmission
rate, at the plant measurements are used to decide whether to
transmit data to the controller. This type of measurement is
called Lebesgue or event-based sampling in [1]. Several other
authors have considered both control and filtering problems
using such sampling schemes, in particular [1]–[7].

The plant is modeled by a discrete-time linear system, and
at each time step the channel allows exact transmission of
the state. The cost function of interest in this prolem is a
weighted sum of the estimation error and the transmission
rate. The optimal controller for a given weight then lies on
the Pareto-optimal trade-off curve, and choosing the weight
allows one to select the trade-off between rate and error.

For this cost function, the problem of finding the optimal
policy was considered in [8], where the authors show that the
problem of computing an optimal scheduling policy can be
addressed in the framework of Markov decision processes,
and consequently the value iteration algorithm can be used
to compute an optimal policy. Although this provides an
algorithm for computing an optimal policy, the computation
required to compute such a policy quickly becomes pro-
hibitive as the system’s state dimension increases.
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Since the optimal policy is very difficult to compute,
we consider approximately optimal policies. Specifically, the
main result of this paper is to give a simple algorithm for
computing a policy, and show that this policy is guaranteed to
achieve a cost within a factor of six of the optimal achievable
cost. This result is Theorem 2 below.

Approximation algorithms have been widely used for
addressing computationally intractable problems [9]. While
some NP-hard problems may be approximated to arbitrary
accuracy, others may not be approximated within any con-
stant factor. It is therefore extremely promising that the
particular problem of rate-error trade-off considered in this
paper is approximable within a constant factor of six. It
is not currently known whether policies achieving better
approximation ratios may be efficiently obtained.

II. PROBLEM FORMULATION
Here we will present the problem that will be considered

throughout this paper. In the following subsection, it will be
shown how this problem is a generalization of the problem
of networked estimation.

We have dynamics

et+1 = (1 − at)Aet + wt e0 = 0 (1)

where for each t ∈ N the state et ∈ R
n, and the action

at ∈ {0, 1}. Here w0, w1, . . . is a sequence of independent
identically distributed Gaussian random vectors, with wt ∼
N (0,Σ), where Σ � 0. Define the function r : R

n ×
{0, 1} → R to be the cost at time t, given by

r(et, at) = (1 − at)e
T
t Qet + λat (2)

where Q � 0 and λ > 0. We would like to choose a state-
feedback control policy µ : R

n → {0, 1} to make the average
cost incurred by the policy µ small. Here the average cost J
is defined as

J(µ) = lim sup
N→∞

1

N

N−1
∑

t=0

E
(

r(et, µ(et)
)

(3)

See [10] for background on this choice of cost. Here,
each at is determined according to the static state-feedback
policy at = µ(et), and then the sequence e0, e1, . . . is a
Markov process. Therefore, the problem of choosing a policy
which minimizes the cost J is can be addressed using the
theory of Markov decision processes. The cost J given by
equation (3) is called the average per-period cost, and we
focus specifically on the problem of choosing a policy to
minimize this. For convenience, define the space of policies

P = { f : R
n → {0, 1} | f is measurable }

Forty-Fourth Annual Allerton Conference
Allerton House, UIUC, Illinois, USA
Sept 27-29, 2006

FIC.140

1336



Then the above problem can be stated as follows.
Problem 1 (RATE-ERROR TRADE-OFF): Given A, Σ �

0, Q � 0, λ > 0, and γ > 0, find a state feedback policy
µ ∈ P such that

J(µ) ≤ γ
Minimizing the cost J balances a trade-off between the

average size of et, as measured by the quadratic form defined
by Q, and the frequency with which et is reset to the level
of the noise by setting at = 1. The problem of computing
an optimal policy was considered in [8], and a numerical
procedure for finding such a policy was given. However, the
computation required to compute an optimal policy increases
rapidly with the state dimension. In the following section
we present an easily computable and easily implementable
policy for this problem which incurs a cost within a provable
bound of the optimal achievable cost. Specifically, we focus
our attention on the set of problem instances where Q and A
are such that AT QA−Q � 0 and Q � 0. In particular, this
implies that ρ(A) ≤ 1 and the system is therefore at least
marginally stable. We show that in this case there is a simple
policy which always achieves a cost within a factor of six of
the optimal cost. It is worth noting that, in general, both the
policy which always transmits and the policy which never
transmits may achieve cost arbitrarily far from optimal.

A. Application to Networked Estimation
Suppose we have the dynamical system

xt+1 = Axt + wt x0 = 0

yt = atxt

where for each t ∈ N the state xt ∈ R
n and at ∈

{0, 1}. As above, w0, w1, . . . is a sequence of independent
identically distributed zero mean Gaussian random vectors
with covariance Σ � 0. We have a per-period cost of

c(xt, at, bt) = (1 − at)(xt − bt)
T Q(xt − bt) + λat (4)

and we would like to choose two controllers. The first is the
function µ : R

n → {0, 1}, and the second is the sequence of
functions φt indexed by t where φt : {0, 1}t × R

nt → R
n.

These are connected according to

at = µ(xt)

bt = φt(a0, . . . , at−1, y0, . . . , yt−1)

Again, we are interested in the cost

J(µ, φ0, φ1, . . . ) = lim sup
N→∞

1

N

N−1
∑

t=0

E
(

r(xt, at, bt)
)

The interpretation is shown in Figure 1, where the linear
dynamics xt+1 = Axt + wt is denoted by G. The dashed
lines indicate a communication channel. At each time t the
transmitter µ chooses whether to transmit the signal xt to the
receiver φ. Each transmission costs λ. The receiver would
like to estimate the state xt of G, and choose bt to minimize
the error xt − bt as measured by the quadratic form Q. The
cost r is used to compute the trade-off, parametrized by λ,
of estimation error against frequency of transmissions.

G µ φw x
a

y
b

×

Fig. 1. Networked Estimation

The estimator φ considered in Xu and Hespanha [8] is as
follows. Let bt = φt(a0, . . . , at−1, y0, . . . , yt−1), and define
φ by the realization

bt+1 = (1 − at)Abt + atAyt b0 = 0

If the random variables a0, a1, . . . are independent of
x0, x1, . . . then this is the time-varying Kalman filter, and
bt is the minimum mean square error estimate of xt given
measurements y0, . . . , yt−1.

We now have the dynamics
[

xt+1

bt+1

]

=

[

A 0
atA (1 − at)A

] [

xt

bt

]

+

[

I
0

]

wt

We change coordinates to
[

et

ft

]

=

[

I −I
0 I

] [

xt

bt

]

to give
[

et+1

ft+1

]

=

[

(1 − at)A 0
atA A

] [

et

ft

]

+

[

I
0

]

wt

In these coordinates, the cost c specified in equation (4) is
exactly equal to the cost (2), and e evolves according to the
dynamics (1). With this choice of φ therefore the optimal
choice of µ is found by solving the RATE-ERROR TRADE-
OFF problem.

III. MAIN RESULTS
In this section we present the main result of this paper,

which is that for a slightly restricted version of the RATE-
ERROR TRADEOFF problem, there is a simple policy which
achieves cost within a constant factor of optimal. Define for
convenience

Jopt = inf
µ∈P

(

lim inf
N→∞

1

N

N−1
∑

t=0

E
(

r(et, µ(et)
)

)

The policy that we consider is a simple quadratic threshold
policy. The main result of this paper is as follows.

Theorem 2: Suppose A ∈ R
n×n, Q � 0, Σ � 0, and

AT QA−A � 0. Then there exists a unique matrix M ∈ S
n

satisfying
1

1 + trace(ΣM)
AT MA − M +

Q

λ
= 0

Furthermore, define the policy µ by

µ(e) =

{

0 if eT Me ≤ 1

1 otherwise
(5)
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For this policy, the cost satisfies

J(µ) ≤ 6Jopt (6)
Proof: The result follows immediately from Theo-

rems 7 and 12 which are proved below.
We determine an upper bound on J(µ) and a lower bound

on Jopt. It is then easily shown that the upper and lower
bounds differ by a factor of six. First we prove the required
existence and uniqueness result.

Lemma 3: Suppose A ∈ R
n×n, Q � 0, Σ � 0 and

AT QA−Q � 0. Then there exists a unique matrix M ∈ S
n

such that
1

1 + trace(ΣM)
AT MA − M + Q = 0 (7)

and this solution satisfies M � 0.
Proof: Since Q � 0 and AT QA−Q � 0 the standard

properties of Lyapunov equations imply that we have ρ(A) ≤
1, and hence for any α with 0 ≤ α < 1 the equation

αAT MA − M + Q = 0

has a unique solution M � 0. Define the map f : [0, 1) → S
n

so that f(α) is this unique solution. Further define the map
h : [0, 1) → R by

h(α) =
1

1 + trace
(

Σf(α)
) − α

Now h(0) > 0, since it is given by h(0) = 1/(1 +
trace(ΣQ)). Also, for all sufficiently small δ > 0, we have
h(1 − δ) < 0. To see this, notice that f(α) � Q � 0 for all
α ∈ [0, 1) and since Σ � 0 we have for all α ∈ [0, 1)

trace
(

Σf(α)
)

≥ trace(ΣQ) > 0

Hence for δ > 0 sufficiently small we have

h(1 − δ) =
1

1 + trace
(

Σf(1 − δ)
) − 1 + δ

<
1

1 + trace
(

ΣQ
) − 1 + δ

= δ − trace(ΣQ)

1 + trace ΣQ

< 0

Now the function h is continuous on [0, 1− δ) and therefore
there must exist some α0 ∈ [0, 1 − δ) such that h(α0) = 0.
Now let M = f(α0) and we immediately have M � 0 and
M satisfies (7).

To show uniqueness, suppose M1 ∈ S
n and M2 ∈ S

n are
two distinct solutions. Let

βi =
1

1 + trace(ΣMi)

and since Mi is a solution we have f(βi) = Mi and hence
h(βi) = 0. But equation h(x) = 0 has a unique root, since
h is strictly decreasing, and hence β1 = β2 and hence M1 =
M2.

Note that the above Lemma gives an algorithm for com-
puting the unique solution M of equation (7). All that is
needed is to perform a bisection search to find the root of h.

IV. BOUNDS FOR GENERAL MARKOV
PROCESSES

The main tools that are used to determine the upper and
lower bounds are the following two Lemmas. These are
special cases of the more general results found in [11].

Lemma 4: Suppose x0, x1, . . . is a Markov process, with
each xt : Ω → X . Suppose r : X → R and h : X → R.
Define

J = lim sup
N→∞

1

N

N−1
∑

t=0

E
(

r(xt)
)

If there exists a ∈ R such that

h(x) ≥ a for all x ∈ X
then

J ≤ sup
q∈X

(

r(q) + E
(

h(xt+1) |xt = q
)

− h(q)
)

Proof: Define the function ∆ : X → R by

∆(q) = E
(

h(xt+1) |xt = q
)

− h(q)

and let β ∈ R be the candidate bound

β = sup
x∈X

(

r(x) + ∆(x)
)

For convenience also define y = infx∈X h(x). Then for any
z ∈ X and N > 0, we have

1

N

N−1
∑

t=0

E
(

r(xt) |x0 = z
)

=
1

N

N−1
∑

t=0

E
(

r(xt) + ∆(xt) |x0 = z
)

+
h(z) − y

N
− E

(

h(xt+1) |x0 = z
)

− y

N

and using the hypothesis we have

1

N

N−1
∑

t=0

E
(

r(xt) |x0 = z
)

≤ β +
h(z) − y

N

Taking the limit superior as N → ∞ on both sides gives

lim sup
N→∞

1

N

N−1
∑

t=0

E
(

r(xt) |x0 = z
)

≤ β

and since this holds for all z ∈ X taking the expected value
over initial states gives the desired result.

The above result will be used to give an upper bound
on the cost incurred by a given policy µ. To find a lower
bound on the cost achievable by any policy, we will use the
following extension to Markov decision processes.

Lemma 5: Consider a Markov decision process such that
for any policy µ : X → A we have states xt : Ω → X and
actions at : Ω → A. Suppose r : X×A → R and h : X → R.
Define the cost

J(µ) = lim inf
N→∞

1

N

N−1
∑

t=0

E
(

r(xt, µ(xt))
)
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Then if there exists b ∈ R such that

h(x) ≤ b for all x ∈ X
then for all µ : X → A we have

J(µ) ≥ inf
q∈X ,u∈A

(

r(q, u)

+ E
(

h(xt+1) |xt = q, at = u
)

− h(q)
)

Proof: Define the function ∆ : X ×A → R by

∆(q, u) = E
(

h(xt+1) |xt = q, at = u
)

− h(q)

and let β be

β = inf
q∈X ,u∈A

(

r(q, u) + ∆(q, u)
)

For convenience define y = sup{h(x) |x ∈ X}. Then for
any µ ∈ P , z ∈ X and N > 0, we have

1

N

N−1
∑

t=0

E
(

r(xt, µ(xt)) |x0 = z
)

=
1

N

N−1
∑

t=0

E
(

r
(

xt, µ(xt)
)

+ ∆
(

xt, µ(xt)
) ∣

∣x0 = z
)

+
h(z) − y

N
− E

(

h(xt+1) |x0 = z, a0 = µ(z)
)

− y

N

Using the hypothesis we have

1

N

N−1
∑

t=0

E
(

r(xt, µ(xt)) |x0 = z
)

≥ β +
h(z) − y

N

and taking the limit inferior as N → ∞ we have

lim inf
N→∞

1

N

N−1
∑

t=0

E
(

r
(

xt, µ(xt)
)
∣

∣x0 = z
)

≥ β

for all z ∈ X . Again, taking expectations over the initial
state gives the desired result.

V. BOUNDS FOR THE COMMUNICATION COST
A. Upper bounds

We are now ready to prove the upper bound on J(µ) where
µ is the policy in (5). The following lemma provides the
upper bound and also shows that one may use semidefinite
programming, combined with a line search, to find policies
that minimize this upper bound.

Lemma 6: Suppose M � 0 and H � 0 are symmetric
positive semidefinite matrices, and α ∈ R. If

AT HA − H + Q − αM � 0

(λ − α)M − H � 0

α − λ ≤ 0

α ≥ 0

(8)

Then the policy

µ(e) =

{

0 if eT Me ≤ 1

1 otherwise

achieves a cost which satisfies

J(µ) ≤ trace(ΣH) + α
Proof: The proof makes use of Lemma 4 with the

function
h(e) = eT He

Clearly this choice of h has h(e) ≥ 0 for all e. With the
above policy the dynamics are

et+1 =

{

Aet + wt if eT
t Met ≤ 1

wt otherwise

We now use the expected values computed in Lemma 8 to
give

E
(

h(et+1) | et = q
)

=

{

trace(ΣH) + qT AT HAq if qT Mq ≤ 1

trace(ΣH) otherwise

Now let the function f : R
n → R be

f(q) = E
(

h(et+1) | et = q) − h(q) + r
(

q, µ(q)
)

where µ is as in the hypothesis of the lemma. Then we have

f(q) − trace(ΣH)

=

{

qT (AT HA − H + Q)q if qT Mq ≤ 1

λ − qT Hq otherwise

We now use Lagrange duality to express the above quadratic
inequalities as follows. For any symmetric matrix X ∈
R

n×n, if there exists α ∈ R such that

X � αM

α ≥ 0

then qT Xq ≤ α for all q such that qT Mq ≤ 1, since in that
case qT Xq ≤ αqT Mq ≤ α. Similarly, if

(λ − α)M � H

α − λ ≤ 0

then λ − qT Hq ≤ α for all q such that qT Mq ≥ 1. Hence
if conditions (8) hold, then Lemma 4 implies that

J(µ) ≤ sup
q∈Rn

f(q)

≤ trace(ΣH) + α

as desired.
We now make use of this result to provide an explicit

upper bound.
Theorem 7: Suppose A ∈ R

n×n, Q � 0, Σ � 0 and
AT QA − Q � 0. Let M be the unique solution to

1

1 + trace(ΣM)
AT MA − M + Q/λ = 0

Then the policy

µ(e) =

{

0 if eT Me ≤ 1

1 otherwise
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achieves
J(µ) ≤ 2λ trace(ΣM)

1 + trace(ΣM)
Proof: We use Lemma 6 as follows. For convenience,

let d = 1 + trace(ΣM) and pick H = λM/d and α =
λ(d − 1)/d. Then it is immediately verified that H,M,α
satisfy (8), and hence we have

J(µ) ≤ trace(ΣH) + α

= 2λ trace(ΣM)/d

as desired.

B. Lower bounds
For the class of instances of RATE-ERROR TRADEOFF

with A and Q satisfying AT QA−Q � 0, we can show that
the policy µ of equation (5) achieves a cost within a constant
factor of optimal. To complete the presentation of the main
result of this paper, we now determine a lower bound on Jopt
which guarantees that for this class of instances,

J(µ) ≤ 6Jopt

We first prove some preliminary results.
Lemma 8: Suppose Y � 0 and q ∈ R

n, and w ∼ N (0,Σ)
is a Gaussian random vector. Let f be the random variable

f = (q + w)T Y (q + w)

Then

E f = qT Y q + trace(ΣY ) (9)
E(f2) = (qT Y q)2 + 4qT Y ΣY q +

(

trace(ΣY )
)2 (10)

+ 2 trace(ΣY ΣY ) + 2qT Y q trace(ΣY )

and further

E(f2) ≤ (qT Y q)2 + 6qT Y q trace(ΣY ) + 3
(

trace(ΣY )
)2

Proof: Equation (9) holds by expanding the quadratic
and using linearity of expectation, since

E(wT Y w) = E trace(wT Y w)

= E trace(Y wwT )

= trace
(

Y E(wwT )
)

and trace(AB) = trace(BA) for all compatible matrices
A,B. For equation (10), expanding gives

E(f2) = E
(

(qT Y q)2 + 4(qT Y w)2

+ (wT Y w)2 + 4(qT Y q)qT w

+ 4(wT Y w)qT Y w + 2(qT Y q)wT Y w
)

We evaluate each of these terms. The second term is

E
(

(qT Y w)2
)

+ E trace(qT Y wwT Y q) = qT Y ΣY q

For the third term, recall that if y ∼ N (0, Q) then the fourth-
order moments (see for example [12]) are given by

E
(

(yT y)2
)

= (trace Q)2 + 2 trace(Q2)

Now let y = Y
1

2 w, then y ∼ N (0, Y
1

2 ΣY
1

2 ) and hence

E
(

(wT Y w)2
)

= E
(

(yT y)2
)

=
(

trace(ΣY )
)2

+ 2 trace(ΣY ΣY )

For the fourth term E(qT Y q)qT w = 0 since Ew = 0. For
the fifth term

E
(

(wT Y w)qT Y w
)

=
∑

i,j,k

Yij(Y q)k E(wiwjwk) = 0

since the Gaussian density is symmetric. Summing these
terms gives equation (10).

For any square matrices A � 0 and B � 0 we have
trace(AB) ≤ (trace A)(trace B), and also

qT Y ΣY q = trace(qT Y ΣY q)

= trace(qqT Y ΣY )

≤ qT Y q trace(ΣY )

The final inequality then follows.
Lemma 9: Suppose there exists a positive semidefinite

matrix C � 0 and s ∈ R such that
(

s − 6 trace(CΣ)
)

AT CA − sC + Q � 0

s2 ≤ 4λ

AT CA − C � 0

(11)

Then for all policies µ ∈ P

J(µ) ≥ s trace(CΣ) − 3
(

trace(CΣ)
)2

Proof: Let the function h be

h(e) = seT Ce − (eT Ce)2

It is easily verified that h(e) is bounded above. For conve-
nience let r = trace(CΣ). Then since C � 0 Lemma 8
gives

E
(

h(et+1 | et = q, at = 0
)

≥ sr + (s − 6r)qT AT CAq

− 3r2 − (qT AT CAq)2

and
E
(

h(et+1 | et = q, at = 1
)

= r(s − 3r)

Now let f be the function

f(q, u) = E
(

h(et+1 | et = q, at = u
)

− h(q) + r(q, u)

In order to apply Lemma 5 we need to compute a lower
bound for f . First, we have

f(q, 1) = s trace(CΣ) − 3r2 − sqT Cq + (qT Cq)2 + λ

= s trace(CΣ) − 3r2 + (qT Cq − s/2)2 + λ − s2/4

Since by hypothesis we have s2 ≤ 4λ, we have

f(q, 1) ≥ s trace(CΣ) − 3r2

Also we have

f(q, 0) ≥ s trace(CΣ) − 3r2 + (s − 6r)qT AT CAq

− (qT AT CAq)2 − sqT Cq + (qT Cq)2 + qT Qq
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Since by the hypothesis AT CA − C � 0 we have

(qT AT CAq)2 − (qT Cq)2 ≤ 0 for all q ∈ R
n

and hence

f(q, 0) ≥ s trace(CΣ) − 3r2

+ qT
(

(s − 6r)AT CA − sC + Q
)

q

and hence if inequalities (11) hold

f(q, u) ≥ s trace(CΣ) − 3r2 for all q ∈ R
n, u ∈ {0, 1}

as desired.
Lemma 10: Suppose there exists M � 0 such that

1

1 + trace(ΣM)
AT MA − M + Q/λ = 0

AT MA − M � 0

Then for all policies µ ∈ P we have

J(µ) ≥ λ trace(ΣM)

3
(

1 + trace(ΣM)
)

Proof: Denote for convenience d = 1 + trace(ΣM).
We will use Lemma 9 with

C =

√
λM

3d

s = 2
√

λ

We also denote r = trace(CΣ). Then some algebra gives
(

s − 6 trace(CΣ)
)

AT CA − sC + Q

=
2

3d

(

1

d
AT MA − M +

Q

λ

)

+

(

1 − 2

3d

)

Q

λ

=

(

1 − 2

3d

)

Q

λ

� 0

since d ≥ 1. Hence inequalities 11 are satisfied, and
Lemma 9 implies that for all policies µ ∈ P we have

J(µ) ≥ s trace(CΣ) − 3
(

trace(CΣ)
)2

=
2λ(d − 1)

3d
− λ(d − 1)2

3d2

=
λ(d − 1)

3d2

≥ λ(d − 1)

3d

as desired, since d ≥ 1.
Lemma 11: Suppose Q � 0 and AT QA − Q � 0, and

α ∈ R satisfies 0 ≤ α < 1. Then there exists a unique
M ∈ S

n such that

αAT MA − M + Q = 0 (12)

and the matrix M is positive definite and satisfies

AT MA − M � 0
Proof: We assume α > 0, since otherwise the result is

trivially true. The conditions Q � 0 and AT QA − Q � 0
imply by the standard properties of Lyapunov equations that

ρ(A) ≤ 1, and hence ρ(
√

αA) < 1, and hence (12) has a
unique solution M , given by

M =
∞
∑

i=0

αi(AT )iQAi

and since Q � 0 we have M � 0. Since by assumption
Q � AT QA, we know by induction that

Q � (AT )iQAi for all i ∈ N

and hence

M �
∞
∑

i=0

αiQ

=
1

1 − α
Q

Therefore

αAT MA = M − Q

� M − (1 − α)M

= αM

and since α > 0 this implies M � AT MA as desired.
Theorem 12: Suppose A ∈ R

n×n, Q � 0, Σ � 0 and
AT QA − Q � 0. Let M be the unique solution to

1

1 + trace(ΣM)
AT MA − M + Q/λ = 0

Then for all policies µ ∈ P we have

J(µ) ≥ λ trace(ΣM)

3
(

1 + trace(ΣM)
)

Proof: By Lemma 11, AT QA − Q � 0 implies
AT MA−M � 0. Then applying Lemma 10 gives the result.

VI. EXAMPLE
Here we present a simple example to illustrate the results

of this paper. In this example, the system state evolves as
a random walk with Gaussian increments. In order to plot
the computed policy and a sequence of estimation errors, we
consider a system with state in R

2.
The system in this example has an A matrix and covari-

ance Σ given by

A =

[

1 0
0 1

]

and Σ =

[

0.03 −0.02
−0.02 0.04

]

The error cost and transmission cost are specified by

Q =

[

2 1
1 2

]

and λ = 20

Note that for this A, any Q satisfies AT QA − Q � 0.
To determine the quadratic threshold policy, we find M
satisfying

(

1

1 + trace(ΣM)

)

AT MA − M + Q/λ = 0
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Fig. 2. The threshold used by the policy µ and a trajectory of the error
e(t).

In this case we compute

M =

[

1.47 0.73
0.73 1.47

]

and use the policy of equation (5). This threshold is shown
by the ellipse in Figure 2.

For this problem instance, we have the lower bound on
the optimal cost

Jopt ≥
λ trace(ΣM)

3(1 + trace(ΣM))

≈ 0.45

We obtain the sequence of estimation errors shown in Fig-
ure 2 by simulating this system for 100 time steps under
the policy µ. For this simulation, we obtain the empirical
average cost

Javg(µ) =
1

N

N−1
∑

t=0

(

(

1 − µ(et)
)

eT
t Qet + 20µ(et)

)

≈ 1.6 for large N

As expected, we observe Javg(µ) ≤ 6Jopt.
For this system we also compute the curve showing the

trade-off between average communication rate and average
estimation error, as shown in Figure 3. This curve is com-
puted by considering a series of values of λ, and for each
λ computing the quadratic threshold policy µ, as well as a
corresponding empirical average transmission rate Jrate and
an empirical estimation error Jest given by

Jrate =
1

N

N−1
∑

t=0

at Jest =
1

N

N−1
∑

t=0

(1 − at)e
T
t Qet

The plot shows the average error cost associated with each
average rate.

VII. CONCLUSIONS
In this paper we considered a simple, yet fundamental

estimation problem involving balancing the trade-off between
communication rate and estimation error in networked linear

Jrate
0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3

Jest

Fig. 3. The trade-off between average communication rate Jrate and
weighted average error cost Jest when using quadratic threshold policies
for the example system. The upper curve shows the error costs achieved
when at is IID Bernoulli with probability Jrate. The lower curve shows the
error costs achieved using the proposed quadratic threshold.

systems. This paper extended the work of [8], where it
was shown that this problem can be posed as a Markov
decision process. Here we show that there is a simple,
easily computable suboptimal policy for scheduling state
transmissions which incurs a cost within a factor of six of
the optimal achievable cost.
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