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We present an analytic solution for a race model of n stochastic accumula-
tors for multiple choice reaction time. We show that to maintain a constant
level of accuracy, the response criterion needs to be increased approximately
logarithmically with n, to compensate for the increase with n in the likelihood
that an incorrect alternative will be most active after any fixed amount of
time accumulating information. Assuming that participants monitor and
maintain a constant level of performance can then explain the logarithmic
dependency of the response latency on n as specified by Hick’s law. More-
over, we show that for short time intervals, the Shannon information that
observers extract from a stimulus, is predicted to increase linearly with pro-
cessing time. © 2002 Elsevier Science (USA)
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1. INTRODUCTION

Hick’s law is one of the most robust regularities that has been reported in the
choice response time (RT) literature (Hick, 1952; Merkel, 1885; see also Teichener
& Krebs, 1974 and Welford, 1968, for reviews). In its simplest form, which applies



to reaction times in which a high level of accuracy is maintained, it relates the
logarithm of the number of choice alternatives with the mean RT for a correct
identification: RT=a+b log(n). In its complementary form, in which processing
time is controlled and accuracy is the dependent variable, it relates the processing
time of the stimulus with the amount of Shannon information extracted:
I(n)=k RT. Due to its remarkable simplicity, Hick’s law has attracted much
attention in the choice RT literature. Originally Hick (1952) interpreted this
regularity according to a sequential and hierarchical model of choice, but this was
later severely criticized (Laming, 1968). Different explanations based on n parallel
and exhaustive processes have also been developed (Christie & Luce, 1956; Laming,
1966). Later approaches to explain Hick’s law were based on self-terminating race
processes (Vickers, 1979; Vickers & Lee, 2000; Lacouture & Marley, 1991; Karpiuk,
Lacouture & Marley, 1997). Those latter models, however, were specifically devel-
oped to address the case of the 1D absolute identification tasks, with stimuli
organized on a 1-dimensional continuum.

In this article, we want to separate the factor that corresponds to the organiza-
tional structure of the input stimuli, from more general principles that relate to the
accumulation of noisy information. In essence, our observation is that, within stan-
dard (and self-terminating) models of stochastic information accumulation (Ratcliff,
1978, 1988; Vickers, 1979; Usher & McClelland, 2001) Hick’s law obtains even for
stimuli which lack a specific similarity structure (i.e., they are equidistant), since as
the number of alternatives increases, the chance that an incorrect response will
receive more support than the correct response also increases. This is true for any
fixed amount of information accumulation time t and can be compensated for by
accumulating information for a longer time, since the probability that an incorrect
alternative will have the most support decreases as more information is accumulated.
Thus, if the observer adjusts a response criterion to maintain a constant level of
accuracy as the number of alternatives increases, then reaction times will increase
with n. Remarkably, our analysis shows that this increase with n closely approximates
a function that grows linearly with the logarithm of n. Related to this, we also find
that when the response time is controlled the amount of information extracted from
the stimulus display increases linearly with time, at least for short time intervals. Here
we present an analysis of this situation, based on a simple stochastic race model for
choice. However, our claim is that Hick’s law is not a property of any particular
process model, but of the underlying statistics of the detection of signals in noise.1

1 Just as signal detectability theory is based on the inherent statistical properties of a static sample of
information perturbed by random noise, so our theory of Hick’s law is based on the inherent statistical
properties of a series of samples of such intrinsically noisy information.

The simplifying assumption of equidistance of input stimuli is inconsistent with
experiments that use stimuli on a one-dimensional continuum; however, it serves as
a useful approximation for experiments where the stimuli are visual patterns in a
high dimensional input space (including visually presented digits, numerals, or
words). While this is not the case for all the experiments that reported Hick’s law
regularities, there are experiments where this situation may apply. For example, in
the original study performed by Merkel (1885) the stimuli were the set of numerals
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1–5 and I–V. Although there are likely to be some nonhomogeneities in the
similarity structure of the stimuli in this and nearly all other experiments, it is still
worth dissociating the effect of this factor from the most basic effect of increasing
the number of choice alternatives. Moreover, the equidistance assumption is helpful
in order to allow the derivation of analytical results.

Findings similar to the findings presented here were presented in a previous
article (Usher & McClelland, 2001) where we proposed a neurocomputational
model that addressed many aspects of the time course of information processing.
The model was based on leaky, competing accumulators which integrate informa-
tion and which generate a response at the moment when one of the accumulators
reaches a response criterion. Within this model, we discovered that a close approx-
imation to Hick’s law arises if one assumes that subjects maintain a constant level
of accuracy as the number of alternatives increases. Each alternative is associated
with a dynamical activation value that undergoes a stochastic diffusion process, and
as more alternatives are added the chance that the activation of an incorrect alter-
native will reach the criterion activation level before the correct alternative in-
creases. To maintain a constant level of accuracy, the criterion needs to be adjusted
in order to compensate for this. This assumption of the model is consistent with a
feature of the procedure that Hick used in his 1952 experiment. Because he was
interested in errorless performance, he required subjects to undergo preliminary
blocks with each set size. During these blocks, subjects were instructed to adjust
their performance to eliminate errors while still responding as rapidly as possible. In
Hick’s experiment, several blocks of trials were run at each set size, and the data
reported were taken from the block following the first block of the given set size in
which no errors were made. Given this aspect of the procedure, we adopted the
assumption that subjects adjust the criterion as a function of number of alternatives
so as to keep accuracy constant at a high level when the number of stimuli in-
creases. Vickers (1979, Chap. 8; Vickers & Lee, 2000) used a similar approach,
based on confidence (rather than accuracy) which is self regulated, in his account of
Hick’s law, as it is applied to stimuli arrayed along a single dimension.

In our previous article (Usher & McClelland, 2001) we relied on Monte Carlo
simulations to show that a family of race models (race of accumulators with and
without leakage and competition) satisfy Hick’s logarithmic regularity. That is, the
criterion needs to be increased as a logarithmic function of the number of choices in
order to maintain a constant level of performance. Here we pursue the simplest
member of this family of models, a race between nonleaky accumulators or diffu-
sion processes (Ratcliff, 1978, 1988; Vickers, 1970, 1979), in order to provide a
tractable formulation showing analytically how the adjustment of the criterion can
compensate for the increased likelihood of errors and leads to a logarithmic relation
between RT and the number of choices. We also extend the analysis to show that
the approach accounts for the time-controlled variant of Hick’s law.

2. HICK’S LAW AT HIGH, CONSTANT ACCURACY

We assume that each alternative is represented by an accumulator, whose activa-
tion is xi and which receives sensory input, Ii, proportional to the match of the
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accumulator’s preferred input to the probe stimulus. The accumulation of activa-
tion is noisy; Gaussian noise, t, of zero mean and variance s2 is added to the acti-
vations xi. As a result the activation of each unit performs a Wiener diffusion
process with drift Ii and variance s2. This is expressed in the following stochastic
differential equation, where the noise term is proportional to the square-root of the
dt interval due to the fact that the variance and not SD is linear with dt,

dxi=Iidt+t`dt. (1)

We can assume without loss of generality that the stimulus corresponds to the first
response unit, x1 and its drift is I1=m (the drift value is kept here fixed, as we do
not investigate variations in the stimulus quality). Following the equidistance
assumption, we chose all the drifts of the incorrect responses to be equivalent, and
for simplicity we consider the case where these drifts (Ii; i > 1) are all equal to 0.
(This assumption is made to allow analytical derivations, but see Usher &
McClelland, 2001). We also choose the variance of the diffusion process, s2=1.
This is equivalent to measuring the random walk in units of s. The choice termi-
nating the trial and determining the RT is made when the activation of one of the
accumulators reaches a boundary at distance h from the origin (see Vickers, 1970).

For n=1 (a single diffusion process) the distribution of arrival times (or first-
passage times) corresponds to a Wald distribution (Ricciardi, 1977; Luce, 1986)

g(h, t)=
h

`2pt3
exp 5−(h−mt)

2

2t
6 , (2)

where m is the drift of the diffusion process and h is the response criterion. In the
Appendix we illustrate (Fig. 3) the density distribution of arrivals times for a diffu-
sion with drift m=1 (correct accumulator) and with drift m=0 (incorrect accu-
mulator), showing that the arrival time distribution of the process with zero drift
(dashed curve) is slower.

We can now calculate the survival functions (the complement of the cumulative
distribution functions) corresponding to the density distributions in Eq. (2), for
m=0, which corresponds to the probability that the diffusion process with zero
drift has not yet arrived at the criterion h by time t:

G0(h, t)=F
.

t
g0(h, tŒ) dtŒ=F

h

`2t

0
exp(−x20 ) dx=Erf 1

h

`2t
2 . (3)

The probability for a correct response in the race process and the RT distribution
of correct responses can be computed by considering the probability that the
process with drift reaches the boundary before all the other processes; this requires
multiplying the probability that the first accumulator reaches criterion in the time
interval (t, t+dt), g1(h, t) dt, with the probability that none of the other accumula-
tors reached the criterion by time t, G0(h, t)n−1. The probability density for a
correct response at time t is: r(n, h, t)=g1(h, t)[G0(h, t)]n−1. From this the proba-
bility for a correct response and the mean RT can be obtained,
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P(n, h)=F
.

0
r(n, h, t) dt (4)

OT(n, h)P=
1

P(n, h)
F
.

0
tr(n, h, t) dt. (5)

In the Appendix we develop an analytical approximation to Eq. (4), which reduces
this relatively complex integral to a simpler formula:

P(n, h) % Erf n−1=hm
2
. (6)

This equation shows that the accuracy is controlled by two parameters: the number
of alternatives, n, and the product hm. Changes in drift, are thus equivalent (with
regards to accuracy) with a corresponding scale of the criterion. As we focus on the
dependency of accuracy and RT on n (and not on stimulus quality) we choose m=1
in the discussion below. Increasing n and h has opposite effects on the correct
response probability, P(n, h). For a specific h value, increasing the number of
choices leads to a decrease in performance, while for a specific n increasing the
response threshold h improves performance. The idea suggested here (see also
Usher & McClelland, 2001) is that a logarithmic dependency of h on n can maintain
the correct response probability at an approximately constant levelP[n, h(n)]=const.
We show this in two ways:

First, using a logarithmic dependency, h(n)=2.4+2 log2 n (chosen so as to
obtain a performance of about 96%), we plot in Fig. 1A the performance level that
results when this dependency is substituted in Eq. (4). For n in the range of 2–10 the
performance remains approximately constant (i.e., within a range of 0.005 around
0.96). Second, we solved numerically the equation P[h(n), n]=0.96 (Eq. (4)) with a
higher precision of 0.001. The obtained values of h(n) are plotted (solid line) on log-
linear scale in Fig. 1B. The response times predicted by the model from these h
values (given by Eq. (5)) are plotted (with dots) in the same figure. It is known that
for a Wald distribution (Eq. (2)) the mean RT is OT(1, n)P=h(n), and the figure
indicates that the same thing holds to a good approximation for the race process of
accumulators. The threshold and the RT both show an approximately logarithmic
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Fig. 1. (A) The percentage correct, according to Eq. (4) for h(n)=2.4+2 log n. (B) The threshold
h(n) (solid line) and the corresponding RT (dots) (Eq. (5)) on log-linear scale for h(n) that is chosen so
as to maintain P=0.96 at a precision of 0.001.
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growth with n (i.e., linear on a log-linear scale). In the Appendix we present an
intuitive explanation for the logarithmic dependency (based on approximations,
valid for large h, i.e., high P-levels, and large or moderate n).

3. HICK’S LAW IN TIME CONTROLLED EXPERIMENTS

Hick (1952) noticed that the relationship T=K log2 (n), typically obtained when
subjects operate at a high and fixed level of accuracy can be generalized in terms of
the amount of information, I, extracted from the display as a function of processing
time. The extracted information is a measure of the decrease in the subject’s uncer-
tainty regarding the stimulus, after inspecting the display. When subjects perform
with perfect accuracy, no uncertainty remains after they perceive the display, and
the extracted information is equal to the original uncertainty. For n equiprobable
stimuli, this uncertainty is given by the entropy function, I(n)=log2(n). Hick’s law
can therefore be generalized to

T3 I(n). (7)

In his second and third experiment, Hick (1952) required subjects to perform on a
given response-set (n=10) under various speed instructions. The result, confirmed
by later experiments that controlled the speed accuracy tradeoff using response-
deadlines at various set-sizes (Pachella et al., 1968; Pachella & Fisher, 1972), is that
Eq. (7) holds also for speeded responses. In this case, however, the extracted
information equals the initial uncertainty minus the uncertainty left after the pre-
sentation of the display and reflected in the pattern of response errors. If one
denotes by pij the joined probability of generating response i after perceiving
stimulus j (i.e., pij=P(i | j) pj; and ; ij pij=1), one can calculate the extracted
information (see, e.g., Hick, 1952; Welford, 1968), according to

I=C
ij
pij log2

pij
pi pj
, (8)

where pj and pi are the marginal probabilities for the presentation of stimulus j and
for the generation of response i, respectively. Here we consider the case of
equiprobable stimuli and responses, thus pi=pj=1/n. Furthermore we assume
that response matrix is homogeneous (i.e., that when a subject makes an error he is
equally likely to respond with any of the incorrect response alternatives).

Thus we assume that diagonal elements pii are

pii(n, T)=
p(n, T)
n
, (9)

where p(n, T) is the probability for a correct response in an n-alternative choice
task performed in time T (i.e., this probability is equally divided among all the
diagonal elements). Similarly, for the nondiagonal elements (there are n(n−1) of
them), pij, i ] j is

pij=
1−p(n, T)
n(n−1)

. (10)
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With this, pij satisfies: ; ij pij=1. From Eqs (8), (9), and (10) one obtains

I(n, T)=log2 (n)+p(n, T) log2 (p(n, T))+(1−p(n, T)) log2 5
1−p(n, T)
n−1
6 . (11)

Here we show that the probability, p(n, T), can be computed from the Wiener dif-
fusion process of the race model. We begin by noting that for very short times, this
process gives a chance level of performance (the correct and incorrect activations
have distributions with identical means), P(n, 0)=1/n, and that at long times the
performance level reaches 1 (limtQ. P(n, t)=1—the correct/incorrect distributions
are well separated.2) One can check that in those two limits, I(n, 0)=0 (zero

2 In choice experiments where the stimuli are confusable, performance does not reach a perfect level
even at long times (Swensson, 1972). This factor can be accounted for by modifications of the diffusion
model, such as variability between trials in the drift parameter (Ratcliff, 1978) or leakage of the activa-
tion that results in an Ornstein–Uhlenbeck (OU) diffusion process (Busemeyer & Townsend, 1993; Usher
& McClelland, 2001). Here we focus, on choice between well discriminable stimuli sets (which are con-
structed in a high dimensional space), and where the Wiener diffusion process may provide a reasonable
first approximation [see however, Usher and McClelland (2001) for a discussion of Hick’s regularity in
the OU-process]. In particular for processing times short relative to the time OU scale, the OU process
can be approximated by a Wiener diffusion process.

information at time zero) and that limtQ. I(n, t)=log2(n) (the entropy of the set).
If we assume that at t=0 all the accumulators are initialized as xi(0)=0 and

they evolve according to a Wiener diffusion process (1) the probability distributions
of the correct accumulator P(x1, t) and of the incorrect ones, P(xj, t) ( j ] 1) are
Gaussian distributions with mean t and 0, respectively (corresponding to the noise-
less trajectories) and with standard deviations of SD=`t (Ricciardi, 1977; Luce,
1986).

When the RT is controlled (subjects are required to make a selection at time t),
the probability for a correct response, p(n, t), can be assumed to reflect the proba-
bility that the activation of the correct accumulator (with drift m=1) is larger than
the activation of all the other accumulators (with drift m=0) at time t (Ratcliff,
1978). Thus one needs to multiply the density probability distribution of the first
accumulator at activation level x with the cumulative distribution probabilities of
all the other accumulators at x, [12 (1+Erf(

x
`2t
))]n−1, and integrate across all pos-

sible x values, to obtain the probability that at time t, x1 has an activation larger
than that of all the other units.

p(n, t)=
1

`2pt

1
2n−1

F
.

−.

51+Erf 1 x
`2t
26n−1 exp 5−(x−mt)

2

2t
6 dx (12)

In Fig. 2A, we show the time-controlled accuracy curves for a race of n=2,
n=3, n=4, n=5 accumulators. One can see at t=0, the performance corresponds
to the chance level (guessing) and it gradually increases toward perfect performance
at long times. The information extracted is computed, for each of these n-values,
(Eq. (11)) and displayed in Fig. 2B. One can see that the increase in the information
is approximately linear in time and that the slopes are very similar (except for n=2
that has a relatively lower slope).
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FIG. 2. (A) The performance level p(n, t) corresponding to Eq. (12) is displayed for n=2, 3, 4, 5.
(B) The information extracted according to Eq. (11), where p(n, t) corresponds to the curves in A (the
line with the lowest slope corresponds to n=2).

To demonstrate that, for small t, the information increases with linearly with
time, we develop p(n, t) (Eq. (12)) in powers of t. Neglecting (for t < 1) the third
term in the exponent exp(−x

2

2t+xm−
m
2t
2 ), and developing exp(xm) % 1+xm, we

obtain3

3 The first term, 1n , results from the integral with exp(−x
2

2t):
1

`2pt

1
2n−1

>.−. [1+Erf( x
`2t
)]n−1 exp(−x

2

2t) dx=
1
n .

p(n, t) %
1
n
+fnm`t, (13)

where

fn==
2
p
F
.

−.

51
2
(1+Erf(y))6

n−1

exp(−y2) y dy. (14)

For short times the extracted information can be calculated (using Eqs. (13)
and (11)),

I(n, t) %
n2

n−1
f2nm

2t. (15)

It it interesting that despite the fact that the probability p(n, t) has a singularity
(infinite derivative) at t=0 and therefore does not grow linearly with time, the
extracted information is linear in time (for short time intervals) in accordance with
Hick’s law.

4. DISCUSSION

We have presented a simple scheme that provides a robust explanation for Hick’s
regularity in choice RT, on the basis of the assumption that subjects in such exper-
iments strive to maintain a constant level of accuracy as the number of alternatives
increases. This scheme shows that a multiple-accumulator model requires an
approximately logarithmic increase in the response criterion (and therefore in RT)
in order to maintain a constant level of accuracy with increasing set-size. This same
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scheme also explains the linear relation between the amount of extracted informa-
tion (which is a nonlinear function of the probability of correct response and of the
set size) and processing time in time controlled paradigms. In our previous work
(Usher & McClelland, 2001) we provided simulation results that indicate that this
scheme is robust enough to hold for less restrictive type of models (leaky competing
accumulators, as well as for a race of diffusion processes coupled with the use of a
criterion based on the difference in activation between accumulators, as used in
random-walk type models).

This mathematical analysis indicates that Hick’s law regularity is a consequence
of the statistical properties of adding more accumulators on a stochastic informa-
tion accumulation process. Together with simulations showing that the same results
hold up with various additional assumptions in place (Usher & McClelland, 2001),
it demonstrates that a principle of a constant rate of information transmission is
not needed to obtain the Hick’s law regularity. We suggest that a major determi-
nant of this regularity is the intrinsic increase in likelihood of spuriously reaching
threshold as a function of an increase in the number of alternatives in conjunction
with the attempt to maintain a fixed level of performance. Unlike the principle of
fixed rate of information transmission that was shown to be unplausible for human
choice performance (Laming, 1968), these principles are standard within the choice
RT theory (Ratcliff, 1978; 1988; Vickers, 1979) and consistent with neurocomputa-
tional principles (Usher & McClelland, 2001). Moreover, the analysis we presented
here predicts that the logarithmic dependency of RT on n (at high accuracy)
depends critically on the maintenance of an approximately constant level of per-
formance and that the slopes of information extracted on processing time may show
small variations with n.

Several aspects of the results require some caution. First, the logarithmic depen-
dency between set size and RT is only an approximation (careful examination of the
graph in Fig. 2B may reveal a slight underestimation at n=2.) Due to the noise
fluctuations present in most data sets, it is not clear whether actual data could ever
detect so small a discrepancy. It should also be noted that our analysis does not
take into account any possible similarity relations among the stimuli, even though
such similarities do clearly play some part in real experiments. To address this issue,
a variety of encoding assumptions will need to be explored, extending our analyses
as well as those of Vickers (1979; see also Vickers & Lee, 2000) and Lacouture &
Marley (1991; see also, Karpiuk, Lacouture, & Marley, 1997). Future research on
Hick’s law should also examine more discriminative measures of the RT (such as
error latencies and distributional properties (Roberts & Pashler, 2000)). Finally, the
use of internal metacognitive signals such as confidence (Vickers, 1979; Vickers &
Lee, 2000) may be used by participants when feedback about performance is not
available. Research addressig these issues are likely to capture the fundamental
nature of the basis for Hick’s regularity.

APPENDIX

The density distribution of arrivals times (Eq. (2)) for a diffusion with drift m=1
(correct accumulator) and with drift m=0 (incorrect accumulator) are illustrated in
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FIG. 3. Distribution densities for arrivals times in a diffusion process, Eq. (2), for m=1 and m=0
(no drift). The response threshold h is set to 3.

Fig. 3. The arrival time distribution of the process with zero drift (dashed curve) is
slower. (At larger t it decays as a power law, t−3/2 while the process with drift (solid
curve) has a faster exponential tail. The mean RT for a Wald distribution, g(h, t),
with drift 1 and response threshold, h, is OTP=h.

The criterion, h(n) that maintains a fixed accuracy, P[n, h(n)] is (Eq. (4))

P(n, h)=
h

`2p
F
.

0

1

`t3
exp 5−(h−mt)

2

2t
6 Erf n−1 5 h

`2t
6 dt

by changing the integration variable from t to x=h/`2t, one obtains

P(n, h)=
2

`p
exp(hm) F

.

0
exp 5−1x2+h

2m2

4x2
26 Erf n−1(x) dx. (16)

Since the integrand is a multiplication of a strongly peaked function F(x)=
exp[−(x2+h

2
m
2

4x2
)] with a slowly varying function G(x)=[Erf n−1(x)], one can

approximate the integral using the steepest descent method of approximation (e.g.,
Arfken, 1970, pp. 373–376)

F F(x) G(x) dx %`2p
F(xmax) G(xmax)

=d2 log2(F(x))
d2x
:
x=xmax

,

where, xmax is the value of x at the maximum of the F(x) function: dF(x)dx |x=xmax=0.
Applying this to Eq. (16), with x2max=

hm

2 leads to

P(n, h) % Erf n−1=hm
2
. (17)
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FIG. 4. The performance as function of n, according to Eqs. (4), (17), (18), for h(n)=2.4+2 log2(n)
and m=1. The approximation in terms of the Erf–function is virtually indistinguishable from the
integral formula. Very slight deviations appear in the second approximation (underestimation at low n
and over estimation at large n) that can be removed by introducing a second order in the expansion.

One more approximation can be obtained by replacing the Erf function with its
asymptotic expansion at large x (valid for P close to one): Erf(x) % 1− exp(−x

2)

`p x
;

P[n, h] % r1− exp 1−hm
2
2

=phm
2

s
n−1

. (18)

The accuracy of these approximations is illustrated in Fig. 4, where we plot the
performance obtained from the full integral formula 4, as well as from the two
approximations Eqs. (17)–(18), for h(n) chosen according to the logarithmic
dependency, h(n)=2.4+2 log2(n). All three lines show an approximately constant
performance (see also Fig. 1). An intuitive justification for the logarithmic depen-
dency of h(n) can be obtained by considering ln P[n, h] in Eq. (18). Fixing the drift
values to m=1 and neglecting to a first approximation the dependency of h on n in
the denominator, for large h, this gives

ln[P(n, h(n))]=(n−1) ln 51− exp 1−h(n)
2
26 % −(n−1) exp 5−h(n)

2
6 .

A logarithmic dependency, h(n)=a+b ln(n) is therefore needed to balance the
effect of the number of incorrect choices, n−1 and to maintain P at an approxi-
mately constant level.4

4 This consideration works well at large n (n % n−1) when b=2 [i.e., exp[−h(n)/2]=n−1]. For n in
the realistic range of 2–10, a constant P is obtained using the dependency: h(n)=2.4+2 log2(n). In this
case, ln[1/P(n)] % (n−1)/n1.44. While the variable (n−1)/n increases monotonically with n (from 0.5 to
1), when n (at denominator) is raised to a power larger than 1, this leads to a diminishing effect on P.
For powers in the range of 1.2–1.5, the two effects balance and the change in the value of P is relatively
small.
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